The present disclosure relates to vacuum electronic devices.
A vacuum electronic device typically includes an electrode, such as a cathode, which emits electrons over a potential energy barrier to a cooler electrode, such as an anode, thereby producing a useful electrical current. In some applications, such as a thermionic energy converter, vapor may be used to optimize electrode work functions and provide an ion supply (such as by surface ionization or electron impact ionization in a plasma) to neutralize electron space charge. As is known, in an electron tube, for example, a negative charge results because electrons that are emitted from the cathode do not travel instantaneously to the anode but require a finite time for the trip. These electrons form a cloud around the cathode, and the cloud is continually depleted by electrons being absorbed by the plate and replenished by electrons being emitted from the cathode. It is this cloud of electrons that produces the negative space charge.
Space charge can limit practicality of thermionic energy converters. As electrons are emitted between the electrodes, their negative charges repel one another and disrupt the current.
Some methods previously explored to mitigate or eliminate space charge include using a close gap (that is, <10 μm or so), using an easily ionizable gas in the inter-electrode space, and using electric or magnetic fields to accelerate electrons across the gap. Close-spaced converters present engineering challenges in maintaining a very small gap with large temperature gradients and thermal expansion, as well as material choices for spacers. The maximum cathode dimensions can be limited because cathode heating and the resulting thermal expansion can cause the gap to vary. Vapor diodes, as converters containing cesium are frequently called, have complexities arising from corrosion, pressure control, and anode temperature requirements. In addition, vapor diodes are usually operated under a condition where a plasma is struck, which typically results in a ˜50% power loss associated with the additional potential barrier created by the plasma sheath region.
Electrostatically reducing space charge with grids may be attractive because it allows for larger gaps and easier manufacturing. However, using a single grid that is positively charged (or positively biased) relative to the cathode (an “acceleration grid”) to reduce space charge may not be practical because the acceleration grid itself attracts and absorbs electrons. Therefore, the power required to maintain the acceleration grid at a positive bias relative to the cathode offsets gains in space charge reduction. In such a thermionic converter, electron absorption by the acceleration grid(s) is desirably limited to avoid significant power consumption by the grid(s) (“grid loss”).
Some attempts have been made to reduce grid loss (that is, absorption of electrons emitted from the cathode by the acceleration grid) in a gridded thermionic generator. These attempts include: 1) create extremely small acceleration grids; 2) introduce a longitudinal magnetic field to the inter-electrode space; and 3) form one or more collimated electron beams from the electrons emitted from the cathode. In the first case, the acceleration grids are small in fill factor (that is, the ratio of exposed grid area to exposed anode area as seen from the cathode) such that the probability of an electron striking the grid is sufficiently low. In the second case, the longitudinal magnetic field creates a Lorentz force that acts on the transverse component of the electron's velocity, which holds the electron to a helical path and prevents significant deflection toward the grid in the transverse direction. In the third case, the emitted electrons are collimated (that is, the potential profile near the cathode surface due to electrostatic grid structures results in emitted electrons having relatively parallel velocity vectors), and therefore the subsequent grid electrode(s) may be tailored in terms of geometry and voltage (“electron optics”) to accelerate the electrons toward the anode while avoiding striking the grid electrodes.
In the third case of collimated emitted electrons, it may be desired to introduce one or more negatively biased electrostatic grids (“focus grids”) to constrain the electron beam(s) such that absorption by the one or more positively biased acceleration grids can be minimized. The one or more negatively biased focus grids are desirably sufficiently close to the cathode surface such that emission is suppressed in desired areas, thereby allowing for the thermionic emission of electrons to be localized and aligned to the acceleration grid(s). Such an arrangement may be advantageous in terms of the degree to which electrons can be accelerated away from the cathode while avoiding striking the positively biased acceleration grid.
However, currently known methods of achieving localized emission and/or focusing of electron beams from a cathode surface have relied on patterned electrodes which are in physical contact with the cathode surface.
For example, one previously proposed method of localizing cathode emission coats the surface of the cathode with an insulator, such as boron nitride, and then puts the control grid directly on the insulator. This method limits the type of material from which the cathode can be made and increases the complexity of the cathode—which can run at temperatures ranging from 800° C. to 2000° C.
As another example, another method patterns emissive material only on certain areas of the cathode. In this approach, thermal mismatch can result between these emissive materials and the cathodes to which they are attached. Additionally, the emissive materials may diffuse over the course of operating at high temperature—which could potentially increase the emission area.
