The present disclosure relates generally to medical devices. More specifically, the present disclosure relates to stents or other prostheses, particularly prosthesis coated by electrospun polytetrafluoroethylene (PTFE).
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
Stents may be deployed in various body lumens for a variety of purposes. Stents may be deployed, for example, in the central venous system for a variety of therapeutic purposes including the treatment of occlusions within the lumens of that system. It will be appreciated that the current disclosure may be applicable to stents designed for the central venous (“CV”) system, peripheral vascular (“PV”) stents, abdominal aortic aneurism (“AAA”) stents, bronchial stents, esophageal stents, biliary stents, or any other stent. Further, the present disclosure may equally be applicable to other prosthesis such as grafts. Thus, the disclosure provided below in connection with specific examples of stents may apply analogously to other prostheses.
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The phrases “connected to,” “coupled to,” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to each other even though they are not in direct contact with each other. For example, two components may be coupled to each other through an intermediate component.
The directional terms “proximal” and “distal” are used herein to refer to opposite locations on a stent. The proximal end of a stent is defined as the end of the stent closest to the practitioner when the stent is disposed within a deployment device which is being used by the practitioner. The distal end is the end opposite the proximal end, along the longitudinal direction of the stent, or the end furthest from the practitioner. It is understood that, as used in the art, these terms may have different meanings once the stent is deployed (i.e. the “proximal” end may refer to the end closest to the head or heart of the patient depending on application). For consistency, as used herein, the ends of the stent labeled “proximal” and “distal” prior to deployment remain the same regardless of whether the stent is deployed. The longitudinal direction of the stent is the direction along the axis of a generally tubular stent. In embodiments where a stent is composed of a metal wire structure coupled to a polymer layer, the metal structure is referred to as the “scaffolding” and the polymer layer as the “coating.” The term “coating” may refer to a single layer of polymer, multiple layers of the same polymer, or layers comprising distinct polymers used in combination.
Lumens within the central venous system are generally lined with endothelial cells. This lining of endothelial cells throughout the central venous system makes up the endothelium. The endothelium acts as an interface between blood flowing through the lumens of the central venous system and the inner walls of the lumens. The endothelium, among other functions, reduces or prevents turbulent blood flow within the lumen.
A therapeutic stent which includes a coating of porous or semi-porous material may permit the formation of an endothelial layer on the inside surface of the stent. A stent which permits the formation of the endothelium within the stent may further promote healing at the therapeutic region. For example, a stent coated with endothelial cells may be more consistent with the surrounding body lumens, thereby resulting in less turbulent blood flow or a decreased risk of thrombosis, or the formation of blood clots. A stent which permits the formation of an endothelial layer on the inside surface of the stent may therefore be particularly biocompatible, resulting in less trauma at the point of application and fewer side effects.
Electrospun polytetrafluoroethylene (PTFE) may be used as a stent coating where endothelial cell growth is desirable. “Electrospinning” refers to a process for forming mats, tubes, or other shapes by depositing small strings of PTFE on charged surfaces. The electrospinning process controls the thickness, density, porosity, and other characteristics of the PTFE so formed. Electrospinning of PTFE is described in United States Patent Application, Publication No. US 2010/0193999, which is incorporated herein by reference.
The present disclosure relates to a stent which has, in certain embodiments, metal scaffolding coated with at least one layer of electrospun PTFE. It will be appreciated that, though particular structures and coatings are described below, any feature of the scaffolding or coating described below may be combined with any other disclosed feature without departing from the scope of the current disclosure. For example, certain figures show metal scaffolding without any coating; the features described and illustrated in those figures may be combined with any combination of coatings disclosed herein.
Referring generally to
The stent 100 may be designed such that the midsection of the stent is “harder” than the ends. The “hardness” of the stent refers to the relative strength of the stent (e.g., its compressibility). A harder portion of the stent will have greater strength (i.e. exert a greater radial outward force) than a softer portion. In one embodiment, the midsection of the stent is harder than the proximal and distal end sections which are relatively softer.
Four basic design parameters may be manipulated to influence the properties (hardness, strength, crush force, hoop force, flexibility, etc.) of the illustrated stent. These properties are: (1) apex to apex distance, designated as Hx in
The overall stent design may be configured to optimize desired radial force, crush profile, and strain profile. The stent design parameters may each be configured and tuned to create desired stent characteristics. For example, the strain profile may be configured to be less than the failure point for the material being used.
A first parameter, the apex to apex distance, is designated as Hx. This measurement signifies the distance between a first apex and a second apex where both apexes substantially lie along a line on the outside diameter of the stent which is coplanar with, and parallel to, the longitudinal axis of the stent. In some embodiments, Hx may be constant along the entire length of the stent. In other embodiments the length of the stent may be divided into one or more “zones” where Hx is constant within a zone, but each zone may have a different Hx. In still other embodiments Hx may vary along the entire length of the stent. Hx may be configured, in connection with the other design parameters, to determine the properties of the stent. Generally, regions of the stent with a smaller Hx value will be harder than regions with a larger Hx value.
In the embodiment illustrated in
In embodiments where soft ends and a hard midbody are desirable, H1 may be between about 2 mm and 30 mm and H2 between about 2.1 mm and 30.1 mm. For example, in stents for CV or PV application, H1 may be between about 3 mm and 10 mm and H2 between about 3.1 mm and 10.1 mm, such as: 3 mm<H1<8 mm and 3.5 mm<H2<9 mm; 3 mm<H1<6.5 mm and 4 mm<H2<8 mm; or 3 mm<H1<5 mm and 5.5 mm<H2<6.5 mm.
In other embodiments where two or more apex to apex lengths are present in one stent, the change in apex to apex length may be correlated to the displacement of the apexes from the midpoint of the stent. In other words, the apex to apex length may increase incrementally as one moves away from the midpoint of the stent toward the ends in a manner that gives the stent the same geometry, and therefore the same properties, on either side of the midpoint of the length of the stent. In other embodiments, different geometries may be utilized at any point along the length of the stent. It will be appreciated that the ranges of values for Hx disclosed above apply analogously to embodiments where the stent has multiple apex to apex lengths. For example, in one embodiment a stent may have an apex to apex length at midbody within one of the ranges disclosed above for H1, and the value of Hx may vary incrementally, in steps, or some other pattern, along the length of the stent reaching an apex to apex length at the ends within the complimentary range for H2.
