This application claims priority to and benefit of Japanese Patent Application No. 2015-133146 entitled “Electrostatic Coating Device and System,” filed on Jul. 1, 2015, which is hereby incorporated by reference in its entirety.
The present invention relates to an electrostatic coating device and an electrostatic coating system.
The principle of electrostatic coating is to allow charged coating particles to be electrostatically adsorbed by a workpiece. Coating materials include liquid coating materials and powder coating materials. Electrostatic coating devices for liquid coating materials are classified into two types. One type is a spray gun type, and the other type is a rotary atomization type.
An electrostatic coating device of the rotary atomization type has a rotary atomization head and scatters a coating material from an outer circumferential edge of the rotating atomization head to form fine coating particles.
The electrostatic coating devices use a direct current (DC) high voltage for negatively charging coating particles. Known systems of negatively charging coating particles include an indirect charging system applying a DC high voltage to an external electrode, a direct charging system applying a DC high voltage to the rotary atomization head, etc.
To allow the coating material discharged by a coating device to be adsorbed by a workpiece without waste, it is effective to reduce a distance between the coating device and the workpiece. However, bringing the coating device close to the workpiece causes the risk of an electric discharge between the coating device and the workpiece.
An electrostatic coating system is known that has a safety circuit for preventing occurrence of an abnormal state associated with overcurrent (Japanese Laid-Open Patent Publication Nos. 2010-22933, Hei2-298374, and Hei8-187453). The safety circuit is grounded via a bleeder resistance. The safety circuit of this type monitors a current flowing between the electrostatic coating device and a workpiece and, when overcurrent is detected, the safety circuit can interrupt the high voltage applied to the electrostatic coating device and release a residual electric charge in the electrostatic coating device via the bleeder resistance to a ground at the same time, thereby reducing the electrical potential of the electrostatic coating device to a safe level.
However, the releasing of the residual electric charge through the bleeder resistance is limited in discharge speed. In particular, when coating is performed at a short distance between the electrostatic coating device and the workpiece and the safety circuit detects an increase in high-voltage current, the electrostatic coating device tends to instantaneously discharge the accumulated charge toward the workpiece before the supply of the high voltage is interrupted and the residual electric charge is discharged to the ground at the same time by the operation of the safety circuit. A proposal for improvement in this problem is made in Japanese Laid-Open Patent Publication No. Hei8-187453. Japanese Laid-Open Patent Publication No. Hei8-187453 proposes a ring electrode disposed at a leading end of a shaping air ring so as to charge coating particles with this ring electrode.
Japanese Laid-Open Patent Publication No. 2000-117155 proposes a rotary atomization type electrostatic coating device preventing spark discharge between a workpiece and the electrostatic coating device.
A motor support case 208 surrounding the air motor 206 and a shaping air ring 210 attached to a leading end of the motor support case 208 are made of an insulating resin material. The air motor 206 is made of a conductive metal material. The hollow rotary shaft 204 is made of an insulating material, specifically, an insulating ceramic material. The rotary atomization head 202 is made of an insulating resin material.
The shown electrostatic coating device 200 employs a center feed system as a system for supplying a coating material to the rotary atomization head 202. In particular, a feed tube 212 is inserted in the hollow rotary shaft 204 and the coating material is supplied through the feed tube 212 to a center portion of the rotary atomization head 202. The feed tube 212 is made of an insulating resin material.
The electrostatic coating device 200 has a high-voltage generator built-in. This built-in high-voltage generator is referred to as “a cascade”. The high voltage of −60 kV to −120 kV generated by the cascade is supplied to the air motor 206. A path supplying the high voltage from the air motor 206 to the rotary atomization head 202 is configured as follows.
A first semiconductive film 204a is formed on an outer circumferential surface of the hollow rotary shaft 204. A second semiconductive film 202a is formed on an outer circumferential surface of the rotary atomization head 202. The second semiconductive film 202a extends to an outer circumferential edge 202b of the rotary atomization head 202.
