Electrostatic dissipation solution for angled fuel port of a fuel supply unit

Abstract
A flange structure 10′ for a fuel supply unit of a vehicle includes at least one non-electrically conductive plastic fuel port (16′) having first and second ends. A non-electrically conductive plastic flange (20′) is integral with the fuel port between the first and second ends. The flange is constructed and arranged to be coupled with a fuel tank of a vehicle. Electrically conductive grounding structure (32) is associated with the fuel port and has an elongated portion (36) extending within the fuel port so as to be exposed to fuel, and an end (40) connected with the elongated portion. An electrically conductive hose (30) is coupled with the first end of the fuel port and is in contact with the end of the grounding structure thereby defining a discharge path such that static electricity generated when fuel flows through the fuel port can be dissipated through the discharge path.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:



FIG. 1 is a view of conventional fuel supply unit of a vehicle.



FIG. 2 is a partial sectional view of a flange structure including a flange, a fuel port and a hose provided in accordance with an embodiment of the invention.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENT

With reference to FIG. 2, a portion of a flange structure, generally indicated at 10′, is shown in accordance with the principles of an embodiment of the invention. The flange structure 10′ is similar to the flange structure 10 shown in FIG. 1, employed in a fuel supply unit of a vehicle. The flange structure 10′ includes at least one fuel port, generally indicted at 16′, and a flange, generally indicated at 20′. The flange 20′ is preferably molded from non-electrically conductive plastic together with the fuel port 16′.


The fuel port 16′ has a first end 22 accessible inside a fuel tank (not shown) and a second end 24 that is accessible outside of the flange 20′ and thus outside of the fuel tank. Barb structure is associated with the end 22. In the embodiment, the barb structure is preferably in the form of at least one (three shown) annular barbs 26. The barbs 26 engage an inner surface 28 of an electrically conductive hose 30 that is constructed and arranged to be connected with a fuel pump filter (not shown) and/or a fuel pump outlet (not shown). The hose 30 is preferably of electrically conductive plastic.


The fuel port 16′ includes grounding structure, generally indicated at 32. In the embodiment shown in FIG. 2, the grounding structure 32 is an electrically conductive, preferably metal member that is insert molded with respect to the fuel port 16′. Although a metal grounding structure 32 is disclosed, the grounding structure can be of any electrically conductive material, such as conductive plastic. The grounding structure 32 has an elongated portion 36 extending along a surface 38 of the fuel port 16′ so as to be exposed to fuel F that flows in the fuel port 16′. The grounding structure 32 also includes an end 40 that is connected with (preferably integral with) the elongated portion 36. The end 40 defines a free end of the fuel port 16′ and is thus angled, permitting ease of insertion into the hose 30. The end 40 includes a barb 42 that engages with the inner surface 28 of the conductive hose 30. Thus, an electrostatic dissipation path is provided between the fuel port 16′ and the hose 30. Since the hose 30 is electrically connected with the pump filter or fuel pump outlet, static electricity, generated by fuel flowing in the fuel port 16′ can be dissipated through the conductive hose 30 to the pump filter or pump outlet to the pump negative.


Although only one fuel port 16′ is shown in FIG. 2, it can be appreciated that other similar ports, with the associated connection with the flange 20′ and hose 30 can be provided.


Hence, by employing a conductive fuel port 16′, ESD can be achieved and by providing the barbs 26, a fuel leakage barrier is provided.


The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.

Claims
  • 1. A flange structure for a fuel supply unit of a vehicle, the flange structure comprising: at least one non-electrically conductive plastic fuel port having first and second ends,a non-electrically conductive plastic flange integral with the fuel port between the first and second ends, the flange being constructed and arranged to be coupled with a fuel tank of a vehicle,electrically conductive grounding structure associated with the fuel port, the grounding structure having an elongated portion extending within the fuel port so as to be exposed to fuel, and an end connected with the elongated portion, andan electrically conductive hose coupled with the first end of the fuel port and in contact with the end of the grounding structure thereby defining a discharge path such that static electricity generated when fuel flows through the fuel port can be dissipated through the discharge path.
  • 2. The flange structure of claim 1, wherein the first end of the fuel port includes barb structure engaged with an inner surface of the hose.
  • 3. The flange structure of claim 1, wherein the grounding structure is a single electrically conductive member insert molded with respect to the fuel port.
  • 4. The flange structure of claim 1, wherein the elongated portion and the end of the grounding structure are integral.
  • 5. The flange structure of claim 1, wherein the end of the grounding structure defines a free end of the fuel port.
  • 6. The flange structure of claim 5, wherein the end of the grounding structure is angled to facilitate insertion into the hose.
  • 7. The flange structure of claim 6, wherein the end of the grounding structure includes an annular barb that is engaged with an inner wall of the hose.
  • 8. A flange structure for a fuel supply unit of a vehicle, the flange structure comprising: at least one non-electrically conductive plastic fuel port having first and second ends,a non-electrically conductive plastic flange integral with the fuel port between the first and second ends, the flange being constructed and arranged to be coupled with a fuel tank of a vehicle,means for grounding associated with the fuel port, the means for grounding being electrically conductive and having a portion extending within the fuel port so as to be exposed to fuel, and an end connected with the portion, andan electrically conductive hose coupled with the first end of the fuel port and in contact with the end of the means for grounding thereby defining a discharge path such that static electricity generated when fuel flows through the fuel port can be dissipated through the discharge path.
  • 9. The flange structure of claim 8, wherein the first end of the fuel port includes barb structure engaged with an inner surface of the hose.
  • 10. The flange structure of claim 8, wherein the means for grounding is a single electrically conductive member insert molded with respect to the fuel port.
  • 11. The flange structure of claim 8, wherein the portion and the end of the means for grounding are integral.
  • 12. The flange structure of claim 8, wherein the end of the means for grounding defines a free end of the fuel port.
  • 13. The flange structure of claim 12, wherein the end of the means for grounding is angled to facilitate insertion into the hose.
  • 14. The flange structure of claim 13, wherein the end of the means for grounding includes an annular barb that is engaged with an inner wall of the hose.
  • 15. A method of grounding a fuel port of a flange structure for a fuel supply unit of a vehicle, the method including: providing at least one non-conductive plastic fuel port having first and second ends, and a non-electrically conductive plastic flange integral with the fuel port between the first and second ends,insert molding an electrically conductive grounding structure with respect to the fuel port, the grounding structure having an elongated portion extending within the fuel port so as to be exposed to fuel, and an end connected with the elongated portion, andcoupling an electrically conductive hose with the first end of the fuel port so as to be in contact with the end of the grounding structure thereby defining a discharge path such that static electricity generated when fuel flows through the fuel port can be dissipated through the discharge path.
  • 16. The method of claim 15, wherein the insert molding step includes providing a single member as the grounding structure and molding plastic about at least a portion of the metal member.
  • 17. The method of claim 15, wherein the end of the grounding structure defines a free end of the fuel port, the coupling step including coupling the hose to the free end.
  • 18. The method of claim 17, wherein the end of grounding structure is angled to facilitate coupling with the hose.
  • 19. The method of claim 18, wherein the end of the grounding structure includes an annular barb that engages with an inner wall of the hose during the coupling step.
  • 20. The method of claim 15, wherein the first end of the fuel port includes barb structure engaged with an inner surface of the hose during the coupling step.
Parent Case Info

This application claims the benefit of the earlier filing date of U.S. Provisional Application No. 60/839,341, filed on Aug. 21, 2006, which is hereby incorporated by reference into this specification.

Provisional Applications (1)
Number Date Country
60839341 Aug 2006 US