This application claims the benefit of Italian Application No. 102020000001393, filed on Jan. 24, 2020, which application is hereby incorporated herein by reference.
The description relates to a method and system for electrophysiological signal processing such as, for instance, PhotoPlethysmoGraphy (PPG) signals.
One or more embodiments may be useful in obtaining information from a driver of a vehicle with a view to possibly generating alert signals and/or activating safety procedures (e.g. taking over control of the vehicle), for instance within the framework of an Advanced Driver-Assistance System (ADAS).
Drowsiness of a vehicle driver (before and during driving) may adversely affect driving safety. Driver's drowsiness may cause serious road traffic accidents involving vehicles. The possibility to detect an attention state of a driver may facilitate evaluation of his/her fitness to drive a vehicle, facilitating to prevent road accidents.
Specifically, it may be interesting for improving driving safety to be able to perform operations of:
Vision systems, e.g., based on a camera installed within the vehicle, may be used to obtain such operations. Yet, such systems may fail in specific conditions, for instance due to poor lighting of the passenger compartment (night driving) or due to the presence of impediments, for instance such as due to sunglasses being worn by the driver. Installing and integrating a vision system in the vehicle may come at an increased costs and complexity.
PhotoPlethysmoGraphy (PPG) is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue. It is often used non-invasively to make measurements at the skin surface.
A PPG waveform comprises a pulsatile (‘AC’) physiological waveform attributed to cardiac synchronous changes in the blood volume with each heartbeat, and is superimposed on a slowly varying (‘DC’) baseline with various lower frequency components attributed to respiration, thermoregulation, skin tissues, etc.
For each cardiac cycle the heart pumps blood to the periphery. Even though this pressure pulse is somewhat damped by the time it reaches the skin, it is enough to distend the arteries and arterioles in the subcutaneous tissue. If a light reflex/transmit detector device is attached over the skin, a pressure pulse can also be seen from the venous plexus, as a small secondary peak. The change in volume caused by the pressure pulse is detected by illuminating the skin with the light from a light-emitting diode (LED) and then measuring the amount of light either transmitted or reflected to a photodiode. Each cardiac cycle appears as a peak.
Because blood flow to the skin can be modulated by multiple other physiological systems, the PPG can also be used to monitor breathing, hypovolemia, and circulatory conditions as well as for subjective analysis. Additionally, the shape of the PPG waveform differs from subject to subject, and varies with the location and manner in which the pulse oximeter is attached.
As mentioned, an extensive activity is carried on and several approaches are proposed in literature, for instance in:
As mentioned, various solutions proposed in the literature may be exposed to one or more of the following drawbacks:
Existing solutions hence lack a fine detection of a change in the person/driver physiology, especially while employing relatively cheap and low complexity components.
Despite the extensive activity in the area, improved solutions facilitating, for instance, identifying a drowsy state of a vehicle driver are desirable.
According to one or more embodiments, such an object can be achieved by means of a method having the features set forth in the claims that follow.
A bio-inspired method of processing electrophysiological signals comprising applying artificial neural network processing may be exemplary of such a method.
One or more embodiments may relate to a corresponding system.
One or more embodiments may relate to a corresponding vehicle, such as, for instance, a motor vehicle equipped with such a system.
One or more embodiments may comprise a computer program product loadable in the memory of at least one processing circuit (e.g., a computer) and comprising software code portions for executing the steps of the method when the product is run on at least one processing circuit. As used herein, reference to such a computer program product is understood as being equivalent to reference to computer-readable medium containing instructions for controlling the processing system in order to co-ordinate implementation of the method according to one or more embodiments. Reference to “at least one computer” is intended to highlight the possibility for one or more embodiments to be implemented in modular and/or distributed form.
The claims are an integral part of the technical teaching provided herein in respect of the invention.
One or more embodiments may facilitate providing time-continuous attention level monitoring for a vehicle driver on-board the vehicle, e.g. increasing road safety.
One or more embodiments comprise advanced time-based efficient and robust near real-time detection of continuous driver's level of attention, by using sampled PPG signal of the same driver.