A gap 214 is formed between a leading end of the air motor 206 and a rear end of the rotary atomization head 202. First and second circular-arc films 216a, 218a formed on outer circumferential surfaces of first and second limiting rings 216, 218 are disposed at both axial ends of the gap 214. The first and second circular-arc films 216a, 218a are made of a semiconductive material.
A high voltage application path from the air motor 206 to the rotary atomization head 202 is made up of the first circular-arc film 216a, the first semiconductive film 204a of the hollow rotary shaft 204, the second circular-arc film 218a, and the second semiconductive film 202a of the rotary atomization head 202. The high voltage passing through this high voltage application path is supplied to an end of the second semiconductive film 202a of the rotary atomization head 202, i.e., the outer circumferential edge 202b of the rotary atomization head 202. This outer circumferential edge 202b acts as a discharge electrode.
According to the rotary atomization type electrostatic coating device 200 of Japanese Laid-Open Patent Publication No. 2000-117155, when the rotary atomization head 202 comes abnormally close to a workpiece, the residual electric charge in the air motor 206 made of conductive metal is dispersed by resistances of the portions 216a, 204a, 218a, 202a made up of semiconductive films. As a result, a discharge energy can be kept smaller. Additionally, even when the rotary atomization head 202 short-circuits with a workpiece, spark discharge can be prevented from occurring.
Moreover, even when the rotary atomization head 202 comes rapidly and abnormally close to a workpiece, the first limiting ring 216 disposed at the leading end side of the air motor 206 can alleviate concentration of an electric field at the leading end of the air motor 206. Similarly, the second limiting ring 218 disposed at the rear end side of the rotary atomization head 202 can alleviate concentration of an electric field at the rear end of the rotary atomization head 202.
It is an object of the present invention to provide an electrostatic coating device and an electrostatic coating system capable of evolving the spark discharge preventing effect of the electrostatic coating device without spark discharge disclosed in Japanese Laid-Open Patent Publication No. 2000-117155.
It is another object of the present invention to provide an electrostatic coating device and an electrostatic coating system capable of allowing a workpiece to be brought closer during electrostatic coating as compared to conventional ones.
The electrostatic coating device 6 may be of a cascade built-in type having a high-voltage generator, i.e., a cascade 8 built-in, or may be of a cascade-less type having the high-voltage generator 8 located outside. In
Referring to
The electrostatic coating device 6 has a second high resistance 12 connected in series to the first high resistance 10. A second resistance value R2 of the second high resistance 12 is larger than the first resistance value R1 of the first high resistance 10. Specifically, the second resistance value R2 of the second high resistance 12 may be 180 MΩ, by way of example. A high voltage passing through the second high resistance 12 is applied to a discharge electrode 14 like a rotary atomization head, for example. The second resistance value R2 of the second high resistance 12 is much larger than a resistance value (about 50 MΩ) of the high-voltage application path of the electrostatic coating device 200 of Japanese Laid-Open Patent Publication No. 2000-117155, i.e., referring to
The first high resistance 10 acts as a protective resistance against a disconnection accident in the electrostatic coating device 6. The second high resistance 12 has the second resistance value R2 larger than the first resistance value R1 of the first high resistance 10. Therefore, even when the discharge electrode 14 (typically exemplified by a rotary atomization head) short-circuits with a workpiece, the residual electric charge in a coating device component(s) 16 such as an air motor made of a conductive material (typically, conductive metal) can be absorbed by the second high resistance 12. As a result, the discharge energy can be made smaller as compared to the conventional cases. Referring to
Thus, the safety of the electrostatic coating device 6 can be enhanced. In other words, the electrostatic coating device 6 according to the present invention enables a coating operation performed with the electrostatic coating device 6 brought closer to a workpiece as compared to a coating distance between a conventional electrostatic coating device and a workpiece. As a result, an amount of the coating material can be reduced in terms of coating particles not adhering to the workpiece after being discharged by the electrostatic coating device 6. Therefore, the electrostatic coating device 6 according to the present invention can improve a coating efficiency by performing the coating at a closer distance from a workpiece.
Specifically, as shown in
The present invention is applicable not only to a rotary atomization type electrostatic coating device using a direct charging system applying a high voltage to the rotary atomization head but also to a spray type electrostatic coating device. The coating material may be a liquid coating material or a powder coating material.
