The present invention relates to loudspeaker systems, and more particularly to electrostatic loudspeaker systems and methods.
Electrostatic loudspeakers and relevant developments are described in the white paper entitled “Final Inverter Technology™ for Electrostatic Speakers available at the website of Final Sound Solutions B.V., an affiliate of the assignee herein, at http://www.finalsound.com/downloads/WP-Inverter0905.pdf. The foregoing document is attached to and a part of U.S. provisional application Ser. No. 60/811,951, filed Jun. 8, 2006. In addition, developments are described in U.S. Pat. No. 7,054,456, for an invention of Maarten Smits and Hidde W. de Haan, entitled “Invertedly driven electrostatic speaker.” This patent is also incorporated herein by reference.
In a first embodiment of the invention there is provided an electrostatic speaker system having a plurality of electrostatic speaker elements. Each electrostatic speaker element includes first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm have an electrically conductive portion. The conductive portions of the first stators are electrically coupled to each other; the conductive portions of the second stators are electrically coupled to each other; and the conductive portions of the diaphragms are electrically isolated from each other.
In a further embodiment, the conductive portion of the diaphragm of a first one of the speaker elements has a surface area that is substantially greater than the surface area of the conductive portion of the diaphragm of a second one of the speaker elements, so that the first and second speaker elements are each suited to handling distinct first and second frequency ranges respectively. The first frequency range is lower than the second frequency range.
In a further embodiment, spacing between the first and second stators of the first one of the speaker elements is greater than spacing between the first and second stators of the second one of the speaker elements. The greater spacing accommodates larger signal amplitudes, while the small spacing in the second one of the speaker elements provides relatively greater sensitivity.
In yet a further embodiment, all the first stators of the speaker elements are regions of a common first stator for all speaker elements, all the second stators of the speaker elements are regions of a common second stator for all speaker elements, and the conductive portions of the diaphragms are regions of a common diaphragm for all speaker elements.
In a further embodiment, pair of conductive portions of the common diaphragm share a non-conductive boundary and at least one spacer is disposed between the common first stator and the common diaphragm and between the common second stator and the common diaphragm, while no spacer coincides with the non-conductive boundary.
Optionally, the common first stator and the common second stator are mounted obliquely with respect to one another, so as to achieve differentially greater spacing between stators of the first one of the speaker elements than between stators of the second one of the speaker elements.
In another related embodiment, the speaker system additionally includes a dc high voltage source having a positive potential, relative to a reference node, electrically coupled to the conductive portions of the first stators and a negative potential, relative to the reference node electrically coupled to the conductive portions of the second stators. The speaker system also includes a separate audio signal path associated with each diaphragm. Each separate audio signal path is electrically coupled to the conductive portion of the associated diaphragm and relative to the reference node. Each separate audio signal path optionally includes a separate step-up transformer, which may have a characteristic selected for a different frequency range. As a further option, there may be comprising a resistor in series with a winding of at least one of the step-up transformers, so that a parasitic capacitance of the electrically conductive portion of the diaphragm associated with the step-up transformer in relation to the corresponding stators, as reflected by the step-up transformer, cooperates with the resistor to form a low-pass filter. As a further option, there may be a resistor in parallel with a winding of at least one of the step-up transformers, so that a parasitic capacitance of the electrically conductive portion of the diaphragm associated with the step-up transformer, in relation to the corresponding stators, as reflected by the step-up transformer, is reduced so as to provide reduced high frequency attenuation. More generally, as an option, one of the separate audio signal paths may include a low-pass filter and the other of the audio signal paths may include a high-pass filter.
Another embodiment of the present invention provides an electrostatic speaker system, and the system includes at least one electrostatic speaker element having a pair of stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. In addition, the system includes a dc high voltage source coupled to the at least one speaker element for biasing the diaphragm relative to the stators, an audio signal input for receiving an audio signal and coupled to the at least one speaker element for causing motion of the diaphragm to produce sound, and a dc protection circuit operative to disable the dc high voltage source if an electrical parameter meets a predetermined criterion. In one embodiment, the parameter is current through the high voltage source and the criterion is a threshold value. In another embodiment, the parameter is power provided by the high voltage source and the criterion is a threshold value. In yet another embodiment, the parameter is absence of an audio signal above a detection threshold on the audio signal input and the criterion is duration of such absence for a predetermined period of time. In yet another embodiment, the parameter is level of an audio signal on the audio signal input and the criterion is an overload limit.
Another embodiment of the present invention provides electrostatic speaker system that includes at least one electrostatic speaker element having a pair of stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. The system also includes a dc high voltage source coupled to the at least one speaker element for biasing the diaphragm relative to the stators, an audio signal input for receiving an audio signal and coupled to the at least one speaker element for causing motion of the diaphragm to produce sound, and an audio protection circuit operative to disable coupling of the audio signal input to at least one speaker element if level of an audio signal at the audio input exceeds a predetermined limit.