One or more embodiments may comprise PPG detectors performing sampling of PPG time series of a car-driver (e.g., from solely one hand placed on the car steering, hence advantageously employing a single detection point).
One or more embodiments thus facilitate obtaining information (data, physical quantities) from the living human or animal body e.g. in support the diagnostic activity of a human in medical and veterinary activities or for other possible uses. Obtaining information on the behavior and/or the reaction of drivers and passengers in the automotive field is exemplary of one such possible use.
One or more embodiments may comprise a vehicle equipped with such PPG detectors and with such ADAS system configured to process signals detected by the PPG detectors.
One or more embodiments may facilitate continuous driver drowsiness detection/monitoring without the employ of frequency domain computations as well as without lengthy data-buffering.
One or more embodiments may use solely electrophysiological signal, e.g. PPG signal, samples for providing drowsiness detection with approximately 96% of accuracy, advantageously eliminating the presence of multiple signal types detection systems (e.g., Vision).
One or more embodiments may facilitate overcoming vision system drawbacks, providing the possibility to detect an attention level and/or an age of a driver of a vehicle even when obstacles may be placed in a field of view of a vision system, for instance if the driver wears sunglasses or has closed eyes.
One or more embodiments may comprise an ad-hoc high-speed machine learning pipeline configured to process such electrophysiological signal features/dynamics from filtering, facilitating to provide drowsy/wakeful classification of driver's state.
One or more embodiments may facilitate reaching high accuracy rate and sensitivity/specificity ratio.
One or more embodiments may advantageously be implemented over embedded electronic devices.
One or more embodiments may advantageously avoid using sensitive personal healthcare information or data.
The claims are an integral part of the technical teaching provided herein with reference to the embodiments.
One or more embodiments will now be described, by way of non-limiting example only, with reference to the annexed Figures, wherein:
GAN(G,D)=y˜p|
G*=argminG argmaxDGAN
GAN(G,D)=x,y˜p|
wherein
p|x,y and p|z are respective probability values.
In one or more embodiments, the second generator stage 344 may be implemented using non-linear cellular neural network (briefly, NL-CNN) technology, thus offering high-speed computing speeds. Specifically, one or more embodiments may exploit a NL-CNN computation paradigm as exemplified in
Non-Linear Cellular Neural Networks, briefly NL-CNNs, comprise arrays of nonlinear and simple computing elements or cells, comprising local interactions between cells. A CNN paradigm is thus well suited to describe locally interconnected simple dynamical systems showing a lattice-like structure.
Such (NL-)CNNs arrangements suitable for use in one or more embodiments are discussed, for instance, in documents:
NL-CNNs may be used for various types of applications such as image and signal processing, bio-inspired system modelling, or high-speed resolution of partial differential equations (PDEs).
One or more embodiments may adopt an analog implementation of a cell 3440 of the NL-CNN 344 as exemplified in
The dynamics of a NL-CNNs cell C(i,j) as exemplified in
The output voltage of single cell “vyij(t)” is defined by PieceWise Linear (PWL) remapping of the state of the cell C(i,j). A VLSI implementation of NL-CNNs involving so-called State-Controlled CNNs (SC-CNNs), where a C(I,j;k,l) matrix template (or image grid) is added allows high-speed computation of single cell dynamic.
In one or more embodiments as exemplified in
a) an input layer, configured to receive as input data the set of produced altered dataset(s) Y (and/or calibration data X during training 35) as entries of image grid (or matrix) arranged as grayscale images having pixel values equal to values of the altered dataset Y;
b) at least one convolutional layer 362, 366 comprising at least one kernel, for instance having a kernel size of 3-by-3, configured to be convoluted with the input data Y; and comprising a number of perceptrons that connect to the same region of the input, wherein such a number of perceptron may define the dimension of the feature maps generated by the CNNs;
In one or more embodiments the at least one fully Connected Layer may comprise a softmax Layer, comprising perceptrons configured to apply a so-called softmax activation function to normalize the output of the fully connected layer. For instance, the output of the softmax layer consists of positive numbers that sum to one, which can then be used as classification probabilities by the classification layer.
