Electrostatic filter and a method thereof

Information

  • Patent Grant
  • 6773488
  • Patent Number
    6,773,488
  • Date Filed
    Friday, June 7, 2002
    22 years ago
  • Date Issued
    Tuesday, August 10, 2004
    20 years ago
Abstract
A filter system with a housing defining a passage between an inlet and an outlet and one or more structures located in the passage in the housing. Each of the structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers. At least one of the structures has an imbedded fixed charge at a charge level of at least 1×1012 charges per cm2.
Description




FIELD OF THE INVENTION




This invention relates generally to filters and, more particularly, an electrostatic filter and a method thereof.




BACKGROUND OF THE INVENTION




There is an increasing need for effective particle filters. One existing type of particle filter uses a filtering material with a plurality of passages or pores through which the air or gas to be filtered is passed through. If particles in the gas or air are larger than the passages or pores in the filtering material, then the particles are trapped by the filtering material. These filters are rated according to the smallest size particles that they can effectively trap.




Unfortunately, the ability to trap smaller particles requires smaller pore sizes for the filtering material which requires more energy to move the air or gas through the filter. As a result, the energy costs for filtering can become quite large when it becomes necessary to trap small particles.




Another type of particle filter is an electrostatic filter which uses an electret. The electret is a single sheet of material that holds a persistent or quasi-permanent electric charge in the sheet of material. The electrostatic filter with the electret operates by coulombic attraction between the electret and a particle or particles.




Unfortunately, there are limits on the obtainable charge in an electret. For example, U.S. Pat. No. 5,057,710 to Nishiura et al., which is herein incorporated by reference in its entirety, teaches at col 4 lines 25-29 an electret with a charge density of up to 7×10


−10


coulombs per cm


2


which is equivalent to a charge level of 4.4×10


9


charges per cm


2


. In another example, U.S. Pat. No. 6,214,094 to Rousseau et al., which is herein incorporated by reference in its entirety, teaches at col. 22, lines 16-21, and FIGS. 13A and 13B an electret with a charge density of 2×10


−5


coulombs per m


2


which is equivalent to a charge level of 1.25×10


10


charges per cm


2


. As a result, some of the particles in gas or air that pass through the electrostatic filter are not trapped by the electrets because the obtainable charge levels are too low.




SUMMARY OF THE INVENTION




A filter system in accordance with one embodiment of the present invention includes a housing defining a passage between an inlet and an outlet and one or more structures located in the passage in the housing. Each of the structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers.




A filter system in accordance with another embodiment of the present invention includes a housing defining a passage between an inlet and an outlet and one or more structures located in the passage in the housing. At least one of the structures has an imbedded fixed charge at a charge level of at least 1×10


12


charges per cm


2


.




A method for filtering one or more particles from a fluid in accordance with another embodiment of the present invention includes moving the fluid past one or more structures. Each of the one or more structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers. The one or more particles are attracted to at least one of the one or more structures and are trapped against the at least one of the one or more structures.




A method for filtering one or more particles from a fluid in accordance with another embodiment of the present invention includes moving the fluid past one or more structures. Each of the one or more structures has an imbedded fixed charge at a charge level of at least 1×10


12


charges per cm


2


. The one or more particles are attracted to at least one of the one or more structures and are trapped against the at least one of the one or more structures.




The present invention provides an electrostatic filter with lower energy requirements then prior filters. Since the passages in the filter are not restricted to the smallest size particles desired to be captured, energy requirements for moving the fluid through the filter are low. This represents a significant savings in energy cost.




The present invention also provides more effective electrostatic filter. The present invention provides a significant improvement over electrets and other materials in stored charge density. As a result, the present invention is much more effective in attracting and filtering out particles from a fluid.




The present invention also provides a filter that is easier to clean and reuse then prior filters. This represents a further cost savings to the end user of the filter.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of an electrostatic filter system in accordance with one embodiment of the present invention; and





FIG. 2

is a cross-sectional view of some of the sheets with an embedded fixed charge in the electrostatic filter system shown in FIG.


1


.











DETAILED DESCRIPTION




Referring to

FIGS. 1 and 2

, an electrostatic filter system


10


in accordance with one embodiment of the present invention is illustrated. The filter system


10


includes a housing


12


with an inlet


14


and an outlet


16


and a plurality of filter sheets


18


(


1


)-


18


(


6


) with imbedded fixed static charge. The present invention provides an electrostatic filter system


10


with lower energy requirements, better fixed charge holding capabilities, better filtering capabilities, and easier cleaning then prior filters.