Both the embodiment immediately above, having an audio protection circuit, and the embodiments discussed previously, having and a dc protection circuit, may be optionally implemented with a microprocessor executing instructions causing generation of a signal used to trigger the protection, either to gate the high voltage source or to disable coupling of the audio signal input, as the case may be. Moreover, all such protection features may be implemented together. These embodiments are also applicable to a further embodiment wherein the dc high voltage source has a positive potential, relative to a reference node, coupled to one of the stators and a negative potential, relative to the reference node, coupled to the other of the stators; and the audio signal input is coupled to the diaphragm relative to the reference node.
In another embodiment, the invention provides an electrostatic speaker system. The speaker system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm having an electrically conductive portion. The diaphragm further includes a highly conductive line, formed thereon by printing, along a border of the diaphragm's electrically conductive portion. In a further related embodiment, the line includes silver.
In another embodiment, the invention provides an electrostatic speaker system that includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators has an electrically conductive portion, the diaphragm has two sides and a distinct electrically conductive portion on each side. Moreover, the conductive portion on a first side is coupled to an audio input for receiving an audio signal and the conductive portion on a second side is used to provide a signal representing the position of the diaphragm.
In another embodiment, the invention provides an electrostatic speaker system that includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. The electrically conductive portion of the diaphragm is formed by printing on the diaphragm a conductive ink of the type having very finely divided conductive pigment particles in a thermoplastic resin. There is also a protective coating over the conductive portion of the diaphragm. Optionally, the conductive ink is Lumidag EL-016. Also optionally, the protective coating is dry printed PVC film or dry printed acrylic film. As yet another option, the conductive ink employs nano particles of antimony tin oxide or indium tin oxide or of both oxides in an acrylic binder that is both heat and UV curable.
In another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. In this embodiment, each stator, including throughholes therein, is formed on an injection-molded plastic sheet. Optionally, wherein each stator is multi-layered, each layer injection-molded, and one of such layers is conductive. Also optionally, each stator includes a layer over its electrically conductive portion, such layer being powder coated with a double curable powder coat. Alternatively, each stator includes a Parylene coating. Alternatively, each stator includes a coating of double cure black solder mask.
In another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. In this embodiment, the stators have throughholes having a local hole density, and the local hole density of one or both of the stators is varied so as to provide a desired amount of damping of motion of the diaphragm in a region of lower hole density.
In another embodiment, the present invention provides an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. In this embodiment, the system also includes a driver circuit housing disposed near a midpoint of a long dimension of the speaker element and a mount, for mounting the system, coupled to the driver circuit housing.
In another embodiment, the present invention provides an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm have an electrically conductive portion. In this embodiment, the system also includes first and second sets of peripheral spacers disposed around the periphery of the electrically conductive portion of the diaphragm between the diaphragm and the first and second stators respectively. The system further includes first and second sets of interior spacers disposed along an interior region of the diaphragm between the diaphragm and the first and second stators respectively, wherein the interior spacers have greater compliance than the peripheral spacers.
In a further embodiment, the present invention provides an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. The system also includes first and second sets of spacers disposed between the diaphragm and the first and second stators respectively. Each of the first and second spacers includes a first portion having a first modulus of rigidity and a second portion having a second modulus of rigidity less than the first modulus of rigidity. Optionally, the first and second portions of each spacer are stacked between its corresponding stator and the diaphragm so that the first portion of each spacer is adjacent its corresponding stator and the second portion of each spacer is adjacent the diaphragm. In another embodiment, wherein the first and second portions of each spacer are adjacent each other so that both the first and second portions of each spacer are adjacent the diaphragm. In a further embodiment of the previous embodiments, each spacer further comprises a third portion having a modulus of rigidity between the first and the second modulus of rigidity.
In another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. In this embodiment, the system further includes first and second sets of spacers disposed between the diaphragm and the first and second stators respectively. Each of the first and second spacers has opposed first and second surfaces and a modulus of rigidity that varies continuously from the first surface to the second surface.
In another embodiment, the present invention provides an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion, and the diaphragm defines a plane. The system of this embodiment further includes first and second sets of spacers disposed between the diaphragm and the first and second stators respectively. A pair of the first spacers is disposed opposite one another on either side of a longitudinal plane transverse to the plane of the diaphragm. Additionally, a pair of the second spacers is disposed opposite one another on either side of the same longitudinal plane. Finally, in each pair of opposed spacers, such spacers are disposed obliquely with respect to one another.
In another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes at least one electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion, and the diaphragm defines a plane. In this embodiment, first and second sets of spacers are disposed between the diaphragm and the first and second stators respectively, and at least one spacer in each of the first and second sets of spacers is non-linear.
In another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes a plurality of stacked electrostatic speaker elements. Each speaker element has first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion, and each stator is optionally formed of die cast plastic. The system also includes a dc high voltage source having a positive potential, relative to a reference node, coupled to the first stators and a negative potential, relative to the reference node, coupled to the second stators; and each diaphragm is coupled to an audio signal input relative to the reference node. In a further related embodiment, each speaker element includes first and second sets of spacers between the diaphragm and the first and second stators respectively, and the sets of spacers are arranged so as to occur in different relative locations in adjacent elements in the stack.