Moreover, in some embodiments, the value of Hx may be small enough that adjacent coils are “nested” within each other. In other words, the apexes of a first helical coil may extend up into the spaces just below the apexes of the next adjacent coil. In other words, apexes of lower coils may extend a sufficient amount so as to be disposed between the arms of higher coils. In other embodiments the value of Hx may be large enough that adjacent coils are completely separated. In embodiments wherein adjacent coils are “nested,” the number of wires at any particular cross section of the stent may be higher than a non-nested stent. In other words, cutting the stent along an imaginary plane disposed orthogonal to the longitudinal axis of the stent will intersect more wires if the stent is nested as compared to non-nested stents. The smaller the value of Hx, the more rows may be intersected by such a plane (that is, more than just the next adjacent row may extend into the spaces below the apexes of a particular row). Nested stents may create relatively higher strains in the scaffolding structure when the stent is loaded into a delivery catheter. In some instances the delivery catheter for a nested stent may therefore be relatively larger than a delivery catheter configured for a non-nested stent. Further, nested stents may be relatively stiff as compared to non-nested stents with similar parameters.
As will be apparent to those skilled in the art having the benefit of this disclosure, stents with a hard mid body and soft ends may be desirable for a variety of applications. Further, in some instances a basically “symmetric” stent may be desirable; in other words, a stent with certain properties at the midbody section and other properties at the ends, where the properties at both ends are substantially identical. Of course, other embodiments may have varied properties along the entire length of the stent. It will be appreciated that while the effect of changing variables, for instance the difference between H1 and H2, may be described in connection with a substantially symmetric stent (as in
A second parameter, arm length, is designated as Ax in
In some embodiments, the arm length A1 near the midsection of the stent 100 will be shorter than the arm length A2 near the ends. This configuration may result in the stent being relatively harder in the midsection. In embodiments where soft ends and a hard midbody are desirable, A1 may be between about 2 mm and 30 mm and A2 between about 2.1 mm and 30.1 mm. For example, in stents for CV or PV application, A1 may be between about 2 mm and 10 mm and A2 between about 2.1 mm and 10.1 mm, such as: 2.5 mm<A1<8 mm and 3 mm<A2<9 mm; 3 mm<A1<6 mm and 4 mm<A2<7.5 mm; or 4 mm<A1<5 mm and 5 mm<A2<6 mm.
In other embodiments where two or more arm lengths are present in one stent, the change in arm length may be correlated to the displacement of the arm from the midpoint along of the stent. In other words, the arm length may increase incrementally as one moves away from the midpoint of the stent toward the ends in a manner that gives the stent the same geometry, and therefore the same properties, on either side of the midpoint of the length of the stent. In other embodiments, different geometries may be utilized at any point along the length of the stent. It will be appreciated that the ranges of values for Ax disclosed above apply analogously to embodiments where the stent has multiple arm lengths. For example, in one embodiment a stent may have an arm length at midbody within one of the ranges disclosed above for A1, and the value of Ax may vary incrementally, in steps, or some other pattern, along the length of the stent reaching an arm length at the ends within the complimentary range for A2.
A third parameter, the apex radius, is designated as R1 in
Furthermore, in some instances, smaller values of Rx may result in relatively lower strain in the wire scaffolding when the scaffolding is compressed, for example when the stent is disposed within a delivery catheter. Moreover, wires of relatively larger diameters may result in relatively lower strain at or adjacent the radius measured by Rx when compressed, as compared to wires of smaller diameters. Thus, in some instances, the strain may be optimized for a particular design by varying the value of Rx and the diameter of the wire forming the scaffolding.
Like the other variables, Rx may take on a range of values depending on the application and the desired properties of the stent. In some embodiments Rx may be between about 0.25 mm and 1.5 mm. For example, in stents for CV or PV application, Rx may be between about 0.35 mm and 0.70 mm, such as: 0.35 mm<Rx<0.65 mm; 0.35 mm<Rx<0.6 mm; or 0.4 mm<Rx<0.5 mm.
It will be appreciated that the disclosed ranges for Rx apply whether the value of Rx is constant along the length of the stent, whether the stent is divided into zones with different Rx values, or whether Rx varies along the entire length of the stent.
The fourth parameter, wire diameter, is discussed in detail in connection with
The end 106 may be attached to the scaffolding in a variety of ways known in the art. The end 106 may be laser welded to the scaffolding or mechanically crimped to the scaffolding. In embodiments where the stent includes a polymer cover, the end 106 may be secured by simply being bound to the cover. In other instances, a string may be used to bind or tie the end 106 to adjacent portions of the scaffolding. Similarly, in some instances, a radiopaque marker may be crimped around the end 106 in such a manner as to couple the end 106 to the scaffolding. Additionally other methods known in the art may be utilized.
Furthermore, in some embodiments the stent 100 may be configured with radiopaque markers at one or more points along the stent 100. Such markers may be crimped to the scaffolding structure. In other embodiments a radiopaque ribbon, for example a gold ribbon, may be threaded or applied to the stent 100. In some embodiments these markers may be located at or adjacent one or both ends of the stent 100. Any radiopaque material may be used, for example gold or tantalum.
Referring again to
In the embodiment illustrated in
The stent 100 of
It will be appreciated that the disclosed stent may be formed in a variety of sizes. In some embodiments, L may be from about 20 mm to about 200 mm. For example, in CV applications the stent may have a length, L, of from about 40 mm to 100 mm or any value between, for example, at least about 50 mm, 60 mm, 70 mm, 80 mm, or 90 mm. In PV applications the stent may have a length, L, of from about 25 mm to 150 mm or any value between, for example at least about 50 mm, 75 mm, 100 mm or 125 mm. The stent may also be longer or shorter than these exemplary values in other stent applications.
Likewise the stent may be formed with a variety of diameters. In some embodiments the midbody diameter of the stent may be from about 4 mm to about 40 mm. For example, in CV or PV applications the stent may have a midbody inside diameter of about 3 mm to 16 mm or any distance within this range such as between about 5 mm to 14 mm or between about 7 mm to about 10 mm.
The stent may or may not be configured with flared ends regardless of the midbody diameter employed. In some central venous embodiments the maximum diameter at the flared end will be between about 0.5 mm to about 2.5 mm greater than the midbody diameter. For example, the maximum diameter at the flared end may be between about 1 mm to about 2 mm, or alternatively between about 1.25 mm and about 1.5 mm, such as about 1.25 mm or about 1.5 mm greater than the midbody diameter.