Moreover, in currently known vacuum electronics devices alignment between the focus grid and the acceleration grid is exclusively on the cathode side, thereby increasing chances for misalignment between the emitting area of the cathode and the accelerating region of the anode. When used in a thermionic generator, any misalignment would result in thermionic electrons being emitted in closer proximity to an acceleration grid, thereby degrading device efficiency.
Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device.
In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
In another non-limiting embodiment, a device includes a cathode and an anode. At least one focus grid is biased negatively relative to the cathode and is disposed between the cathode and the anode. The at least one focus grid is physically disconnected from the cathode, and the at least one focus grid establishes a portion of a surface of the cathode adjacent thereto having a first level of emission of electrons therefrom. At least one acceleration grid is biased positively relative to the cathode and is disposed between the cathode and the anode. The at least one acceleration grid is further disposed adjacent the at least one focus grid, and the at least one acceleration grid is physically disconnected from the cathode. The at least one acceleration grid establishes a portion of a surface of the cathode adjacent thereto having a second level of emission of electrons therefrom that is greater than the first level of emission of electrons.
In another non-limiting embodiment, a method of reducing electron space charge includes: negatively biasing at least one focus grid relative to a cathode, the at least one focus grid being disposed between the cathode and an anode in a vacuum electronics device, the at least one focus grid being physically disconnected from the cathode; and positively biasing at least one acceleration grid relative to the cathode, the at least one acceleration grid being disposed between the cathode and the anode, the at least one acceleration grid being further disposed adjacent the at least one focus grid, the at least one acceleration grid being physically disconnected from the cathode.
In another non-limiting embodiment, a method of establishing localized emission of electrons in a vacuum electronics device includes: negatively biasing at least one focus grid relative to a cathode, the at least one focus grid being disposed between the cathode and an anode in a vacuum electronics device, the at least one focus grid being physically disconnected from the cathode, wherein negatively biasing the at least one focus grid relative to the cathode establishes a first level of emission of electrons from a portion of a surface of the cathode adjacent thereto; and positively biasing at least one acceleration grid relative to a cathode, the at least one acceleration grid being disposed between the cathode and the anode, the at least one acceleration grid being further disposed adjacent the at least one focus grid, the at least one acceleration grid being physically disconnected from the cathode, wherein positively biasing the at least one acceleration grid relative to the cathode establishes a second level of emission of electrons from a portion of a surface of the cathode adjacent thereto, the second level of emission of electrons being greater than the first level of emission of electrons.
In another non-limiting embodiment, a method of fabricating a vacuum electronics device includes: providing a silicon-on-insulator substrate; patterning with photoresist a plurality of features including at least one focus grid and at least one acceleration grid; etching to the insulator the silicon overlying the insulator; etching the insulator; etching the silicon underlying the insulator; further etching the insulator; and depositing one of a metal film and a film of low work function material on the substrate and the plurality of features.
In another non-limiting embodiment, a method of fabricating a vacuum electronics device includes: providing a silicon wafer; depositing a dielectric layer on the silicon wafer; depositing a layer of conductive material on the dielectric layer; patterning with photoresist a plurality of features including at least one focus grid and at least one acceleration grid; etching to the dielectric layer the conductive material overlying the dielectric layer; etching the dielectric layer; etching the silicon underlying the dielectric layer; and further etching the dielectric layer.
The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the text (e.g., claims and/or detailed description) and/or drawings of the present disclosure.
Illustrative embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, the use of the same symbols in different drawings typically indicates similar or identical items unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
Given by way of non-limiting overview, illustrative embodiments disclose vacuum electronic devices and methods for fabricating vacuum electronic components that include at least one electrostatic grid, which, at some distance from the surface of a cathode and at some negative applied bias, creates an electric field profile near the cathode surface which can help contribute to reducing electron space charge. In various embodiments and referring to
To avoid significant power losses, in various disclosed embodiments the electron absorption cross-section of the acceleration grid 5 is decreased and the electron absorption cross-section of the anode is increased. This approach allows a large portion of the electrons emitted from the cathode to make it across the gap to the anode. As will be discussed below, this approach seeks to optimize the electron optics of the system—that is, by tailoring the geometry and voltages of the focus grid 7, acceleration grid(s) 5, and supporting structures—to sculpt the potential profile such that electrons are both accelerated away from the cathode by the positively-biased acceleration grid 5 and steered around the acceleration grid by the negatively-biased focus grid 7. It will be appreciated that use of such a periodic configurations of acceleration grid(s) 5 and focus grid(s) 7 can help contribute to reducing energy losses to the acceleration grid 5 while helping to contribute to enhancing anode current via space charge reduction.