In yet another embodiment of the present invention, there is provided an electrostatic speaker system. The system includes an electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion, and such element has a front and rear from which sound is emanated. The system further includes an amplifier coupled to the at least one speaker element. The amplifier includes a compensating network for reducing artifacts of sound reproduction by the at least one speaker element, such artifacts including phase cancellation effects caused by wall reflection of sound emanated from the rear of the speaker element.
In another embodiment, the invention provides an electrostatic speaker system. The system includes a pair of electrostatic speakers. Each speaker has first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. Each speaker has a substantial longitudinal dimension so as to operate as a dipole line array sound source. The system further includes a pair of amplifiers. Each amplifier is coupled to a separate one of the speakers and includes a compensating network so as to provide a Head Related Transfer Function, so that the pair of speakers provides surround sound of superior quality. In a further embodiment, each speaker has a plurality of elements, each element having first and second stators and a diaphragm disposed therebetween, the stators and the diaphragm having conductive portions. The conductive portions of the first stators are coupled to each other, conductive portions of the second stators are coupled to each other and conductive portions of the diaphragms are electrically isolated from each other. The conductive portion of the diaphragm of a first one of the speaker elements has a surface area that is substantially greater than the surface area of conductive portion of the diaphragm of a second one of the speaker elements, so that the first and second speaker elements are each suited to handling distinct first and second frequency ranges respectively, the first frequency range being lower than the second frequency range.
In another embodiment, the invention provides an electrostatic speaker system. The system includes an electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. The system further includes a class D modulator having an output coupled to the electrostatic speaker element through a resistance, so that parasitic capacitance of the speaker element in combination with the resistance provides low pass filtering of the modulator's output. In an alternative embodiment, a class D modulator has an output coupled to the electrostatic speaker element, and the system includes a diaphragm position detector coupled to the diaphragm for providing an output signal indicative of diaphragm position, and the output signal is coupled to the modulator. Optionally, the system includes a digital signal processor coupled to the modulator, and the output signal from the diaphragm position detector is coupled to the digital signal processor. Also optionally, the speaker element is one of a plurality of elements, and each element covers a different frequency range. The digital signal processor provides band pass filtering appropriate to the frequency range of the speaker element. Also optionally, the speaker element has a front and rear from which sound is emanated and the digital signal processor reduces artifacts of sound reproduction by the speaker element, such artifacts including phase cancellation effects caused by wall reflection of sound emanated from the rear of the speaker element. As a further related embodiment, there may be provided a high-pass filter placed between the diaphragm position detector and the diaphragm. Also as a further related embodiment, there may be provided an oscillator, operating at a frequency above the audible range, coupled to the diaphragm, to generate a signal that is modulated by change in internal capacitance of the speaker element. As yet a further embodiment, the diaphragm may have two sides and a distinct electrically conductive portion on each side, the conductive portion on a first side being coupled to the output of the class D modulator to receive an audio signal and the conductive portion on a second side being coupled to the oscillator and the diaphragm position detector.
In another embodiment, the invention provides an electrostatic speaker system. The system includes an electrostatic speaker element having first and second stators and a diaphragm disposed therebetween. Each of the stators and the diaphragm has an electrically conductive portion. The system further includes a class D modulator, the modulator operative at a modulation frequency, having an output coupled to the electrostatic speaker element through a transformer operative at the modulation frequency, so that the transformer need not satisfy specifications for audio frequency transformers.
The contents of U.S. Provisional Patent Application Ser. No. 60/811,951, filed Jun. 8, 2006, and entitled “Electrostatic Speaker Systems and Methods,” (referred to below as the “Provisional Application,” are hereby incorporated herein by reference.
The present application describes, among other things, improvements to electrostatic loudspeaker systems of the type described in the foregoing documents.
Diaphragm and Stator Geometry
In
This geometry enables, among other things, use of a large diaphragm-stator arrangement for handling both high frequencies and lower frequencies. Normally, a large diaphragm is inconsistent with reproduction of high frequencies because the resulting radiation pattern is narrowly focused, whereas a large diaphragm is important to achieving significant sound radiation at lower frequencies. Here the large diaphragm can be used for both high and lower frequencies, because it is effectively partitioned into distinct sections for the high and lower frequency bands. Accordingly, the high frequency region of the diaphragm can be constructed as a narrow band running the length of the loudspeaker assembly; the narrow band provides a substantially wider angle of dispersion of high frequencies than would be the case if the entire diaphragm were carrying the high frequency components. Because acoustic reproduction of typical audio signals requires, for a given level of radiation, relatively less travel of the diaphragm for high frequency components than for low frequency components, the stator geometry shown provides a smaller stator-to-diaphragm distance for the first region, which handles the high frequency sound, than for the second region, which handles the lower frequency sound. Moreover, tighter cross-sectional geometry, discussed above, in the first section enables using lower audio signal power for handling the high frequency sound in that section.