Referring now to
Referring now to
The illustrated embodiment has two cover layers, an outer layer 210 and an inner layer 220. Portions of the scaffolding may protrude through one or both layers at certain points, or, the scaffolding may be completely enclosed on the outside diameter by the outer layer 210 and on the inside diameter by the inner layer 220.
In some embodiments the outer layer 210, the inner layer 220, or both may be comprised of electrospun PTFE. Electrospun PTFE consists of tubes, mats, or other shapes of PTFE formed from randomly deposited strings of PTFE. As previously indicated, electrospinning of PTFE is described in United States Patent Application, Publication No. US 2010/0193999. As described in the reference, electrospinning may comprise depositing a polymer on a collection surface, in the presence of an electrostatic field. In some instances the polymer may be electrostatically charged and may be discharged through one or more orifices.
Further information, which is unique to this disclosure, relative to electrospinning PTFE or other polymer is included below. The properties of electrospun PTFE, including density and porosity, may be controlled or influenced during the creation of the electrospun PTFE, through controlling the electrospinning process.
In some embodiments, a PTFE dispersion may be discharged through an orifice to electrospin the PTFE. Furthermore, in some exemplary embodiments polyethylene oxide (PEO) may be added to the PTFE dispersion prior to electrospinning the material. The PEO may be added as a fiberizing agent, to aid in the formation of PTFE fibers within the dispersion or during the process of electrospinning the material. In some instances the PEO may more readily dissolve in the PTFE dispersion if the PEO is first mixed with water. In some examples this increased solubility may reduce the time needed to dissolve PEO in a PTFE dispersion from as long as multiple days to as little as 30 minutes. After the material is electrospun onto a collector, the material may then be sintered as further described below. In some instances the sintering process will tend to set or harden the structure of the PTFE. Furthermore, sintering may also eliminate the water and PEO, resulting in a mat of substantially pure PTFE.
In one exemplary process, a 60 wt % PTFE water dispersion was mixed with PEO and water as follows. First 5 mL of water was added to 1.4 g of PEO. The water and PEO were mixed until the PEO was fully dissolved and the solution created a thick gel. 30 mL of 60 wt % PTFE was then added to the PEO/water mixture. The combined solution was then allowed to sit or mix in a non-agitating jar roller until the solution achieved homogeneity. In other examples, the water, PEO, and PTFE amounts may be controlled to optimize the viscosity, PEO/PTFE ratio, or other properties of the mixture. In some instances adding water to the PEO before mixing with the PTFE dispersion may aid in reducing the number of large solid chunks in the mixture, lower the preparation time for the mixtures, and reduce the time needed for the combined mixture to solubilize.
Membranes composed of electrospun PTFE may have a microstructure composed of many fibers crossing and each other at various and random points. The electrospinning process may control the thickness of this structure and, thereby the relative permeability of the membrane. As more and more strands of PTFE are electrospun onto a membrane, the membrane may both increase in thickness and decrease in permeability (due to successive layers of strands occluding the pores and openings of layers below). (This microstructure is shown in
The complex and random microstructure of electrospun PTFE presents a challenge to the direct measurement of the average pore size of the membrane. Average pore size can be indirectly determined by measuring the permeability of the membrane to fluids using known testing techniques and instruments. Once the permeability is determined, that measurement may be used to determine an “effective” pore size of the electrospun PTFE membrane. As used herein, the “pore size” of an electrospun PTFE membrane refers to the pore size of a membrane which corresponds to the permeability of the electrospun PTFE when measured using ASTM standard F316 for the permeability measurement. This standard is described in ASTM publication F316 “Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test,” which is incorporated herein by reference.
In some applications it may be desirable to create a stent 100 with an outer layer 210 which is substantially impermeable. Such a layer may decrease the incidence of lumen tissue surrounding the stent growing into the stent. This may be desirable in applications where the stent is used to treat stenosis or other occlusions; an impermeable outer layer may prevent tissue from growing into the lumen of the stent and reblocking or restricting the body lumen. In some embodiments a substantially impermeable outer layer may be produced by using electrospun PTFE with an average pore size of about 0 microns to about 1.5 microns. In other embodiments, the impermeable layer may have an average pore size less than about 0.5 microns. In yet other embodiments, the impermeable layer may have an average pore size less than about 1.0 microns. In some embodiments, the impermeable layer may be a layer other than the outer layer, such as a tie layer, an intermediate layer or an inner layer. Furthermore, a substantially impermeable layer may be formed of fluorinated ethylene propylene (FEP) which is applied, for example, as a film or dip coating. Furthermore, FEP may be electrospun with a small average pore size to create a substantially impermeable layer.
In other potential embodiments it may be desirable to create a stent with an outer layer 210 which is more porous. A porous outer layer 210 may permit healing and the integration of the prosthesis into the body. For instance, tissue of the surrounding lumen may grow into the porous outer diameter. This “tissue ingrowth” may permit healing at the therapy site. In some embodiments a porous outer layer 210 may be formed of electrospun PTFE.
In certain embodiments a relatively porous inner layer 220 may be desirable. This layer may or may not be used in conjunction with a substantially impermeable outer layer 210. A relatively porous inner layer may permit endothelial grown on the inside diameter of the stent 100 which may be desirable for healing, biocompatibility, and reducing turbulent blood flow within the stent. In some embodiments the inner layer may be comprised of electrospun PTFE with an average pore size of about 1 microns to about 12 microns, such as from about 2 microns to about 8 microns, or from about 3 microns to about 5 microns, or alternatively from about 3.5 to about 4.5 microns.
In other embodiments a third layer may be disposed in the location 230 between the outer layer 210 and the inner layer 220. In some embodiments this layer may be a “tie layer” configured to promote bonding between the outer layer 210 and the inner layer 220. In other embodiments the tie layer may further be configured to provide certain properties to the stent as a whole, such as stiffness or tensile strength. Furthermore, in embodiments where both the inner layer 220 and the outer layer 210 are porous in nature, the tie layer may be configured to create an impermeable layer between the two porous layers. In such embodiments the stent may permit cell growth and healing on both the inner and outer surfaces of the stent while still preventing tissue from outside the stent from growing into the lumen and occluding the lumen.