Referring more specifically to

FIGS. 1 and 2

, the housing


12


has walls


20


(


1


)-


20


(


4


) which define a fluid passage


22


which extends between the inlet


14


and the outlet


16


, although the housing


12


could have other configurations, such as a curved or a bent configuration, with other numbers of walls


20


. In this particular embodiment, the passage


22


in the housing


12


extends along in substantially the same direction, although the passage


22


could have other configurations, such as a curved or a bent shape. Although a housing


12


is shown, some embodiments of the present invention do not require a housing


12


, such as one with just one or more sheets


18


(


1


)-


18


(


6


) which are placed in or adjacent a flow of fluid to be filtered.




Opposing sides of the sheets


18


(


1


)-


18


(


6


) are connected to the walls


20


(


1


) and


20


(


3


) of the housing


12


in a spaced apart array, although other configurations and connections to housing


12


could be used. The sheets


18


(


1


)-


18


(


6


) are arranged to be substantially parallel to the direction of flow of the fluid, such as air or gas, from the inlet


14


to the outlet


16


of the housing


12


, although one or more of the sheets


18


(


1


)-


18


(


6


) could be arranged in other directions with respect to the direction of flow of some or all of the fluid. The space between the sheets


18


(


1


)-


18


(


6


) can be much larger then the size of the smallest particles to be filtered so less energy is required to move the fluid through the housing past the sheets


18


(


1


)-


18


(


6


).




Each of the sheets


18


(


1


)-


18


(


6


) comprises a pair of layers


24


(


1


) and


24


(


2


) of insulating material such a dual dielectric thin film, which are formed or connected together at an interface


26


, although each of the sheets


18


(


1


)-


18


(


6


) could comprise other numbers of layers with other numbers of interfaces depending on the number of layers. Other types of structures which can hold a fixed charge can also be used for sheets


18


(


1


)-


18


(


6


) and these structures can have other shapes and configurations, such as a structure with fixed charge with passages in the structure for fluid to pass through and particles in the fluid to be attracted and attached to the walls of the holes. In this particular embodiment, each of the sheets


18


(


1


)-


18


(


6


) has an embedded fixed charge at the interface


26


and an electron trap density that is optimized for a high density of states with energy levels sufficiently below the conduction band minimum for extremely long trapped charge retention times. With the present invention, practical imbedded charge levels, of at least 1×10


12


charge per cm


2


are easily obtainable.




By way of example only, a dual insulator for one of the sheets


18


(


1


),


18


(


2


),


18


(


3


),


18


(


4


),


18


(


5


), or


18


(


6


) comprising a layer


24


(


2


) of Al


2


O


3


, although other insulators can be used, deposited on a layer


24


(


1


) of SiO


2


, although other insulators can be used, has a charge level of 5×10


12


charges per cm


2


, which is about a four hundred times increase in charge density over the electret disclosed in U.S. Pat. No. 6,214,094 to Rousseau et al.




By way of another example, a sheet


18


(


1


),


18


(


2


),


18


(


3


),


18


(


4


),


18


(


5


) with a fixed charge has a layer


24


(


2


) of silicon nitride deposited on a layer


24


(


1


) of silicon dioxide. The band gaps for these layers


24


(


1


) and


24


(


2


) of silicon nitride and silicon dioxide are approximately 5.0 eV and approximately 9.0 eV respectively. Under appropriate bias, using sacrificial electrodes, electrons tunnel into the conduction band of the layer


24


(


1


) of silicon dioxide and drift toward the layer


24


(


2


) of silicon nitride due to a high field. Although the band gap of silicon dioxide is very wide, the electron mobility is on the order of 1-10 cm


2


per volt-second. However, when the electrons arrive at the interface


26


, the electrons encounter interface states with energy levels approximately 1.0 eV below the conduction band of the layer


24


(


2


) of silicon nitride. These trap states at the interface


26


are quickly filled. The permittivity of the layer


24


(


2


) of silicon nitride is approximately twice that of the layer


24


(


1


) of silicon dioxide. Therefore, there is less band bending in the layer


24


(


2


) of silicon nitride and trapped electrons do not have sufficient energy to tunnel into the conduction band of the layer


24


(


2


) of silicon nitride, i.e., the traps are filled and remain filled. Once the electrical bias is removed, reverse tunneling is possible as long as the stored charge is sufficient to cause a band bending great enough for emptying a trap to the conduction band of the layer


24


(


1


) of silicon dioxide conduction band. Taking into account filled trap densities, permittivities, and each component film thickness, a high level of trapped static charge is achievable in this particular example.