In these figures, a spacer (item 12d of
Except where the context requires otherwise, the distances in
The legend for
Although the above embodiment provides a loudspeaker having two sections, each for a different frequency range, it is within the scope of the present invention to provide an electrostatic loudspeaker having more than two sections, each for a different frequency range, with each section fed by a separate band-pass filter. The use of three or more sections provides further advantages, albeit at a cost of greater complexity, including the need for more band-pass filters, for example.
The different sections may be oriented adjacent to each other and in any order. In one embodiment, however, the different sections are arranged in order of increasing frequency bands for which the sections are adapted, so as to provide a mirror like arrangement in the case of two loudspeakers for generating a stereo sound field. A further benefit of such arrangement lies in the prospect of employing progressively small stator-to-diaphragm spacing with sections having progressively higher frequency bands, in the manner previously discussed. Other arrangements are not excluded, like arranging the different sections in a clockwise or anticlockwise fashion in a plane.
Diaphragm and Stator Materials
Thereafter, a protective coating 73 is applied. This coating electrically insulates the conductive coating and protects against moisture and micro-sparks. The coating can be applied as a dry printed PVC or acrylic film about 1.5 or 2μ thick. The coating is dried at a temperature of less than about 105° C. Alternatively a double curable acrylic ink can be printed at 80° C. A conductive lead is attached to the diaphragm, such that the lead is in electrical contact with the conductive layer. For example, a silver wire 71 can be pressed against the conductive layer.
Alternatively, as illustrated in
The above arrangement provides a single layer of conductive material applied on an insulating carrier. It is also possible, in accordance with another embodiment of the present invention, to apply a conductive layer on both sides of the carrier 70. The conductive layers can then be electrically mutually connected to the signal source so as to obtain more geometric symmetry in the speaker system. It is however also possible to use only one of the conductive layers as the active driving layer, whereas the second layer may be used for control purposes. One of these control purposes may be for providing a signal representing the position of the diaphragm.
In combination with the separation of the loudspeaker into several sections for different frequency ranges, the conductive layer, either on one or on both sides of the insulating substrate of the diaphragm, may be separated in different electrical sections to provide the required electrical separation (isolation) of the diaphragm into the relevant sections. Consequently it may be possible to cover only that part of the insulating substrate on both sides which forms the high frequency section, as due to the smaller distance between the stators and the diaphragm, the symmetry is of more importance.
The stators (stator panels) described in Table 1 are made of perforated steel. The stators can be coated with any suitable material to provide electrical isolation, to protect them from oxidizing and/or to provide a loudspeaker having a desired color. For example, a spray paint or (preferably) a powder coating (such as RILSAN® polyamide from Atotech (Berlin, Germany) is applied to the stators with a thickness of 450-500μ.
In lieu of RILSAN® polyamide, we have found that a suitable functional polyester-epoxy resin from AKZO Nobel—France (AKZO Nobel Powder Coatings, ZI de la Gaudrée BP67, 91416 Dourdan cedex, France) can be applied. We have modified the material by the addition of 2% carbon black to provide sufficient conductivity in the coating, so as to cause (among other things) the stator when in use to exhibit a static charge on the outer surface of the coating.
In yet another embodiment, we use a double curable (such term in this description meaning using IR plus UV) powder coat. Such a powder coating can be very thin, such as 150-200μ which makes the resulting electrostatic speaker approximately 2 db more sensitive than typical prior art electrostatic speakers. Furthermore, the powder coating enables the speakers to withstand higher stator voltages than prior art electrostatic speakers can withstand. Double curable powder coating can also be used on other stator materials, such as printed circuit board (PCB) material. In using this materials, typically one may expose the stator to which has been applied the material to baking at 90° C. and UV curing for a period of, for example, 5 to 10 seconds. Additional information concerning such processes may be found at http://www.dsm.com/en_US/downloads/dcr/UV_Cure_PC_Resins.pdf, which is incorporated herein by reference. This material finds normal application as an environmental coating where a high dielectric strength is also desired.
Alternatively, the stators are made of glass fiber reinforced epoxy sheet—or any other printed circuit board material. Glass fiber reinforced epoxy sheet is less expensive to make and lighter in weight than steel, and is not subject to corrosion. Above all glass fiber reinforced epoxy sheet is an isolator itself. However, at least portions of the plastic stator must be made electrically conductive. In one embodiment, holes are drilled or punched after the board has been formed with the conductive layer. The conductive layer, which may be a metal sheet or other suitable material, need not be thick enough to support itself, the die cast plastic provides sufficient mechanical rigidity. The metal sheet needs only to be thick enough to provide a conductive layer over or within at least a portion of the stator. In contrast, a punched steel stator typically is thick enough to support itself in normal use without warping or collapsing. If the thin metal sheet is attached to an outer surface of the plastic, the metal sheet can be powder coated, as described above. Techniques for forming die cast plastic with a thin metal layer are known in the printed circuit board (PCB) industry.