The tie layer may consist of any thermoplastic and may or may not be electrospun. In one embodiment, the tie layer may be expanded PTFE. In another it may be electrospun PTFE. In other embodiments it may be FEP, including electrospun FEP and FEP applied as a film or dip coating. Furthermore, the tie layer may consist of any of the following polymers or any other thermoplastic: dextran, alginates, chitosan, guar gum compounds, starch, polyvinylpyridine compounds, cellulosic compounds, cellulose ether, hydrolyzed polyacrylamides, polyacrylates, polycarboxylates, polyvinyl alcohol, polyethylene oxide, polyethylene glycol, polyethylene imine, polyvinylpyrrolidone, polyacrylic acid, poly(methacrylic acid), poly(itaconic acid), poly(2-hydroxyethyl acrylate), poly(2-(dimethylamino)ethyl methacrylate-co-acrylamide), poly(N-isopropylacrylamide), poly(2-acrylamido-2-methyl-1-propanesulfonic acid), poly(methoxyethylene), poly(vinyl alcohol), poly(vinyl alcohol) 12% acetyl, poly(2,4-dimethyl-6-triazinylethylene), poly(3-morpholinylethylene), poly(N-1,2,4-triazolyethylene), poly(vinyl sulfoxide), poly(vinyl amine), poly(N-vinyl pyrrolidone-co-vinyl acetate), poly(g-glutamic acid), poly(Npropanoyliminoethylene), poly(4-amino-sulfo-aniline), poly[N-(p-sulphophenyl)amino-3-hydroxymethyl-1,4-phenyleneimino-1,4-phenylene)], isopropyl cellulose, hydroxyethyl, hydroxylpropyl cellulose, cellulose acetate, cellulose nitrate, alginic ammonium salts, i-carrageenan, N-[(3′-hydroxy-2′,3′-dicarboxy)ethyl]chitosan, konjac glocomannan, pullulan, xanthan gum, poly(allyammonium chloride), poly(allyammonium phosphate), poly(diallydimethylammonium chloride), poly(benzyltrimethylammonium chloride), poly(dimethyldodecyl(2-acrylamidoethylyl)ammonium bromide), poly(4-N-butylpyridiniumethylene iodine), poly(2-N-methylpridiniummethylene iodine), poly(N methylpryidinium-2,5-diylethenylene), polyethylene glycol polymers and copolymers, cellulose ethyl ether, cellulose ethyl hydroxyethyl ether, cellulose methyl hydroxyethyl ether, poly(1-glycerol methacrylate), poly(2-ethyl-2-oxazoline), poly(2-hydroxyethyl methacrylate/methacrylic acid) 90:10, poly(2-hydroxypropyl methacrylate), poly(2-methacryloxyethyltrimethylammonium bromide), poly(2-vinyl1-methylpyridinium bromide), poly(2-vinylpyridine N-oxide), poly(2-vinylpyridine), poly(3-chloro-2-hydroxypropyl 2-methacryloxyethyldimethylammonium chloride), poly(4vinylpyridine N-oxide), poly(4-vinylpyridine), poly(acrylamide/2-methacryloxyethyltrimethylammonium bromide) 80:20, poly(acrylamide/acrylic acid), poly(allylamine hydrochloride), poly(butadiene/maleic acid), poly(diallyldimethylammonium chloride), poly(ethyl acrylate/acrylic acid), poly(ethylene glycol)bis(2-aminoethyl), poly(ethylene glycol)monomethyl ether, poly(ethylene glycol)bisphenol A diglycidyl ether adduct, poly(ethylene oxide-bpropylene oxide), poly(ethylene/acrylic acid) 92:8, poly(lysine hydrobromide), poly(1-lysine hydrobromide), poly(maleic acid), poly(n-butyl acrylate/2-methacryloxyethyltrimethylammonium bromide), poly(Niso-propylacrylamide), poly(N-vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfatequaternary, poly(N-vinylpyrrolidone/vinyl acetate), poly(oxyethylene)sorbitan monolaurate (Tween 20®), poly(styrenesulfonic acid), poly(vinyl alcohol), N-methyl-4(4′formylstyryl)pyridinium, methosulfate acetal, poly(vinyl methyl ether), poly(vinylamine) hydrochloride, poly(vinylphosphonic acid), poly(vinylsulfonic acid) sodium salt and polyaniline.
Regardless of the material, the tie layer may or may not be electrospun. Further, in certain embodiments the stent may consist of two or more tie layers. The tie layer may be formed in any manner known in the art and attached to the inner and outer layers in any manner known in the art. For example, the tie layer may comprise a sheet of material which is wrapped around the inner layer 210 or a tube of material which is slipped over the inner layer 210 which is then heat shrunk or otherwise bonded to the inner and outer layers. Further, in embodiments where the tie layer is electrospun, it may be electrospun directly onto the inner layer 210, the scaffolding, or both. In some instances the tie layer may be melted after the stent is constructed to bond the tie layer to adjacent layers of the stent covering.
Furthermore, tie layers may be configured to change the overall properties of the stent covering. For example, in some instances a cover comprised solely of electrospun PTFE (of the desired pore size) may not have desired tensile or burst strength. A tie layer comprised of a relatively stronger material may be used to reinforce the PTFE inner layer, the PTFE outer layer, or both. For example, in some instances FEP layers may be used to increase the material strength of the cover.
It will also be appreciated that one or more layers of electrospun PTFE may be used in connection with a scaffolding structure other than that disclosed herein. In other words, the disclosure above relating to covers, layers, tie layers, and related components is applicable to any type of scaffolding structure as well as to stents or grafts with no separate scaffolding structure at all.
In some embodiments, a cover 200 may be formed by electrospinning a membrane onto a spinning mandrel. In other words, the collection device may comprise a mandrel, such as a substantially cylindrical mandrel, which rotates during the electrospinning process. Varying the speed at which the mandrel rotates may influence certain properties of the membrane. For example, in some embodiments, the density of the membrane (and thereby the average pore size) may be related to the rotational speed of the mandrel. Further, the directionality of the fibers, or the degree to which the fibers are deposited in a more controlled direction or manner, may be related to the rotational speed of the mandrel. In some instances a collection mandrel may rotate at rates between about 1 RPM and about 500 RPM during the elctrospinning process, including rates from about 1 RPM to about 50 RPM or at about 25 RPM. A membrane of electrospun PTFE formed onto a spinning mandrel may thus comprise a tubular membrane having no seam and substantially isotropic properties.
Once a membrane has been electrospun onto a mandrel, the membrane may then be sintered. In the case of PTFE, the membrane may be sintered at temperatures of about 385 degrees C., including temperatures from about 360 degrees C. to about 400 degrees C. Sintering may tend to set the structure of the PTFE, meaning sintering reduces the softness or flowability of the PTFE. Furthermore, sintering may evaporate any water or PEO mixed with the PTFE, resulting in a material comprised substantially of pure PTFE.