As mentioned above, in some embodiments the geometry and voltages may result in localized emission from the cathode surface and in some other embodiments the geometry and voltages may not result in localized emission from the cathode surface. However, in all disclosed embodiments electron space charge is reduced—regardless of whether or not emission from the cathode surface is localized. These embodiments can help reduce cathode complexity because the cathode does not have grids attached directly to its surface. Because alignment between the focus grid 7 and the acceleration grid 5 is only on the anode side, various embodiments can help reduce chances for misalignment between the emitting area of the cathode and the accelerating region of the anode. When used in a thermionic generator, a reduction in misalignment can help prevent thermionic electrons being emitted in closer proximity to the acceleration grid 5, thereby helping to reduce degradations in device efficiency.
In some embodiments several acceleration grid(s) 5 and/or several focus grid(s) 7 may be incorporated into one or more periods of the overall structure. These acceleration grid(s) 5 and focus grid(s) 7 may be arranged in various geometries suited to sculpt electric potential profiles which mitigate space charge while reducing electron absorption by the acceleration grid(s) 5. The acceleration grid(s) 5 and focus grid(s) 7 may be arranged vertically, horizontally, or in any three-dimensional configuration with respect to one another. Voltages applied to the acceleration grid(s) 5 and focus grid(s) 7 may be static or time-varying, positive or negative.
Still by way of non-limiting overview and referring additionally to
Still by way of overview and as shown in
Regardless of whether the at least one acceleration grid 5 and the at least one focus grid 7 are physically disconnected from only the cathode 1 (as shown in
Also regardless of whether the at least one acceleration grid 5 and the at least one focus grid 7 are physically disconnected from only the cathode 1 (as shown in
However, it is emphasized and it will be appreciated that localizing emission from the cathode 1 is not necessary and/or essential to the ability of some disclosed embodiments to reduce and/or mitigate space charge while avoiding significant absorption of electrons by the acceleration grid(s) 5. In some regimes of operation of devices of some embodiments, the focus grid(s) 7 may not be sufficiently negatively biased and/or may not be disposed in close enough proximity to the surface of the cathode 1 to localize emission from the cathode 1—but may still provide sufficient deflection of electrons around the acceleration grid(s) 5 to avoid significant absorption of electrons by the acceleration grid(s) 5.
Now that a non-limiting overview has been provided, illustrative details regarding illustrative embodiments of vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device will be set forth below by way of non-limiting examples and not of limitation.
Referring to
In some embodiments the cathode 1 may be a solid electrode made from a metal or a compound such as tungsten, rhenium, molybdenum, lanthanum hexaboride, or the like. In some other embodiments the cathode 1 may be an oxide-coated metal electrode. In such embodiments, the cathode 1 may be coated with an oxide such as a barium oxide, strontium oxide, calcium oxide, or the like, or any mixture thereof. In some other embodiments, the cathode 1 may be a metal matrix cathode impregnated with a low-work function material, such as barium oxide, strontium oxide, calcium oxide, or the like, or any mixture thereof. In various embodiments the cathode 1 is heated to temperatures of at least several hundred degrees Celsius to induce thermionic or Schottky emission of electrons 11.
In various embodiments the cathode 1 is disposed in close proximity to the anode 3. In various embodiments, the cathode 1 may be disposed within a range of single microns to millimeters (that is, 10{circumflex over ( )}-6 to 10{circumflex over ( )}-3 m) to the anode 3. In various embodiments the anode 3 may be metallic, semiconducting, or a low-work-function material, or may include an insulating substrate with a metallic, semiconducting, or low-work-function film or coating. Metallic materials may include, without limitation: refractory metals such as (but not limited to) tungsten, molybdenum, niobium, or tantalum; other transition metals such as (but not limited to) silver, platinum, osmium, iridium, ruthenium, rhodium, gold, nickel, copper, titanium, or chromium; and various compounds and alloys thereof. Semiconducting materials may include, without limitation: group IV semiconductors such as silicon, germanium, carbon, or any alloy thereof; III-V compound semiconductors such as GaAs, GaN, InP, BN, or any combination or alloy thereof; and II-VI semiconductors such as ZnO, ZnS, ZnSe, CdTe, or any combination or alloy thereof. Low-WF materials may include, without limitation: alkali metals such as (but not limited to) Cs, Ba, Mg, and oxides, compounds, and alloys thereof; LaB6; and thoriated tungsten.