We have found that suitable double curable coatings for PCB-based stators can be used in the same way as described above for metal stator plates. Alternatively, we have achieved satisfactory results with Parylene coating in approximately 60μ thickness (providing insulation to 15 kV) along with a thin layer of black coating for cosmetic and electric charging reasons. The Parylene coating is applied in a manner using vacuum deposition as described at http://www.paratechcoating.co.uk/parylenewhat.php, which is incorporated herein by reference. We have also achieved satisfactory results using double cure black solder mask (BSM), of a type including about 2% carbon black, having a dielectric strength of 70-100 KV per mm; in this procedure, four to six layers of UV curable solder mask are applied by screen printing, and each screen print is followed by a thermal cure at 100° C. and UV cure for 5 to 10 seconds.
Alternatively, the stator is made of a multi-layer, injection-molded material, in which one of the layers is conductive, and that is cast with a plurality of holes therethrough. For example, a glass fiber filled material can be used for one of the layers to provide mechanical rigidity. The conductive layer can be any thickness, although a thin conductive layer is preferred. The conductive layer can be on an outside surface of the stator, or the conductive layer can be sandwiched between two or more layers of other (such as non-conductive) material. If the conductive layer is on an outside surface of the stator, the conductive layer can be powder coated with a double curable powder coat.
The conductive material layer can be made of metal, such as a sheet, a plurality of metal flakes or a wire oriented raster-like in the layer. Alternatively, the conductive layer can be made of conductive plastic, a plurality of non-conductive plastic flakes that are coated with a conductive material or another suitable material. An example of a material having conductive particles dispersed therethrough is disclosed in U.S. Pat. No. 7,049,836, entitled “Anisotropic conductivity connector, conductive paste composition, probe member, and wafer inspection device, and wafer inspecting method,” filed Aug. 7, 2003, the contents of which are hereby incorporated herein.
Alternatively, the die cast plastic can be screen printed with an electrically conductive layer, such as conductive ink. Optionally, the conductive layer is powder coated with a double curable powder coat, such as described above if needed to prevent the conductive layer from oxidizing or if a particular color surface on the stator is desired.
In yet another embodiment, the stator is made of conductive plastic, which is optionally powder coated with a double curable powder coat.
While it is common to use hole densities that are uniform across the area of the stators between which the diaphragm moves, in accordance with a further embodiment of the present invention, the hole density of one or both of the stators is varied so as to provide a desired amount of damping of motion of the diaphragm. For example, it is sometimes desired to dampen the motion of the portion of the diaphragm lying midway between two spacer elements, and such damping may be achieved by reducing the density of holes in that region. The density may be affected by maintaining the spacing of holes but decreasing their size, or by increasing the spacing of holes and maintaining their size, or by a combination of changes in spacing and size of holes.
Speaker Assembly
Spacer Design
Optionally, all or a portion of some or all of the spacers 12a-e of
Typically, the diaphragm 11 is mounted between the spacers 12a-e, such that the diaphragm 11 is under tension, or at least not loose. Consequently, the diaphragm 11 can have a resonant frequency that is characteristic of its mass, material, size, tension, etc. Such a resonant frequency is generally undesirable, because it can cause the electrostatic speaker to have a non-flat frequency response. That is, the resonant frequency tends to boost the sound output of the electrostatic speaker unequally, favoring signals close to or at the resonant frequency and possibly sub-harmonics of the resonant frequency. Such resonances can sometimes be useful at the lowest frequencies to be reproduced; however, resonances at higher frequencies are generally undesirable.
In addition, the diaphragm 11 may experience larger excursions when driven at the resonant frequency than when driven at other frequencies. These larger excursions may cause the diaphragm 11 to come into contact with one or both of the stators 13 and 14. Mounting the diaphragm 11 between spacers that are wholly or partly flexible or soft dampens the excursions of the diaphragm 11 at its extremities, thus reducing or eliminating the resonant frequency effect. Such spacers are referred to herein as “dampening spacers.” The dampening spacers lower the quality (or Q factor) of the diaphragm 11, thus the damping spacers reduce the diaphragms' response to their respective resonant frequencies.
Diaphragms 11 that reproduce high frequencies benefit more from being mounted with dampening spacers than diaphragms that reproduce low frequencies. However, dampening spacers can also be used with diaphragms that reproduce low frequencies. Dampening spacers can be used in electrostatic speakers having one or more sections.
As shown in
Alternatively, rather than a layered structure, the dampening spacer 12d can be made such that its rigidity varies continuously through its thickness, i.e., from the stator 14 or 13 to the diaphragm 11, or through its width, as shown in
Dampening spacers can also be used in electrostatic speakers that include parallel stators, as shown in
Thus far we have considered spacers that are parallel.