In one or more embodiments, the final layer of the classifier 36 may be a classification layer, wherein probabilities returned by the softmax activation function for each input to assign the input to one of the mutually exclusive classes and compute the loss and performance indexes.
As repeatedly noted in the foregoing, PPG processing apparatus as discussed herein lends itself to be used in areas other than the medical field, e.g. in the automotive field in order to gain useful information on the behavior and/or the reaction of drivers and passengers in various situations which may occur in a motor vehicle.
One or more embodiments have been tested using several PPG measurements collected from drivers in known conditions, e.g. for instance data from more than 70 patients with different ages, sex, and so on, under Physiologists directive. Specifically, a training database comprised PPG signals collected with drivers having different ages both in a Drowsy state and with closed eyes and as well as in a Wakeful state with open eyes,
The performed test has proved that the method has a validation Accuracy of 96-97% as eyes tracker or driver age detector.
In one or more embodiments, calibration or training 35 may be performed on Intel i9 12 Cores 32 Gbyte-NVIDIA RTX Tit. 2080 GPU processing circuits.
As exemplified herein, a method (for instance, 30) of processing at least one electrophysiological signal (for instance, S) may include operations of:
segmenting (for instance, 32) the at least one electrophysiological signal and producing a set of sampled waveforms (for instance, WF) as a result,
producing a set of randomly generated noise samples (for instance, Z),
applying artificial neural network processing (for instance, 34) to the set of sampled waveforms and to the set of randomly generated noise samples and producing at least one altered data pattern (for instance, Y) as a result, the altered data pattern comprising the set of filtered waveforms altered as a function of the randomly generated noise samples,
providing (for instance, 35) calibration data (for instance, X) comprising expected waveforms for filtered waveforms in the set of filtered waveforms,
applying classifier processing (for instance, 36) to the produced at least one altered data pattern to detect a degree of resemblance between the produced at least one altered data pattern and the calibration data patterns, wherein the classifier processing produces classification signals (for instance, T) having values above or below at least one threshold value as a function of the detected degree of resemblance,
triggering a user circuit (for instance, A) as a function of the classification signal (for instance, T).
As exemplified herein, the at least one electrophysiological signal may comprise at least one photopletysmography, PPG, signal.
As exemplified herein, the at least one electrophysiological signal may be collected from a driver (for instance, D) of a vehicle (for instance, V), and the user circuit triggered as a function of the classification signal may comprise a user circuit on board the vehicle.
As exemplified herein, the at least one electrophysiological signal is collected from the driver (D) of the vehicle (V) via a PPG sensor (20) placed on board a steering wheel (SW) of the vehicle (V).
As exemplified herein, the operation of applying artificial neural network processing (34) comprises:
wherein the second artificial neural network (for instance, 344) is configured to provide the at least one altered data pattern as a result of altering the set of filtered waveforms as a function of the first set of generated data patterns.
As exemplified herein, the operation of applying a second artificial neural network processing comprises using, applying, a non-linear cellular neural network, NL-CNN, circuit.
As exemplified herein:
the operation of applying classifier processing (for instance, 36) comprises using convolutional neural network, CNN, processing,
the operation of applying a first artificial neural network processing (for instance, 342) comprises using an inverse convolutional neural network processing.
As exemplified herein, the method may comprise at least one of:
As exemplified herein, an electrophysiological signal processing system (for instance, 100) configured to be coupled to at least one electrophysiological signal sensor (for instance, 20) collecting from a human (for instance, D) at least one electrophysiological signal (for instance, S, WF), may comprise processing circuitry configured to receive the electrophysiological signal (for instance, S) and to perform operations of:
segmenting (for instance, 32) the at least one electrophysiological signal and producing a set of sampled waveforms (for instance, WF) as a result,
producing a set of randomly generated noise samples (for instance, Z),
applying artificial neural network processing (for instance, 34) to the set of sampled waveform and to the set of randomly generated noise samples and producing at least one altered data pattern (for instance, Y) as a result, the altered data pattern comprising the set of filtered waveforms altered as a function of the randomly generated noise samples,
providing (for instance, 35) calibration data (for instance, X) comprising expected waveforms for filtered waveforms in the set of filtered waveforms,
applying classifier processing (for instance, 36) to the produced at least one altered data pattern to detect a degree of resemblance between the produced at least one altered data pattern and the calibration data patterns, wherein the classifier processing produces classification signals (for instance, T) having values above or below at least one threshold value as a function of the detected degree of resemblance,
triggering a user circuit (for instance, A) as a function of the classification signal.