In various embodiments the at least one acceleration grid 5 may be metallic, semiconducting, or a low-work-function material, or may include an insulating material with a metallic, semiconducting, or low-work-function film or coating. Metallic materials may include, without limitation: refractory metals such as (but not limited to) tungsten, molybdenum, niobium, or tantalum; other transition metals such as (but not limited to) silver, platinum, osmium, iridium, ruthenium, rhodium, gold, nickel, copper, titanium, or chromium; and various compounds and alloys thereof. Semiconducting materials may include, without limitation: group IV semiconductors such as silicon, germanium, carbon, or any alloy thereof; III-V compound semiconductors such as GaAs, GaN, InP, BN, or any combination or alloy thereof; and II-VI semiconductors such as ZnO, ZnS, ZnSe, CdTe, or any combination or alloy thereof. Low-WF materials may include, without limitation: alkali metals such as (but not limited to) Cs, Ba, Mg, and oxides, compounds, and alloys thereof; LaB6; and thoriated tungsten.
In various embodiments, the at least one focus grid 7 may be metallic, semiconducting, or a low-work-function material, or may include an insulating material with a metallic, semiconducting, or low-work-function film or coating. Metallic materials may include, without limitation: refractory metals such as (but not limited to) tungsten, molybdenum, niobium, or tantalum; other transition metals such as (but not limited to) silver, platinum, osmium, iridium, ruthenium, rhodium, gold, nickel, copper, titanium, or chromium; and various compounds and alloys thereof. Semiconducting materials may include, without limitation: group IV semiconductors such as silicon, germanium, carbon, or any alloy thereof; III-V compound semiconductors such as GaAs, GaN, InP, BN, or any combination or alloy thereof; and II-VI semiconductors such as ZnO, ZnS, ZnSe, CdTe, or any combination or alloy thereof. Low-WF materials may include, without limitation: alkali metals such as (but not limited to) Cs, Ba, Mg, and oxides, compounds, and alloys thereof; LaB6; and thoriated tungsten.
It will be appreciated that in various embodiments the at least one focus grid 7 may help contribute to reducing space charge and in some embodiments the at least one focus grid 7 may help contribute to electrostatically localizing electron emission from the cathode 1. Regardless of whether or not the emitting area may be sufficiently localized by the at least one focus grid 7, in various disclosed embodiments the electrons 11 emitted from the cathode 1 may be accelerated by the at least one acceleration grid 5 without unduly impacting the electrons 11 and without helping contribute to grid loss.
As shown in
As shown in
As shown in
However, as shown in
Such embodiments provide a vacuum gap between the anode 3 and the at least one acceleration grid 5 and/or the at least one focus grid 7. This vacuum gap is desirable because it avoids use of dielectric supports for the grids. As will be appreciated, it is preferable to electrically isolate the grids 5 and 7 from the anode 3 using vacuum rather than dielectric (that is, as much as may be physically possible) due to a tendency of dielectrics to tend to leak, break down, and/or charge up (especially when under impingement from electrons from the cathode 1).
In various embodiments and referring to
It will be appreciated that in some embodiments the at least one focus grid 7 is held at a sufficient negative voltage bias and is within a sufficiently small distance from the surface of the cathode 1 such that, in the vicinity of the blocked area 1b of the cathode 1 that is in closest proximity to the at least one focus grid 7, the resulting electric potential in the vacuum just outside of the surface of the cathode is negative with respect to the electric potential at the surface of the cathode. It will be appreciated that distance from the surface of the cathode 1 may depend, at least in part, on voltage at the focus grid 7, distance from the focus grid 7 to the cathode 1, voltage at the acceleration grid 5, and/or distance from the acceleration grid 5 to the cathode 1. Typical distance ranges may range from single microns to millimeters (that is, 10{circumflex over ( )}-6 to 10{circumflex over ( )}-3 m). Typical voltage ranges may be on the order of single volts to thousands of volts. For example and by way of non-limiting example, a focusing grid voltage of −50 V, with an accelerating grid voltage of 20 V, grid width of 2 microns, grid depth of 10 microns, etch pit depth of 15 microns, at a grid cathode spacing of 15 microns is sufficient to induce localized electron emission suppression directly above the focusing grid and extending out above the acceleration grids. While a lower focusing grid bias could still locally suppress emission to a lesser extent, the electron optics are unfavorable and leads to electrons striking the acceleration grids. Reducing the focus grid voltage to 0 V will effectively remove the local suppression of electronic emission. Moving the grids sufficiently far away from the cathode (e.g. DCG>100 micron) will also be in a regime where localized electronic emission is not suppressed.
It will be noted that the electric potential at the surface of the cathode 1 is, by definition, uniform with respect to position on the surface of the cathode 1. This uniformity is because the cathode 1 is made of an electrically conductive material. In this at least one blocked area 1b of the surface of the cathode 1 the resulting electric field produces an electric force F (vector) which repels the electrons 11 back to the cathode 1 and which is given according to equation 1:
F=qE (1)
where
q=charge (scalar); and
E=electric field (vector).