Alternatively, as shown in
Optionally, the spacers need not be linear. For example, as shown in
Other arrangements than those shown in
Alternatively, as shown in
Some of the previously described embodiments have multiple, parallel-stator portions, each having a different inter-stator spacing. Alternatively, as shown in
As noted, the stator of an electrostatic speaker can be partitioned into regions, each region having a different stator-to-diaphragm spacing. All of these regions can be electrically connected together and supplied with a common high DC voltage. Alternatively, each of these regions can be electrically isolated from the other regions, and each region can be supplied with a different voltage. For example, each stator can include a printed circuit board (PCB) with a separate copper cladding for each region.
The regions with larger stator-to-diaphragm spacings are supplied with higher voltages than the regions with smaller stator-to-diaphragm spacings. For example, in the electrostatic speaker shown in
Some electrostatic speakers according to embodiments of the present invention compensate for the differences in the delay characteristics of the filters by displacing one or more sections of the electrostatic speaker, relative to other sections of the speaker, as shown in
Sound travels at a speed of approximately 330 m/Sec. through air. Thus, sound travels about 8.25 cm in 0.25 mSec. Continuing the previous example, to compensate for a 0.25 mSec. difference in delay characteristics, the high-frequency section 2202 is located about 8.25 cm further from the listener than the low-frequency section 1700. Consequently, the high-frequency and the low-frequency sounds arrive at the listener at the same time, even though the high-frequency sounds travel a longer distance.
This type of compensation can be of particular value in virtual surround sound systems, in which small differences in sound arrival times (as perceived by a listener) can play a significant role in the apparent source (location) of the sounds. In speakers that are fed by circuits with more than two different delay characteristics, each section of the speaker can be displaced a different distance, relative to the other sections.
Driver Circuitry and Safety Features
The circuit depicted in
To provide high voltage DC to the stators (at nodes H and I of
An audio protection circuit is also provided that operates in conjunction with the audio filter and the DC high voltage power source. The function of this protection circuit is the detection of the presence of an audio signal and to switch off the high voltage when no audio signal has been present during a predetermined time. The switch-off of the high voltage on the speaker when it is not in use helps to reduce the collection of dust, moisture and particles on the elements of the speaker.
Further, the protection circuit provides for the detection of a sudden change in the charge on the elements of the loudspeaker, a circumstance that would occur, for example, if a person or an animal has brought a part of his or her body in the vicinity of the voltage-carrying parts of the loudspeaker, leading to a potentially unpleasant, but (due to the low available current) harmless experience. Of course the protection circuit is also adapted to provide for classic safety functions, such as protection against over-voltage and against a short circuit between the voltage carrying parts of the loudspeaker.
Various circuits and conditions can trigger the timer. For example, under normal circumstances, no current flows through a resistor (R22 in
Similarly, if the diaphragm comes into electrical contact with one of the stators or into close enough physical proximity with one of the stators to cause a small current to flow therebetween, a current flows through the resistor. A diode bridge (V2 in
If the audio input signal exceeds a predetermined level, such as about 38 volts peak, for more than a predetermined period of time, such as about 10 mSec., another circuit triggers the timer. Zener diodes (D9 and D10 in
If the input DC power supply for the high-voltage power supply exceeds a predetermined voltage, Zener diode (D8 in
To address Electromagnetic Compatibility (EMC) concerns, the enclosing conductive frame of the electrostatic speaker is at zero (volts) potential.
Although the schematics in
In the embodiment shown in the schematic diagrams of
Alternatively, each of the transformers can be connected to a separate audio source, such as a separate audio amplifier. In this case, the two audio amplifiers each amplify separate ranges of audio frequencies, an arrangement commonly known as bi-amplification.
A conventional or invertedly driven electrostatic speaker that includes an RC low-pass filter ahead of a step-up transformer exhibits a non-linear frequency response. The high-frequency response of the electrostatic speaker rises only about 3 db per octave, whereas the RC circuit exhibits a 6 db per octave roll-off. This mismatch results in a non-linear response curve of the combined system. Additional capacitors that are suitable for the high voltages present can be added in an attempt to achieve the desired response curve. However, such capacitors are expensive and generally do not yield satisfactory audio results. Furthermore, an electrostatic speaker with such additional capacitors presents a very low input impedance to a preceding amplifier. The split diaphragm electrostatic speaker disclosed herein provides a simple solution to this problem.
As noted, the diaphragm 11 (
Each transformer can be optimized for the frequency range in which the transformer operates. Thus, T1 can be optimized for high frequencies, and T2 can be optimized for low frequencies. This simplifies transformer design. In the prior art, a single step-up transformer handles the entire frequency range of the speaker. However, designing a transformer with such a wide operating frequency range is difficult, if not impossible. Transformers according to the disclosed electrostatic speaker system can be smaller and lighter than prior-art transformers. In general, transformers for high frequencies are smaller than transformers for low frequencies.