As exemplified herein, a vehicle (for instance, V may be) equipped with the system as exemplified herein in combination with at least one electrophysiological signal sensor (for instance, 20) configured to collect at least one electrophysiological signal (S, WF), preferably a photopletismography, PPG, sensor configured to collect a PPG signal.
As exemplified herein, the vehicle (V) may comprise at least one driver assistance device (for instance, A) configured to be triggered as a function of the classification signal (for instance, T).
As exemplified herein, a computer program product may be loadable into the memory of at least one processing circuit (for instance, 100) and comprising software code portions for executing the steps of the method (for instance, 30) as exemplified herein when the product is run on at least one processing circuit.
It will be otherwise understood that the various individual implementing options exemplified throughout the figures accompanying this description are not necessarily intended to be adopted in the same combinations exemplified in the figures. One or more embodiments may thus adopt these (otherwise non-mandatory) options individually and/or in different combinations with respect to the combination exemplified in the accompanying figures.
Without prejudice to the underlying principles, the details and embodiments may vary, even significantly, with respect to what has been described by way of example only, without departing from the extent of protection. The extent of protection is defined by the annexed claims.
In the ensuing description, one or more specific details are illustrated, aimed at providing an in-depth understanding of examples of embodiments of this description. The embodiments may be obtained without one or more of the specific details, or with other methods, components, materials, etc. In other cases, known structures, materials, or operations are not illustrated or described in detail so that certain aspects of embodiments will not be obscured.
Reference to “an embodiment” or “one embodiment” in the framework of the present description is intended to indicate that a particular configuration, structure, or characteristic described in relation to the embodiment is comprised in at least one embodiment. Hence, phrases such as “in an embodiment” or “in one embodiment” that may be present in one or more points of the present description do not necessarily refer to one and the same embodiment.
Moreover, particular conformations, structures, or characteristics may be combined in any adequate way in one or more embodiments.
The references used herein are provided merely for convenience and hence do not define the extent of protection or the scope of the embodiments.
The drawings are in simplified form and are not to precise scale. For the sake of simplicity, directional (up/down, etc.) or motional (forward/back, etc.) terms may be used with respect to the drawings. The term “couple” and similar terms do not necessarily denote direct and immediate connections, but also include connections through intermediate elements or devices.
For the sake of simplicity, principles underlying the invention are discussed in the following mainly in relation to the processing of a PhotoPletysmoGraphy (PPG) signal. Such an electrophysiological signal type is purely exemplary, being otherwise understood that other types of electrophysiological signals may be processed in one or more embodiments, e.g. ElectroCardioGram (ECG) signals, ElectroEncephaloGram (EEG) signals, etc.
In one or more embodiments, a PPG signal may be simpler to employ as electrophysiological to process according to a method as disclosed herein, as it may be easier to sample in an automotive environment with respect to an ECG/EEG signal, due to a reduced invasiveness of the hardware in the limited volume of a vehicle.
As exemplified in
A width W of the pulse may also be defined at a given value of the PPG value.
PPG signals can be detected by using PPG sensors/devices (e.g., sensor 20 in
These SiPMs may have a total area of 4.0×4.5 mm2 and 4871 square microcells with 60 μm pitch (1 μm=1 micron=10−6 m). These devices 20B have a geometrical fill factor of 67.4% and are packaged in a surface mount housing (SMD) with 5.1×5.1 mm2 total area (see e.g. M. Mazzillo, et al., cited above or M. Mazzillo, et al.: “Electro-optical performances of p-on-n and n-on-p silicon photomultipliers”, IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3419-3425, 2012).