A method for making the filter system


10


will be described with reference to

FIGS. 1 and 2

. The sheets


18


(


1


)-


18


(


6


) are each fabricated. A layer


24


(


2


) of insulating material is deposited on another layer of insulating material


24


(


1


). Next, a fixed charge is imbedded in each of the sheets


18


(


1


)-


18


(


6


) and is held at an interface


26


for each of the sheets


18


(


1


)-


18


(


6


). A variety of techniques for imbedding the charge can be used, such as by applying a sufficient electrical bias across the layers


24


(


1


) and


24


(


2


) by utilizing conducting electrodes and conducting sacrificial layers on opposing sides of layers


24


(


1


) and


24


(


2


) or by injecting the electrons into the layers


24


(


1


) and


24


(


2


) to the interface


26


with an electron gun.




The sheets


18


(


1


)-


18


(


6


) are secured at opposing sides to an interior portion of the housing


12


. The sheets


18


(


1


)-


18


(


6


) are arranged in an equally spaced apart array along the passage


22


.




The operation of the filter system


10


will be described with reference to

FIGS. 1 and 2

. A fluid F, such as air, gas or a liquid, is directed into the inlet


14


of the housing


12


. The fluid F travels along the passage


22


in the housing


12


towards the outlet


16


. As the fluid F travels down the passage


22


, the fluid F passes by the sheets


18


(


1


)-


18


(


6


) with imbedded fixed charge at the interface


26


.




Due to random and chaotic motion of any particle P in the fluid, air or gas, the particle is attracted to a nearest sheet


18


(


1


),


18


(


2


),


18


(


3


),


18


(


4


),


18


(


5


), or


18


(


6


) with imbedded static charge due to an induced charge in the particle P. If the particle P is a conductive particle, the induced charge is easily created. If the particle P is insulating in nature, the induced charge is a result of induced dipoles. In either case, the particle P will be strongly attracted to a charge imbedded sheet


18


(


1


),


18


(


2


),


18


(


3


),


18


(


4


),


18


(


5


), or


18


(


6


). Because the electrostatic attraction is effective for a tremendous range of particle size, the spacing between the sheets


18


(


1


)-


18


(


6


) need not be highly restrictive to air or gas flow. This results in a very significant energy savings and reduction in the overall cost of maintaining a highly effective air or gas filtering system. Furthermore, the electrostatic filter


10


described herein is a passive filter, i.e. the filter itself requires no power.




By choosing the appropriate charge density and materials properties, the filter


10


can be cleaned by placing them, for example, in a fluid flow cleaner system with sufficient flow. To dislodge the particles, the force due to the fluid flow on the attracted and attached particles P is greater than the electrostatic attraction forces. Therefore, the trapped particle P is dislodged and flushed away and the filter


10


is cleaned and ready for further filtering service.




Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefor, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.