As shown in the schematic of
In another embodiment of an electrostatic speaker drive circuit (not shown), a single step-up transformer is used for the entire frequency range. Electrically isolated diaphragm portions (such as 11a and 11b of
To control (optionally) the voltage from the high voltage generator T1, a signal is also provided on the line DAC_PWM from the microprocessor of
The circuits at the bottom of
The audio-high output is generated when the audio signal is above a specified overload limit, such as 40V, and is used to switch off the audio relay switch M1:A, again the duration of time over which the audio must be above the overload limit as a condition for shutting off of the high voltage and the audio can also be adjusted between 1 and 255 milliseconds.
In each case, described above, where a parameter is used to cause a shutoff when criteria are satisfied, the microprocessor can optionally be programmed not to cause a shutoff.
Stacking to Produce Multi-layer Speaker Systems
Stacked electrostatic speakers can also include non-parallel stators, stepped stators and/or stators of varying thickness, as discussed above with reference to
As noted, an electrostatic speaker can have two or more sections, each section reproducing a different (and possibly overlapping) range of frequencies. One or more of these sections can each be fed by a circuit that includes a high-pass, low-pass, band-pass or other type of filter, as discussed in more detail below. However, all the filters in all these circuits may not have identical delay characteristics. Thus, signals provided to one or more of the sections of the speaker may arrive at the sections later than signals provided to one or more other sections of the speaker.
For example, in a two-section electrostatic speaker, the circuit that feeds the low-frequency section (for example, section 1700 (
Electronic Compensation
In another embodiment of the present invention, illustrated in
One method of determining the configuration of the compensating network 113 empirically is to employ a suitable source, such as a sweep generator, coupled to the input 115 and to evaluate the output of a reference microphone, placed in the room where a listener would normally listen to the loudspeaker. The compensation network can then be configured to flatten the overall system frequency response, to reduce harmonic and intermodulation distortion, to make phase delay more uniform over the audible spectrum, and generally to reduce artifacts of reproduction. (Note that a compensation network configured to produce a flat response of the amplifier 111 is likely not configured to produce a flat response of the entire system including the loudspeaker in a room setting, since the loudspeaker in the room setting will not have a flat response.) This approach may be taken a step further by considering that the loudspeaker is not likely to be used alone, but rather at least in a paired configuration or multiple loudspeaker configuration. Accordingly each of the multiple loudspeakers may be implemented as herein described, and the compensating network 113 for each may be configured so that collectively the system of loudspeakers provides a desired response characteristic.
Although we have discussed using a microphone to design the configuration of the compensating network 113, it is also possible to couple the input of the compensating network 113 to an appropriately positioned microphone instead of directly to the output of amplifier 111, so as to make the output of the loudspeaker 112 an active part of the feedback path. In this manner, the system can be adapted to room acoustics. Even if the microphone is not an active part of the feedback path in operation of the system, it still can be provided as a part of the loudspeaker system and used in a set-up operation to configure the compensating network 113. As an example, a microphone built into the loudspeaker system can be used to measure the response of the loudspeaker or a physical parameter that relates to the loudspeaker response curve. Alternatively or in addition, a microphone can be used on the rear side of the loudspeaker to reduce adverse phase-cancellation effects from sound reflected from a wall that faces the rear side of the loudspeaker.
A related embodiment specifically addresses phase cancellation effects. The electrostatic loudspeaker may be understood as a dipole line array. When the array is mounted near a wall, the frequency response of a wall mounted dipole panel is adversely affected by reflections from the wall to which it is mounted. The stiffness of the wall and the angular alignment of the panel to the wall (parallel being worst) affect the amplitude of the interfering reflection. The interfering reflection is continuous and is delayed by an amount proportional to the distance the panel is mounted from the reflecting wall.
Because these reflections are full bandwidth and are delayed by a constant (and short) amount of time, the result is the formation of a comb filter whose characteristics are fairly predictable because the distance from the wall is known exactly, the angular alignment can be known exactly, and the composition of the wall may be estimated fairly accurately, or in the case of a factory assembled cabinet (acting as a wall), also known exactly.
Accordingly, an embodiment of the present invention employs an inexpensive digital signal processing approach first to derive a correaction signal by delaying the input signal to the loudspeaker by an amount exactly equal to the wall reflection's travel time and inverting the delayed signal, and then second to electrically sum this correaction signal with the driving signal in order to cancel deleterious effects of the wall reflection by reducing the amplitude of the comb filter created by the wall reflection. Initial lab experiments tend to support this conclusion.