A Pixelteq dichroic bandpass filter with a pass band centered at 542 nm with a Full Width at Half Maximum (FWHM) of 70 nm (1 nm=10−9 m) and an optical transmission higher than 90% in the pass band range can be glued on the SMD package by using a Loctite® 352™ adhesive. With the dichroic filter at 3V-OV the SiPM has a maximum detection efficiency of about 29.4% at 565 nm and a PDE of about 27.4% at 540 nm (central wavelength in the filter pass band −1 nm=10−9 m). It was noted that the dichroic filter can reduce in excess of 60% the absorption of environmental light in the linear operation range of the detector operating in Geiger mode above its breakdown voltage (˜27V). OSRAM LT M673 LEDs in SMD package emitting at 529 nm (1 nm=10−9 m) and based on InGaN technology have been used as optical light sources in exemplary embodiments. These LEDs 20B have an area of 2.3×1.5 mm2, viewing angle of 120°, spectral bandwidth of 33 nm (1 nm=10−9 m) and typical power emission of a few mW in the standard operation range.
Use of PPG probes 20 comprising Silicon PhotoMultiplier (SiPM) detectors 20B may provide advantages in terms of single-photon sensitivity and high internal gain for relatively low reverse bias.
It was observed (see e.g. D. Agrò, et al.: “PPG embedded system for blood pressure monitoring,” in AEIT Annual Conference—From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), Trieste, 2014), that Silicon PhotoMultipliers (SiPMs) can provide advantages in PPG detecting systems 20 in terms of higher AC-to-DC ratio in PPG pulse waveform, high repeatability and immunity to motion artifacts and ambient interferences. One or more embodiments as discussed herein may sense PPG signals by using SiPMs (as available with companies of the ST group) as optical probe sensors, adapted to be used in conjunction with hardware and software components in providing a signal processing pipeline.
Light emitted by the LEDs 20A may be absorbed by the skin (DC component) and the arteries, specifically, by oxygenated (and partly by de-oxygenated) hemoglobin (AC component). Residual propagated/reflected (back-scattered) light may be a function (proportional-differential) of the amount of light absorbed by blood hemoglobin in the various heart phases (systolic, diastolic, dicrotic, etc.). A SiPM photomultiplier 20B may thus detect the presence of photons in the propagated/reflected light by transducing an electrical signal that can be sampled by an e.g. 24-bit ADC thus providing PPG signal as discussed previously.
Such PPG sensors 20 may be applied on a steering device of a vehicle, in various arrangements as exemplified in
In one or more embodiments, the PPG detector device 20 may comprise PPG probe circuitry 20A, 20B comprising a PPG probe section and a printed circuit board (PCB) configured for interfacing the probe sections with an acquisition and processing circuit.
As exemplified in
As mentioned, the results produced by the system 100 can possibly be presented on a display unit 38 to an operator, e.g. a medical practitioner, with the capability of supporting his activity, e.g. for diagnostic purposes.
In one or more embodiments, the interface stage 38 of the system 10 may comprise an Advanced Driver Assistance System (ADAS) configured to receive the indicator T and to use it in assisting the car driving operations, for instance providing an alert to the driver D of the vehicle V as a result of the indicator T being below or above a certain threshold and/or taking control over the vehicle in case a drowsy driver state is detected, potentially improving driving safety.
In one or more embodiments as exemplified in
In one or more embodiments, the system 100 may comprise a stage of measuring and pre-processing a set of PPG signals from various subjects (for instance, including the car driver D), storing such measured and pre-processed datasets as training or calibration datasets X in one or more databases 35, to be used for preliminary system calibration and/or for real time continuous update of ANN processing, as discussed in the following.
In one more embodiment as exemplified herein, a method as discussed in Italian patent application Nr. 102017000081018 by the same Applicant may be suitable for use in the pre-processing stage 32.
In one or more embodiments, the pre-processing stage 32 may be implemented in a processing circuit of a SPC58 Chorus microcontroller unit (MCU) fabricated at STMicroelectronics.
In one or more embodiments, the set of waveforms WF may be segmented as a function of valleys and peaks detected in the PPG signal S.