Claims
  • 1. A filter system comprising one or more structures, wherein each of the structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers, wherein each of the one or more structures with the imbedded fixed charge is a monopole structure.
  • 2. The system as set forth in claim 1 further comprising a housing defining a passage between an inlet and an outlet, one or more of the structures located in the passage in the housing.
  • 3. The system as set forth in claim 1 wherein at least one of the one or more structures is substantially parallel to a direction of the flow of fluid through the housing.
  • 4. The system as set forth in claim 1 further comprising a plurality of the one or more structures.
  • 5. The system as set forth in claim 4 wherein the plurality of structures are spaced substantially the same distance apart from each other in the housing.
  • 6. The system as set forth in claim 1 wherein the imbedded fixed charge has a charge level of at least 1×1012 charges per cm2.
  • 7. A filter system comprising one or more structures located in a passage in a housing, at least one of the structures has an imbedded fixed charge at a charge level of at least 1×1012 charges per cm2, wherein each of the one or more structures with the imbedded fixed charge is a monopole structure.
  • 8. The system as set forth in claim 7 further comprising a housing defining a passage between an inlet and an outlet, one or more of the structures located in the passage in the housing.
  • 9. The system as set forth in claim 7 wherein each of the structures comprises two or more layers with the imbedded fixed charge located at one or more of the interfaces between the two or more layers.
  • 10. The system as set forth in claim 7 wherein at least one of the one or more structures is substantially parallel to a direction of the flow of fluid through the housing.
  • 11. The system as set forth in claim 7 further comprising a plurality of the one or more structures.
  • 12. The system as set forth in claim 11 wherein the plurality of structures are spaced substantially the same distance apart from each other in the housing.
  • 13. A method for filtering one or more particles from a fluid, the method comprising:moving the fluid past one or more structures, wherein each of the one or more structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers, wherein each of the one or more structures with the imbedded fixed charge is a monopole structure; attracting the one or more particles to at least one of the one or more structures; and trapping the one or more particles against the at least one of the one or more structures.
  • 14. The method as set forth in claim 13 further comprising placing at least one of the one or more structures in a substantially parallel direction to a direction of the moving fluid.
  • 15. The method as set forth in claim 13 wherein the moving the fluid is past a plurality of the one or more structures.
  • 16. The filter method as set forth in claim 13 further comprising placing each of the plurality of structures substantially the same distance apart from each other in the housing.
  • 17. The method as set forth in claim 13 wherein the imbedded fixed charge has a charge level of at least 1×1012 charges per cm2.
  • 18. The method as set forth in claim 13 further comprising:forcing another fluid past the one or more structures; and dislodging the one or more particles from the one or more structures with the forced fluid.
  • 19. A method for filtering one or more particles from a fluid, the method comprising:moving the fluid past one or more structures, wherein each of the one or more structures has an imbedded fixed charge at a charge level of at least 1×1012 charges per cm2 and wherein each of the one or more structures with the imbedded fixed charge is a monopole structure; attracting the one or more particles to at least one of the one or more structures; and trapping the one or more particles against the at least one of the one or more structures.
  • 20. The method as set forth in claim 19 further comprising placing at least one of the one or more structures in a substantially parallel direction to a direction of the moving fluid.
  • 21. The method as set forth in claim 19 wherein the moving the fluid is past a plurality of the one or more structures.
  • 22. The filter method as set forth in claim 19 further comprising placing each of the plurality of structures substantially the same distance apart from each other in the housing.
  • 23. The method as set forth in claim 19 further comprising forcing another fluid past the one or more structures; and dislodging the one or more particles from the one or more structures with the forced fluid.
Parent Case Info

The present invention claims the benefit of U.S. Provisional Patent Application Serial No. 60/297,371, filed Jun. 11, 2001, which is hereby incorporated by reference in its entirety.

US Referenced Citations (25)
Number Name Date Kind
2978066 Nodolf Apr 1961 A
3487610 Brown et al. Jan 1970 A
3924324 Kodera Dec 1975 A
4166729 Thompson et al. Sep 1979 A
4375718 Wadsworth et al. Mar 1983 A
4513049 Yamasaki et al. Apr 1985 A
4626263 Inoue et al. Dec 1986 A
4874659 Ando et al. Oct 1989 A
5057710 Nishiura et al. Oct 1991 A
5108470 Pick Apr 1992 A
5112677 Tani et al. May 1992 A
5256176 Matsuura et al. Oct 1993 A
5334238 Goodson et al. Aug 1994 A
5348571 Weber Sep 1994 A
5419953 Chapman May 1995 A
5474599 Cheney et al. Dec 1995 A
5496507 Angadjivand et al. Mar 1996 A
5593476 Coppom Jan 1997 A
5593479 Frey et al. Jan 1997 A
5807425 Gibbs Sep 1998 A
5846302 Putro Dec 1998 A
5871567 Covington et al. Feb 1999 A
5993520 Yu Nov 1999 A
6119691 Angadjivand et al. Sep 2000 A
6214094 Rousseau et al. Apr 2001 B1
Non-Patent Literature Citations (2)
Entry
A. Aguilera et al., “Electron Energy Distriubtion at the Insulator-Semiconductor Interface in AC Thin Film Electroluminescent Display Devices,” IEEE Transactions on Electron Devices, 41:1357-1363 (1994).
S. Kobayashi et al., “Distribution of Trapped Electrons At Interface States In Actfel Devices,” Proceedings of the Sixth International Workshop on Electroluminescence, El Paso, Texas, May 11-13, 1992.
Provisional Applications (1)
Number Date Country
60/297371 Jun 2001 US