Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates generally to a heat sink, and more particularly to an innovative electrostatic air-cooled beat sink.
2. Description of Related Art including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98
Currently, the common heat sink is operated in a manner wherein a mechanical fan is rotated to generate air flow. for heat radiation, or a heat tube with phase-change working liquid is used for heat radiation. Moreover, electrostatic air is used to generate air flow for heat radiation. According to the operating principle of such a heat sink, one or multiple sharp electrodes (or corona electrodes) and blunt electrodes (or neutral electrodes) are arranged correspondingly on the structure, The electric field generated by said sharp and blunt electrodes will lead to crash of a part of air flow dose to the sharp electrodes, which is generally referred to as corona discharge. In case of a corona discharge, ions may be generated and attracted to the blunt electrodes. In this process, the collision of the icons and neutral air molecules will generate air flow similar to that caused by a mechanical fan, so heat radiation effect could be yielded through channeling of air flow. Improvement of the present invention is thus made on such an electrostatic air-cooled heat sink structure.
Thus, to overcome the aforementioned problems oldie prior art, it would be an advancement if the art to provide an improved structure that can significantly improve the efficacy.
Therefore, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The present invention comprises: a frame, power controller, sharp electrode with sharp electrode portion, through-hole, guide frame, half-howl blunt electrode assembly and flow-through portion, the electrostatic air-cooled heat sink features simple and lightweight structure, making it suitable for mass production and beat radiation with better applicability and industrial benefits.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Said electrostatic air-cooled heat sink A includes a frame 10, made of solid insulating materials (e.g. plastics) to form a hollow framework, comprising of a first opening 11, a second opening 12 and a holding space 13 located between the first opening 11 and second opening 12.
A power controller 20 is assembled onto the frame 10 for controlling the power supply state.
A sharp electrode 30 is made of conducting materials and integrally located at the first opening 11 of the frame 10. Said sharp electrode 30 is provided with at least a sharp electrode portion 31, which is folded and protruded towards the holding space 13. A first power feed portion 32 is set on the sharp electrode 30 and electrically connected with the power controller 20.
At least one through-hole 33 is formed correspondingly to the sharp electrode portions 31 of the sharp electrode 30. Ribs 34 are formed at periphery of said through-hole 33.
A guide frame 40 is assembled into the holding space 13 of the frame 10. Made of conducting materials, the guide frame 40 is provided with guide plates 41 arranged at interval. A guide channel 42 is formed between the guide plates 41, and both ends of the guide channels 42 are oriented separately towards the first opening 11 and second opening 12 of the frame 10. One end of the guide channel 42 facing the first opening 11 is located opposite to the sharp electrode portion 31 of the sharp electrode 30. Moreover, insulating configuration between the guide frame 40 and sharp electrode 30 is required. Besides, a second power feed portion 43 is set onto the guide frame 40 (only marked in
A half-howl blunt electrode assembly 50 is set onto the guide plate 41 of the guide frame 40 in a manner that at least a half-bowl blunt electrode unit 51 is integrally formed at one end of the guide plate 41 facing the first opening 11, and the other half-bowl blunt electrode unit 52 is formed correspondingly to the guide plate 41. So, said half-bowl blunt electrode assembly 50 consist of these two half-bowl blunt electrode units 51, 52 set at interval.
A flow-through portion 53 is formed by a space set between two half-bowl blunt electrode units 51, 52. Said flow-through portion 53 must be connected with the guide channel 42 between the guide plates 41 as well as the through-hole 33 formed by the sharp electrode 30.
Of which, the end of the sharp electrode portion 31 formed by the sharp electrode 30 is located correspondingly to the center of the half-bowl blunt electrode assembly 50, and a spacing is kept between two half-bowl blunt electrode units 51, 52 (indicated by arrow L1 in
Of which, the first power feed portion 32 on the sharp electrode 30 and the second power feed portion 43 on the guide frame 40 are of a flanged pattern, and also protruded laterally at opposite position (e.g. left and tight sides).
Referring to
Referring to
Of which, the electrostatic air-cooled heat sink A is arranged dose to an existing heating source (e.g. CPU) or thermal conductive device (e.g. soaking plate and heat tube), so as to yield air exhaust and heat radiation effect without need of exhaust fan.
Based on above-specified structural design, the electrostatic air-cooled heat sink A of the present invention is operated as shown in