In some embodiments, a PTFE layer may be spun onto a mandrel and then sintered. Once the membrane is sintered, the tube of material may be removed from the mandrel, then slid back on the mandrel (to initially break any adherence of the membrane to the mandrel). In other instances, low friction coatings may alternatively or additionally be applied to the mandrel before the membrane is electrospun. Once the membrane is reapplied to the mandrel, a wire scaffolding can be formed over the mandrel and the membrane. A second layer of material may then be spun onto the scaffolding and the membrane, and subsequently sintered. Additionally layers may also be added.
In some instances, the layers may comprise a first layer of PTFE, a second layer of FEP, and a third layer of PTFE. The properties of each of these layers, including average pore size, may be controlled to form coating that inhibit growth of tissue through a particular layer or that permits endothelial growth on a particular layer.
In another example, a first layer of PTFE may be spun on a mandrel, sintered, removed from the mandrel, replaced and the mandrel, and a scaffolding structure applied. An FEP layer may then be applied by dipping, spraying, application of a film layer, electrospinning, or other processing. The FEP layer may or may not be sintered before applying an outer PTFE layer.
In another particular example, a first layer of PTFE may again be spun on a mandrel, sintered, removed, replaced, and a scaffolding structure applied. An FEP layer may then be applied as a film layer. In some instances it may be “tacked” into place, for example by a soldering iron. An outer tube of PTFE (which may be formed separately by electrospinning onto a mandrel and sintering) may then be disposed over the FEP film layer. The entire construct may then be pressured, for example by applying a compression wrap. In some embodiments this wrap may comprise any suitable material, including a PTFE based material. In other embodiments a Kapton film may be wrapped around the construct before the compression wrap, to prevent the construct from adhering to the compression wrap.
The compressed layers may then be heated above the melting temperature of the FEP, but below the sintering temperature of the PTFE. For example, the melt temperature of the FEP may be from about 300 degrees C. to about 330 degrees C., including about 325 degrees C. PTFE may be sintered at temperatures from about 360 degrees C. to about 400 degrees C. Thus, the entire construct may be heated to an appropriate temperature such as about 325 degrees C. In some embodiments the construct may be held at this temperature for about 15 to about 20 minutes. This may allow the FEP to “flow” into the porous PTFE nanofiber layers surrounding the FEP. The joining of the FEP tie layer to the PTFE outer and inner cover layers may increase the strength of the finished covering. The construct may then be cooled and the compression wrap and the Kaptron film discarded. The construct may then be removed from the mandrel.
A stent formed by the exemplary process described above may be configured with desired characteristics of porosity and strength. In some instances the FEP material may coat the PTFE nanofibers, but still allow for porosity which permits endothelial growth. The degree to which the FEP coats the PTFE may be controlled by the temperature and time of processing. The lower the temperature and/or the shorter the time the construct is held at temperature, the less the FEP may flow. In some instances a tie layer of FEP which is impervious the tissue growth through the layer may be formed by heating the construction only to about 260 degrees C.
Additionally, in some embodiments a stent may also include a cuff at one or both ends of the stent. The cuff may be an additional coating on the outside diameter of the stent, disposed adjacent one of the ends of the stent. The cuff may be configured to promote rapid cellular ingrowth into the cuff; for example the cuff may be more porous than the outer layer of the covering of the stent. Factors such as porosity, type of coating, type of material, use of organic material, and/or use or composite materials formed of synthetic material and organic material may be used to create a cuff configured for rapid tissue ingrowth. Again, the cuff may be configured to promote rapid growth or endothelization at one or both ends of the stent. In some embodiments cuffs may be disposed adjacent both ends of the stent. The cuff or cuffs may tend to “anchor” the ends of the stent with respect to the vessel walls, reducing the relative movement of the stent ends with respect to the vessel walls. Such a reduction in movement may lessen irritation of the vessel by the stent ends, minimizing complications such as stenosis. Cuffs may be configured for use in CVO type applications in some instances.
In some embodiments, the outer layer of the covering of the stent may be relatively non-porous to limit tissue growth through the layer, but the cuff, disposed about the outer cover layer may provide a section near each end at which some ingrowth may occur.
The cuff may be comprised of an electrospun material, such as PTFE, and may be bonded to the outer covering layer through any method, including methods described herein. For example, a layer of FEP may be disposed between the outer covering layer and the cuff and heated to bond the layers. In other embodiments the cuff may comprise a collagen layer which is glued to the stent. Further, a co-electrospun collagen and PTFE cuff may be utilized.
These SEM images reflect the microstructure of electrospun PTFE, depicting the randomly deposited criss-crossing branches of PTFE that form the covering.
While specific embodiments of stents have been illustrated and described, it is to be understood that the disclosure provided is not limited to the precise configuration and components disclosed. Various modifications, changes, and variations apparent to those of skill in the art having the benefit of this disclosure may be made in the arrangement, operation, and details of the methods and systems disclosed, with the aid of the present disclosure.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and exemplary and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill, having the benefit of this disclosure, in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein.