For instance, the set of waveforms WF may comprise:
a segmented PPG waveform WF0, as exemplified in portion a) of
a first derivative of the segmented PPG waveform WF1, as exemplified in portion b)
a second derivative of the segmented waveform WF2, as exemplified in portion c) of
Optionally, pre-processing may comprise normalization of waveform values in the range [0, 1].
In one or more embodiments, the set of waveforms WF (for instance comprising samples of the PPG waveform WF0, the first derivative WF1 and the second derivative WF2) may be arranged as columns/rows of a matrix which may be processed as a bi-dimensional image having waveforms sample values as pixel values.
In one or more embodiments, the matrix WF may be treated as if comprising (e.g., grayscale) pixel values, facilitating exploiting image processing techniques to process the PPG signal.
In one or more embodiments, the classification processing stage 36 may comprise a convolutional neural network, briefly CNN, processing stage, which may be trained using one or more training datasets X stored in a storage area 35 of the processing circuit 30 of the system 100.
In one or more embodiments as exemplified in
It is noted that while such stages 34, 36 and sub-stages 240, 342, 344, are discussed as separate stages in the following, in one or more embodiments they may be all incorporated, e.g. in one ANN processing stage performing all the operations of the sub-stages.
In one or more embodiments, the artificial neural network processing stage 34 may comprise:
In one or more embodiments, the first ANN stage 342 and the classification stage 36 may resemble a generative adversarial network architecture, briefly GAN, 342, 36 wherein the ANN stage 34 may be viewed as a tailored “generator” network 340, 342, 344 and the classification stage 36 as a tailored “discrimitator” stage of the GAN.
In such a GAN 342, 36, the ANN stage may be indicated as “generator network” 342 configured to produce random-noise data and produce (new) datasets or data patterns P, Y therefrom, while the classifier stage 36 may be indicated as a “discriminator network” 36 configured to evaluate probability of whether received datasets Y from the generator network 342 matches with expected dataset values X from the calibration or training dataset or not, in a way “grading” the mimicking ability of the generator network 34 to produce datasets which resemble “real” data.
In one or more embodiments, the first ANN stage 342 may be modeled as a sort of “inverted” convolutional neural network (briefly, CNN): while applying CNN processing may comprise receiving an image and applying down-sampling thereto in order to produce a likelihood probability, the generator stage 340, 342 may take (a vector/matrix or image-grid of) random data and up-sample it. In other words, while CNNs “throws away” data through down-sampling techniques like (max-)pooling, the generator network 342 produces or processes newly drawn data samples.
In one or more embodiments, the second dataset Y may be fed to the classification or discriminator stage 36, for instance alongside the data X taken from the training datasets 35, representing a “ground-truth” dataset of expected values.
In one or more embodiments, the discriminator 36 receives “distorted” images Y and returns probabilities, that is a number between “0” and “1”, that the received dataset belongs to the training dataset X or not.
Such probabilities which represent an estimation by the discriminator, which may not necessarily be correct.
In one or more embodiments, the discriminator CNN network 36 is a convolutional network that can categorize the datasets Y provided thereto, for instance a binomial classifier labeling images as “real” or “fake”.
In one or more embodiments, for instance during a calibration or training phase, the classification signal T output by the classification stage 36 may be provided to either one or both of the generator 342 or discriminator 36 stages, forming a feedback loop therebetween, in order to fine tune values of respective ANN parameters, wherein the generator “learns” to improve the number of generated “fake” signals that are labeled as “real”, while the discriminator is “trained” to strive to achieve the opposite result, namely to avoid mislabeling “fake” data.
In one or more embodiments, the discriminator 36 may be in a feedback loop with the training dataset 35, while the first ANN 342 may be in a feedback loop with the discriminator 36.
In one or more embodiments, both the first 340, 342 and the second 344 ANN processing stages may be configured to reduce different and opposing objective functions, or loss function, in a way similar to a zero-sum game.
For the sake of simplicity, in order to provide a mathematical expression of such a relation:
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
Number | Date | Country | Kind |
---|---|---|---|
102020000001393 | Jan 2020 | IT | national |