The electrostatic coating device and the electrostatic coating system of the cascade built-in type described with reference to
(1) Slope Sensitivity Control (Di/Dt):
For example, when electrostatic coating device rapidly approaches a workpiece and a high-voltage current abruptly changes, the high-voltage current is monitored to forcibly stop the high voltage generation if a change in value of the high-voltage current is equal to or greater than a predetermined slope sensitivity.
(2) Current Limit (CL):
When the electrostatic coating device comparatively slowly comes closer to a workpiece, the slope sensitivity control described above does not operate. An upper limit value (CL value) of the high-voltage current is set and, when a high-voltage current equal to or greater than the upper limit value is about to flow, the high voltage generation is forcibly stopped.
(3) Constant Current Control (Current Buffer: CB):
Even when a high-voltage current larger than the upper limit value (CL value) flows, constant voltage control is switched to constant current control to lower an output voltage of a high-voltage generator. This constant current control is failsafe control. When a high-voltage current having a current value larger than a predetermined current value (CB value) is about to flow, the constant current control operates to lower the output voltage of the high-voltage generator, thereby limiting the flowing high-voltage current to the predetermined current value (CB value).
In the electrostatic coating device and system of the cascade built-in type described with reference to
A typical method of use of the electrostatic coating device according to the present invention is depicted in
If the high voltage is supplied to the multiple second electrostatic coating devices (cascade-less type coating devices) 6B parallel to each other from the one high-voltage generator 8 as shown in
The second electrostatic coating devices 6B (of the cascade-less type) according to the present invention are preferably controlled by the high-voltage controller 2 including the safety circuit 4. The safety circuit 4 has a constant current control (current buffer) function of reducing the high voltage generated by the cascade (high-voltage generator) 8 to keep the high-voltage current constant when a high-voltage current equal to or greater than a predetermined current is about to flow. This constant current control function operates to prevent a thermal runaway damage of the cascade 8 due to a damage of the high-voltage cable HV or a ground fault of the second electrostatic coating devices 6B(1) to 6B(5), for example.
If the second coating device 6B(1) short-circuits, the constant current control CB of the safety circuit 4 (
The CB value of the constant current control limiting the current flowing though the high-voltage cable HV can arbitrary be set in consideration of the number of the multiple second coating devices 6B connected in parallel and an output capacity of the cascade (high-voltage generator) 8. Preferably, the set current value, i.e., the CB value, of the constant current control is typically set to 300 to 500 μA. The CB value is a value larger than a grounding current when one of the multiple second electrostatic coating devices 6B is grounded. From this viewpoint, for example, the sum of the first and second resistance values (R1+R2) may be 220 to 260 MΩ. The first resistance value R1 of the first high resistance 10 may be 60 to 120 MΩ, more preferably 80 to 100 MΩ, so as to effectively achieve the protective function against disconnection accident etc. in the electrostatic coating device 6. Therefore, the second resistance value R2 of the second high resistance 12 may be 100 to 200 MΩ, preferably 120 to 180 MΩ.
It is preferable that conventionally used cascade can directly be used in the electrostatic coating device and system of the cascade-less type. Additionally, when coating is performed with the coating device brought close to a workpiece, the constant current control (current buffer: CB) may be utilized to secure the safety. Preferably, this enables the prevention of damage of the high-voltage generator (cascade) 8 and the continuous coating without forcibly stopping the high voltage generation. As a result, the coating efficiency can be improved by performing the coating with the coating device brought close to the workpiece.
To set the second resistance value R2 of the second high resistance 12 to a high resistance value, the multiple resistors 18 having a plate shape is preferable in terms of incorporation of the resistors 18 into the electrostatic coating device. When the present invention is applied to the electrostatic coating device of the rotary atomization type, the multiple plate-shaped resistors 18 may be disposed on a rotary shaft coupled to the rotary atomization head. The rotary atomization head is rotationally driven by the rotary shaft. The rotary shaft typically has an outer circumferential surface with a circular cross section. The multiple plate-shaped resistors 18 may be arranged away from each other in a circumferential direction of the rotary shaft and the plate-shaped resistors 18 may be attached to the rotary shaft in a standing state from the outer circumferential surface of the hollow rotary shaft.