Thus, relatively few electrons 11 are emitted in the at least one blocked area 1b of the surface of the cathode 1. On the other hand, the at least one localized emitting area 1a outside of the at least one blocked area 1b can emit a much greater number of electrons 11 with respect to the at least one blocked area 1b. This increased emission is due to the resulting electric potential in the vacuum just outside of the at least one localized emitting area 1a being positive with respect to the electric potential at the surface of the cathode 1. This positive electric potential results in an electric field E that produces an electric force F which accelerates electrons 11 away from the cathode 1.
As a result, the at least one localized emitting area 1a of the surface of the cathode 1 emits a much greater number of electrons 11 than the at least one blocked area 1b of the surface of the cathode 1. Thus, it will be appreciated that the presence of the at least one blocked area 1b of the cathode 1 and the at least one localized emitting area 1a of the cathode 1 result from the presence of electric fields that are created by biases applied to the at least one focus grid 7 and the at least one acceleration grid 5, thereby creating localized emission of the electrons 11.
It will be appreciated that power output and loss may be dependent on voltages applied to the at least one acceleration grid 5 and the at least one focus grid 7, so voltages can be applied to maximize either current or efficiency. Additionally, it would be possible to apply specific voltages to specific periods of acceleration grid(s) 5 and focus grid(s) 7 in a larger device to maximize performance, either in terms of efficiency or current. It will also be appreciated that, in some embodiments, the voltage biases applied to the at least one acceleration grid 5 and/or the at least one focus grid 7 may be time-varying, for reasons including, but not limited to, controlling and/or suppressing emission of the electrons 11 from the cathode 1.
It will also be appreciated that spacing between specific periods of acceleration grid(s) 5 and focus grid(s) 7 may be selected as desired for a particular application. Given by way of illustration only and not of limitation, in various embodiments spacing between specific periods of acceleration grid(s) 5 and focus grid(s) 7 may range from single microns to many hundreds of microns or, in some cases, to millimeters.
Referring additionally to
It will also be appreciated that in some other embodiments localizing emission from the cathode 1 is not necessary and/or essential to the ability of such embodiments to reduce and/or mitigate space charge while avoiding significant absorption of electrons by the acceleration grid(s) 5. As mentioned above, in some regimes of operation of devices of such embodiments, the focus grid(s) 7 may not be sufficiently negatively biased and/or may not be disposed in close enough proximity to the surface of the cathode 1 to localize emission from the cathode 1—but may still provide sufficient deflection of electrons around the acceleration grid(s) 5 to avoid significant absorption of electrons by the acceleration grid(s) 5. For example and by way of non-limiting example, a focus grid voltage of −50 V, and acceleration grid voltage of 20 V with a cathode grid spacing of 200 microns, grid widths of 40 microns, and an etch pit depth of 60 microns gives a geometry where space charge is somewhat mitigated, however the cathode is not electrostatically limited.
Referring additionally to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
A similar fabrication process may be performed using different starting materials (that is, materials other than a silicon-on-insulator wafer). For example, a thermal oxide or other dielectric (such as silicon nitride) may be deposited on a silicon wafer, and then highly-doped polysilicon or other conductive material (such as tungsten or nickel) may be deposited on the dielectric. Similarly, metal, then dielectric, then metal may be deposited for use as an initial substrate for patterning. Then, the films may be etched back and processed in the method described above. It will be appreciated that in such embodiments a step of depositing one of a metal film and/or a film of low work function material on the silicon wafer and the plurality of features is not necessary per se. The metal film may not be necessary if the substrate is conductive. The low work function material may not be necessary if, for example, Cs vapor is used to achieve a low work function surface. That is, a film of low work function material is not necessary to have a low work function surface. Instead and given by way of non-limiting example, low work function vapor atoms may be deposited on a metal surface.
Another illustrative method creates structures by building the structures from the bottom up. For example, a metal substrate may be used as a base to electroplate a pillar thereon and that may then be coated with dielectric. A second pillar may then be aligned to and electroplated on top of the first pillar. Lastly, the dielectric may be etched in a similar manner to that shown in
It will be appreciated that the vacuum electronics device 400 (
From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the disclosure. Furthermore, where an alternative is disclosed for a particular embodiment, this alternative may also apply to other embodiments even if not specifically stated.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
While a number of illustrative embodiments and aspects have been illustrated and discussed above, those of skill in the art will recognize certain modifications, permutations, additions, and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions, and sub-combinations as are within their true spirit and scope.
Number | Date | Country | |
---|---|---|---|
62509941 | May 2017 | US |