This application is a continuation of U.S. patent application Ser. No. 13/360,444 filed on Jan. 27, 2012 and titled “Electrospun PTFE Coated Stent and Method of Use,” which claims priority to U.S. Provisional Application No. 61/437,404, filed on Jan. 28, 2011, and titled “Electrospun PTFE Coated Stent and Method of Use,” each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2772444 | Barrows et al. | Dec 1956 | A |
3047444 | Harwood | Jul 1962 | A |
3203365 | Bowe et al. | Aug 1965 | A |
4043331 | Martin et al. | Aug 1977 | A |
4044404 | Martin et al. | Aug 1977 | A |
4096227 | Gore | Jun 1978 | A |
4127706 | Martin et al. | Nov 1978 | A |
4223101 | Fine et al. | Sep 1980 | A |
4323525 | Bornat | Apr 1982 | A |
4345414 | Bornat et al. | Aug 1982 | A |
4552707 | How | Nov 1985 | A |
4689186 | Bornat | Aug 1987 | A |
5167890 | Sasshofer et al. | Dec 1992 | A |
5236447 | Kubo | Aug 1993 | A |
5328946 | Tuminello et al. | Jul 1994 | A |
5344297 | Hills | Sep 1994 | A |
5509902 | Raulerson | Apr 1996 | A |
5512051 | Wang et al. | Apr 1996 | A |
5552100 | Shannon et al. | Sep 1996 | A |
5562986 | Yamamoto et al. | Oct 1996 | A |
5665428 | Cha et al. | Sep 1997 | A |
5700572 | Klatt et al. | Dec 1997 | A |
5702658 | Pellegrin et al. | Dec 1997 | A |
5741333 | Frid | Apr 1998 | A |
5810870 | Myers et al. | Sep 1998 | A |
5941910 | Schindler et al. | Aug 1999 | A |
6010529 | Herweck et al. | Jan 2000 | A |
6075180 | Sharber et al. | Jun 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6238430 | Klumb | May 2001 | B1 |
6436135 | Goldfarb | Aug 2002 | B1 |
6498207 | Hoshikawa et al. | Dec 2002 | B1 |
6517571 | Brauker et al. | Feb 2003 | B1 |
6679913 | Homsy | Jan 2004 | B2 |
7115220 | Dubson et al. | Oct 2006 | B2 |
7118698 | Armantrout et al. | Oct 2006 | B2 |
7244272 | Dubson et al. | Jul 2007 | B2 |
7316754 | Ide et al. | Jan 2008 | B2 |
7413575 | Phaneuf et al. | Aug 2008 | B2 |
7416559 | Shalaby | Aug 2008 | B2 |
7485141 | Majercak et al. | Feb 2009 | B2 |
7498079 | Donckers | Mar 2009 | B1 |
7524527 | Stenzel | Apr 2009 | B2 |
7556634 | Lee et al. | Jul 2009 | B2 |
7582240 | Marin et al. | Sep 2009 | B2 |
7655175 | Michael et al. | Feb 2010 | B2 |
7799261 | Orr et al. | Sep 2010 | B2 |
7857608 | Fabbricante et al. | Dec 2010 | B2 |
7947069 | Sanders | May 2011 | B2 |
7981353 | Mitchell et al. | Jul 2011 | B2 |
8178030 | Anneaux et al. | May 2012 | B2 |
8257640 | Anneaux et al. | Sep 2012 | B2 |
8262979 | Anneaux et al. | Sep 2012 | B2 |
8691543 | Gaudette et al. | Apr 2014 | B2 |
8771582 | Phaneuf et al. | Jul 2014 | B2 |
20010034549 | Bartholf et al. | Oct 2001 | A1 |
20010039446 | Edwin et al. | Nov 2001 | A1 |
20010049551 | Tseng et al. | Dec 2001 | A1 |
20010053929 | Vonesh et al. | Dec 2001 | A1 |
20020077693 | Barclay | Jun 2002 | A1 |
20020082675 | Myers | Jun 2002 | A1 |
20020090725 | Simpson et al. | Jul 2002 | A1 |
20020198588 | Armstrong | Dec 2002 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030074049 | Hoganson | Apr 2003 | A1 |
20030100944 | Laksin et al. | May 2003 | A1 |
20030114917 | Holloway et al. | Jun 2003 | A1 |
20030139797 | Johnson | Jul 2003 | A1 |
20030195611 | Greenhalgh et al. | Oct 2003 | A1 |
20030211135 | Greenhalgh et al. | Nov 2003 | A1 |
20040016260 | Kobayashi et al. | Jan 2004 | A1 |
20040030377 | Dubson | Feb 2004 | A1 |
20040033364 | Spiridigliozzi et al. | Feb 2004 | A1 |
20040038038 | Yeung | Feb 2004 | A1 |
20040051201 | Greenhalgh et al. | Mar 2004 | A1 |
20040054397 | Smith et al. | Mar 2004 | A1 |
20040167606 | Chouinard | Aug 2004 | A1 |
20040219345 | Armantrout et al. | Nov 2004 | A1 |
20050137675 | Dubson | Jun 2005 | A1 |
20050187605 | Greenhalgh et al. | Aug 2005 | A1 |
20050244453 | Stucke et al. | Nov 2005 | A1 |
20050244639 | Marin et al. | Nov 2005 | A1 |
20050278018 | Jensen | Dec 2005 | A1 |
20060200232 | Phaneuf et al. | Sep 2006 | A1 |
20060228435 | Andrady et al. | Oct 2006 | A1 |
20060233990 | Humphrey et al. | Oct 2006 | A1 |
20070023131 | Farnsworth et al. | Feb 2007 | A1 |
20070026036 | Falotico et al. | Feb 2007 | A1 |
20070031607 | Dubson et al. | Feb 2007 | A1 |
20070043428 | Jennings et al. | Feb 2007 | A1 |
20070087027 | Greenhalgh et al. | Apr 2007 | A1 |
20070123973 | Roth | May 2007 | A1 |
20070142771 | Durcan | Jun 2007 | A1 |
20070207179 | Andersen et al. | Sep 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070244569 | Weber et al. | Oct 2007 | A1 |
20070269481 | Li et al. | Nov 2007 | A1 |
20070276477 | Lee et al. | Nov 2007 | A1 |
20080021545 | Reneker et al. | Jan 2008 | A1 |
20080029617 | Marshall et al. | Feb 2008 | A1 |
20080118541 | Pacetti | May 2008 | A1 |
20080119943 | Armstrong | May 2008 | A1 |
20080199506 | Horres et al. | Aug 2008 | A1 |
20080208323 | El-Kurdi et al. | Aug 2008 | A1 |
20080208325 | Helmus et al. | Aug 2008 | A1 |
20080234812 | Pacetti | Sep 2008 | A1 |
20080242171 | Huang et al. | Oct 2008 | A1 |
20080281406 | Addonizio et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080305143 | Chen et al. | Dec 2008 | A1 |
20080319535 | Craven et al. | Dec 2008 | A1 |