The rotary atomization type electrostatic coating device 100 is controlled by the high-voltage controller 2 as described with reference to
As described above with reference to
Preferably, the first high resistance 10 (
Reference numeral 104 denotes an air motor. The air motor 104 is made of a conductive metal as in the conventional case. The high voltage generated by the cascade 102 is supplied via a high-voltage conductor 106 to the air motor 104. Reference numeral 108 denotes a hollow rotary shaft. The output of the air motor 104 is transmitted via the hollow rotary shaft 108 to the rotary atomization head 110.
The rotary atomization head 110 is smaller than conventional ones. The diameter of the rotary atomization head 110 is, for example, 30 mm, and may be 50 mm or less, preferably 30 to 40 mm. A feed tube 112 is disposed inside the hollow rotary shaft 108 and a liquid coating material is supplied through the feed tube 112 to the center portion of the rotary atomization head 110.
The rotary atomization head 110 is made of a semiconductive resin. A shaping air ring 114 is made of an insulating resin. The shaping air ring 114 and a motor support case 116 are connected via a relay case 118. The motor support case 116 and the relay case 118 are both made of a resin having electrically insulating characteristics.
The hollow rotary shaft 108 is made of a PEEK resin (polyether ether ketone resin). The PEEK resin is excellent in electric insulation and formability.
The plate-shaped resistors 120 are partially fit and fixed into the respective grooves 122. The plate-shaped resistors 120 extend outward from the outer circumferential surface of the hollow rotary shaft 108. In particular, the plate-shaped resistors 120 are disposed in an obliquely standing state from the hollow rotary shaft 108. The two adjacent plate-shaped resistors 120 are connected to each other by an intermediate conducting wire 124 so that the nine plate-shaped resistors 120 are serially connected. A resistance value r of the plate-shaped resistor 120 is 20 MΩ, for example. The nine plate-shaped resistors 120 make up the second high resistance 12 (
Although nine plate-shaped resistors 120 are used in the embodiment, if the first resistance value R1 of the first high resistance 10 is 60 to 120 MΩ, the second resistance value R2 of the second high resistance 12 (
The first plate-shaped resistor 120 (No. 1) on the input side of the nine plate-shaped resistors 120 is always connected via and input-side conducting wire 126 to the air motor 104. The ninth plate-shaped resistor 120 (No. 9) located outermost on the output side is connected via an output-side conducting wire 128 to a rear end portion of the rotary atomization head 110.
A high-voltage application path from the cascade 102 to the rotary atomization head 110 is made up of the conductive air motor 104, the input-side conducting wire 126, the nine serially-connected plate-shaped resistors 120, the output-side conducting wire 128, and the rotary atomization head 110 made of a semiconductive material.
Returning to
Number | Date | Country | Kind |
---|---|---|---|
2015-133146 | Jul 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3641971 | Walberg | Feb 1972 | A |
6230994 | Boerner | May 2001 | B1 |
7861954 | Akisada | Jan 2011 | B2 |
20060081729 | Nagai | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
102005049234 | Apr 2006 | DE |
0600397 | Jun 1994 | EP |
2808090 | Dec 2014 | EP |
1017859 | Jan 1966 | GB |
S58-122063 | Jul 1983 | JP |
S58-159858 | Sep 1983 | JP |
H02-298374 | Dec 1990 | JP |
H08-187453 | Jul 1996 | JP |
H10-043644 | Feb 1998 | JP |
2000-117155 | Apr 2000 | JP |
2004-167411 | Jun 2004 | JP |
2010-022933 | Feb 2010 | JP |
2012042344 | Apr 2012 | WO |
Entry |
---|
Extended European Search Report for EP Application No. 16177519.2 dated Jan. 27, 2017, 8 Pages. |
Japanese Office Action for JP Application No. 2015-133146 dated Mar. 6, 2018, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20170001206 A1 | Jan 2017 | US |