20090012607 | Kim et al. | Jan 2009 | A1 |
20090018643 | Hashi et al. | Jan 2009 | A1 |
20090030499 | Bebb | Jan 2009 | A1 |
20090082846 | Chobotov | Mar 2009 | A1 |
20090088828 | Shalev et al. | Apr 2009 | A1 |
20090127748 | Takahashi | May 2009 | A1 |
20090136651 | Larsen et al. | May 2009 | A1 |
20090160099 | Huang | Jun 2009 | A1 |
20090163994 | Quigley et al. | Jun 2009 | A1 |
20090227944 | Weber | Sep 2009 | A1 |
20090232920 | Lozano et al. | Sep 2009 | A1 |
20090248131 | Greenan | Oct 2009 | A1 |
20090248144 | Bahler et al. | Oct 2009 | A1 |
20090269429 | Lozano et al. | Oct 2009 | A1 |
20090280325 | Lozano et al. | Nov 2009 | A1 |
20100013126 | Ishaque et al. | Jan 2010 | A1 |
20100042198 | Burton | Feb 2010 | A1 |
20100042199 | Burton | Feb 2010 | A1 |
20100063574 | Bogert | Mar 2010 | A1 |
20100076543 | Melsheimer | Mar 2010 | A1 |
20100093093 | Leong et al. | Apr 2010 | A1 |
20100129628 | Young | May 2010 | A1 |
20100190254 | Chian et al. | Jul 2010 | A1 |
20100233115 | Patel et al. | Sep 2010 | A1 |
20100280590 | Sun et al. | Nov 2010 | A1 |
20100304205 | Jo et al. | Dec 2010 | A1 |
20100323052 | Orr et al. | Dec 2010 | A1 |
20100331965 | Dugas et al. | Dec 2010 | A1 |
20110030885 | Anneaux et al. | Feb 2011 | A1 |
20110031656 | Anneaux | Feb 2011 | A1 |
20110060276 | Schaeffer et al. | Mar 2011 | A1 |
20110087318 | Daugherty et al. | Apr 2011 | A1 |
20110089603 | Fabbricane et al. | Apr 2011 | A1 |
20110135806 | Grewe et al. | Jun 2011 | A1 |
20110142804 | Gaudette et al. | Jun 2011 | A1 |
20110156319 | Kurokawa et al. | Jun 2011 | A1 |
20110263456 | Hartig | Oct 2011 | A1 |
20110295200 | Speck et al. | Dec 2011 | A1 |
20120114722 | Ballard et al. | May 2012 | A1 |
20120201988 | Hansen et al. | Aug 2012 | A1 |
20120271396 | Zheng | Oct 2012 | A1 |
20120292810 | Peno et al. | Nov 2012 | A1 |
20120316633 | Flanagan et al. | Dec 2012 | A1 |
20130023175 | Anneaux et al. | Jan 2013 | A1 |
20130053948 | Anneaux et al. | Feb 2013 | A1 |
20130059497 | Anneaux et al. | Mar 2013 | A1 |
20130079700 | Ballard et al. | Mar 2013 | A1 |
20130085565 | Eller et al. | Apr 2013 | A1 |
20130184808 | Hall et al. | Jul 2013 | A1 |
20130184810 | Hall et al. | Jul 2013 | A1 |
20130238086 | Ballard et al. | Sep 2013 | A1 |
20130268062 | Puckett et al. | Oct 2013 | A1 |
20130316103 | Anneaux et al. | Nov 2013 | A1 |
20140012304 | Lampropoulos et al. | Jan 2014 | A1 |
20140079758 | Hall et al. | Mar 2014 | A1 |
20140081414 | Hall et al. | Mar 2014 | A1 |
20150081000 | Hossainy | Mar 2015 | A1 |
20180064565 | MacTaggart | Mar 2018 | A1 |
20190008665 | Hall et al. | Jan 2019 | A1 |
20190076276 | Longo | Mar 2019 | A1 |
20190110911 | Nae | Apr 2019 | A1 |
20200015987 | Einav | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
101584612 | Nov 2009 | CN |
0457456 | Nov 1991 | EP |
1605014 | Dec 2005 | EP |
2363516 | Sep 2011 | EP |
5140476 | May 1975 | JP |
2007519491 | Jul 2007 | JP |
2007531833 | Nov 2007 | JP |
2009232882 | Oct 2009 | JP |
2010517625 | May 2010 | JP |
2010540190 | Dec 2010 | JP |
20100077913 | Jul 2010 | KR |
20100108382 | Oct 2010 | KR |
1020100108382 | Oct 2010 | KR |
199800090 | Jan 1998 | WO |
2003051233 | Jun 2003 | WO |
2004090206 | Oct 2004 | WO |
WO2005018600 | Mar 2005 | WO |
2005074547 | Aug 2005 | WO |
2005098100 | Oct 2005 | WO |
2006123340 | Nov 2006 | WO |
WO2007075256 | Jul 2007 | WO |
2008097592 | Aug 2008 | WO |
2009046372 | Apr 2009 | WO |
WO2009127170 | Oct 2009 | WO |
WO2009146280 | Dec 2009 | WO |
2010083530 | Jul 2010 | WO |
WO2010132636 | Nov 2010 | WO |
2011017698 | Feb 2011 | WO |
2012103501 | Aug 2012 | WO |
WO2012103501 | Aug 2012 | WO |
2012122485 | Mar 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/787,327, filed Mar. 6, 2013, Hall et al. |
U.S. Appl. No. 13/829,452, filed Mar. 14, 2013, Hall et al. |
International Search Report and Written Opinion dated May 23, 2012 for PCT/US2012/023006. |
International Search Report and Written Opinion dated Apr. 26, 2013 for PCT/US2013/021554. |
Restriction Requirement dated Jun. 21, 2013 for U.S. Appl. No. 13/360,444. |
Restriction Requirement dated Sep. 26, 2013 for U.S. Appl. No. 13/742,025. |
International Search Report and Written Opinion dated Sep. 6, 2013 for PCT/US2013/046245. |
International Search Report and Written Opinion dated Sep. 17, 2013 for PCT/US2013/060172. |
International Search Report and Written Opinion dated Dec. 5, 2013 for PCT/US2013/060812. |
Office Action dated Mar. 3, 2014 for U.S. Appl. No. 13/742,025. |
Office Action dated Oct. 10, 2014 for U.S. Appl. No. 13/742,025. |
European Search Report dated Aug. 19, 2014 for EP12755426.9. |
U.S. Appl. No. 14/204,466, filed Mar. 11, 2014, Hall et al. |
U.S. Appl. No. 14/207,344, filed Mar. 12, 2014, Mower et al. |
Office Action dated May 9, 2014 for U.S. Appl. No. 13/360,444. |
Office Action dated Jul. 2, 2014 for U.S. Appl. No. 14/044,050. |
International Search Report dated Jun. 26, 2014 for PCT/US2014/024868. |
International Search Report dated Jul. 1, 2014 for PCT/US2014/023416. |
International Report on Patentability dated Jul. 22, 2014 for PCT/US2013/021554. |
Office Action dated Oct. 15, 2015 for U.S. Appl. No. 13/827,790. |
Office Action dated Nov. 2, 2015 for U.S. Appl. No. 13/742,077. |
Extended European Search Report dated Jun. 25, 2015 for EP12739348.6. |
International Preliminary Report dated Apr. 2, 2015 for PCT/US2013/060812. |
International Preliminary Report dated Jul. 30, 2013 for PCT/US2012/023006. |
Office Action dated Jul. 29, 2015 for U.S. Appl. No. 14/152,626. |
Office Action dated Aug. 10, 2015 for U.S. Appl. No. 14/044,050. |
Office Action dated Jan. 13, 2015 for U.S. Appl. No. 13/827,790. |
Office Action dated Feb. 4, 2015 for U.S. Appl. No. 13/360,444. |
Office Action dated Feb. 20, 2015 for U.S. Appl. No. 14/044,050. |
European Search Report dated Feb. 12, 2016 for EP13813055.4. |
Office Action dated Jan. 22, 2016 for U.S. Appl. No. 14/152,626. |
Office Action dated Feb. 22, 2016 for U.S. Appl. No. 13/742,077. |
Office Action dated Mar. 28, 2016 for U.S. Appl. No. 13/827,790. |
Office Action dated Nov. 20, 2015 for U.S. Appl. No. 13/286,618. |
Office Action dated Dec. 18, 2015 for U.S. Appl. No. 14/081,504. |
Office Action dated Sep. 9, 2016 for U.S. Appl. No. 14/081,504. |
Office Action dated Sep. 9, 2016 for U.S. Appl. No. 14/207,344. |
Office Action dated Sep. 27, 2016 for U.S. Appl. No. 13/827,790. |
Office Action dated Oct. 6, 2016 for U.S. Appl. No. 13/360,444. |
Office Action dated Oct. 6, 2016 for U.S. Appl. No. 13/742,025. |
Office Action dated Oct. 26, 2016 for U.S. Appl. No. 13/742,077. |
Office Action dated Nov. 17, 2016 for U.S. Appl. No. 13/829,493. |
Office Action dated Nov. 18, 2016 for U.S. Appl. No. 13/826,618. |
Office Action dated Mar. 31, 2017 for U.S. Appl. No. 14/204,466. |
Office Action dated Apr. 7, 2017 for U.S. Appl. No. 13/826,618. |
Office Action dated Apr. 27, 2017 for U.S. Appl. No. 13/742,077. |
Office Action dated May 19, 2017 for U.S. Appl. No. 13/742,025. |
Office Action dated Jun. 19, 2017 for U.S. Appl. No. 14/081,504. |
Office Action dated Jun. 29, 2017 for U.S. Appl. No. 14/081,715. |
Notice of Allowance dated Oct. 4, 2017 for U.S. Appl. No. 14/204,466. |
Office Action dated Jun. 23, 2017 for U.S. Appl. No. 13/829,493. |
Office Action dated Jul. 12, 2017 for U.S. Appl. No. 15/053,232. |
Office Action dated Jul. 26, 2017 for U.S. Appl. No. 13/827,790. |
Office Action dated Sep. 11, 2017 for U.S. Appl. No. 14/832,422. |
Office Action dated Sep. 28, 2017 for U.S. Appl. No. 14/207,344. |
Office Action dated Oct. 20, 2017 for U.S. Appl. No. 13/826,618. |
Notice of Allowance dated Jul. 11, 2016 for U.S. Appl. No. 13/826,618. |
Office Action dated Jun. 8, 2016 for U.S. Appl. No. 14/044,050. |
Office Action dated Jun. 9, 2016 for U.S. Appl. No. 14/152,626. |
Office Action dated Jun. 30, 2016 for U.S. Appl. No. 14/081,715. |
Notice of Allowance dated Jan. 25, 2017 for U.S. Appl. No. 14/152,626. |
Office Action dated Jan. 23, 2017 for U.S. Appl. No. 14/081,715. |
Office Action dated Feb. 7, 2017 for U.S. Appl. No. 13/827,790. |
Office Action dated Mar. 15, 2017 for U.S. Appl. No. 14/207,344. |
Notice of Allowance dated Apr. 3, 2018 for U.S. Appl. No. 14/081,504. |
Notice of Allowance dated May 9, 2018 for U.S. Appl. No. 15/053,232. |
Office Action dated Feb. 16, 2018 for U.S. Appl. No. 13/742,077. |
Office Action dated May 11, 2018 for U.S. Appl. No. 13/826,618. |
Office Action dated May 11, 2018 for U.S. Appl. No. 14/832,422. |
Office Action dated Jan. 16, 2018 for U.S. Appl. No. 14/081,715. |
Office Action dated Nov. 17, 2017 for U.S. Appl. No. 13/360,444. |
Office Action dated Dec. 28, 2017 for U.S. Appl. No. 13/827,790. |
Office Action dated Dec. 29, 2017 for U.S. Appl. No. 14/081,504. |
Office Action dated Jun. 15, 2018 for U.S. Appl. No. 14/207,344. |
Office Action dated Jun. 28, 2018 for U.S. Appl. No. 14/081,715. |
Office Action dated Jul. 13, 2018 for U.S. Appl. No. 13/827,790. |
Office Action dated Aug. 6, 2018 for U.S. Appl. No. 13/360,444. |
Board Decision on Appeal dated Nov. 23, 2018 for U.S. Appl. No. 14/044,050. |
Office Action dated Jan. 14, 2019 for U.S. Appl. No. 13/827,790. |
European Search Report dated Dec. 6, 2018 for EP13813055.4. |
Office Action dated Jan. 2, 2009 for U.S. Appl. No. 13/360,444. |
Office Action dated Jan. 10, 2019 for U.S. Appl. No. 13/826,618. |
Office Action dated Jan. 17, 2019 for U.S. Appl. No. 14/832,422. |
Office Action dated Jan. 25, 2019 for U.S. Appl. No. 14/207,344. |
Office Action dated Feb. 8, 2019 for U.S. Appl. No. 14/081,715. |
EP Examination Report dated May 28, 2019 for EP12755426.9. |
Office Action dated Jul. 11, 2019 for U.S. Appl. No. 14/081,715. |
Office Action dated Aug. 7, 2019 for U.S. Appl. No. 15/806,020. |
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 14/207,344. |
Notice of Allowance dated Mar. 13, 2020 for U.S. Appl. No. 14/832,422. |
Office Action dated Mar. 25, 2020 for U.S. Appl. No. 14/081,715. |
Number | Date | Country | |
---|---|---|---|
20140249619 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61437404 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13360444 | Jan 2012 | US |
Child | 14152590 | US |