The foregoing embodiment may be understood by recourse to the following model. Consider a signal x(t) that is subject to a delay of delta t to produce a composite signal y(t). Taking the Laplace transform of both sides of this equation, we model this signal in the s-plane and determine a transfer function H(s) that characterizes the effect in the s-plane. We therefore derive the transfer function as follows:
Next, we model the acoustic delay and reflection from the rear wall added to the panel's signal as shown in
To cancel the effects of the acoustic delay and reflection, we therefore develop a correaction signal in accordance with the diagram of
In yet another embodiment, there is created an analog comb filter, similar to a filter used to simulate “flanging” in the musical instrument industry in the years before inexpensive audio delay lines were available. “Flanging”, which was invented by John Lennon (Beatles), originated in the recording studio, and was originally created by placing a manual drag (a finger) on the edge of the feed reel (the flange) of one of two synchronized 4 track tape recorders during playback. Carefully varying the drag produced a swept comb filter, one that varies in frequency, which imparted the unique “whooshing” sound effect heard on “I am the Walrus.” The musical instrument (MI) industry came up with an electronic circuit, simulating the effect, which came into wide use around 1970 or so. The electronic circuit used a number of voltage controlled filters, arranged so that they would track together under the influence of a slowly varying AC voltage waveform. The very first of these, made by Carl Countryman Associates, was not automated, and requited that the user turn a manual control to sweep the comb filter. Since the distance from the wall to the panel does not vary, there is no need to sweep the comb filter in this application, but the compensating circuit may be fine tuned by manually sweeping a comb filter such as developed by Countryman.
The use of long or high loudspeakers (such as described above) emphasizes the line-dipole character of these loudspeakers. When the line-dipole character is emphasized, the sound generated by the loudspeaker is less dependent on room geometry and conditions than in the case of traditional point-source radiators. Consequently loudspeakers, such as described above, emphasizing line-dipole characteristics, provide a greater freedom in the choice of the location of the loudspeakers, both in a classic stereo environment and in the increasingly popular home theatre configurations with 5 loudspeakers.
Class D Embodiments Uniquely Adapted to Electrostatic Loudspeakers
In an embodiment related to that described above in connection with
In another embodiment of the present invention, as an alternative to using MOSFET output transistors that are compatible with the high voltage environment of an electrostatic speaker, one may employ less expensive output transistors capable, for example, of switching at an intermediate voltage of about 1000 VDC. Then one may recover and filter the audio signal at that voltage level, and then employ a post-filter audio bandwidth step-up transformer having a 1:5 step-up ratio. A disadvantage of this approach is the difficulty of making a cost-effective transformer that is well behaved across the entire audio spectrum in both voltage and phase response.
In a further embodiment of the present invention, there is employed a pulse transformer placed before audio recovery to achieve the needed voltage step-up. Since the pulse transformer needs to operate over a very limited bandwidth, it is cheaper, lighter, and much easier to design than a full-bandwidth audio transformer, and the increased cost of the components needed to recover and filter the audio signal at 5000V (as opposed to 1000V in the previous embodiment) is offset by the fact that the electrostatic element being driven is highly capacitive in and of itself.
In general, the Class D amplifier design of the prior art, exemplfied in
In
Also in
Because the parasitic capacitance of the loudspeaker varies slightly with diaphragm position, the parasitic capacitance can be used to sense position of the diaphragm. Here we show use of an oscillator 421 operating at a frequency above the audible range, for example, 100 kHz, to generate a signal that is modulated by change in internal capacitance of the electrostatic speaker element. (The modulation may conveniently be frequency modulation or amplitude modulation.) The resulting signal goes through a high-pass filter formed by capacitor 422 (which may, for example, be 100 pF) and resistor 423 (which may, for example, be 100 k ohms), and is fed to a diaphragm position detector 428, which demodulates the oscillator's signal and derives diaphragm position information from the demodulated signal. The diaphragm position information is used in the modulator 425 for suitable negative feedback. As we noted near the beginning of this description, it is within the scope of the present invention to provide a second conductive layer on the diaphragm that can be used exclusively for position sensing, and, in such an embodiment, such a conductive layer could be used in the manner described herein, with the exception that resistor 424 from the modulator 425 would be connected to a layer of the diaphragm that is different from the layer to which is connected the oscillator 421 and capacitor 422.
Although we have described use of the oscillator 421, in another embodiment of the present invention, the oscillator is eliminated, and instead there is employed the triangle wave signal used in the modulator 425. Although low pass filtering makes the level of such signal low relative to the audio signal on the speaker diaphragm, under some circumstances, such a signal may be utilized to obtain speaker position information.
Optionally, digital signal processor 427 of
Head Related Transfer Function Embodiments
In another embodiment of the present invention, there is provided a Head Related Transfer Function (HTRF) in conjunction with a pair of electrostatic loudspeakers to provide virtual surround sound of superior quality. For further information on HTRF, the following documents are incorporated herein by reference: Bill Gardner and Keith Martin, “HRTF Measurements of a KEMAR Dummy-Head Microphone,” available at http://sound.media.mit.edu/KEMAR.html; Sarah Coppin, Kim Daniel, Jeremy Pearce, Chris Rozell, and Yasushi Yamazaki, “Sound Localization Using Head Related Transfer Functions,” available at http://www.ece.rice.edu/˜crozell/courseproj/431report/.
HRTF algorithms depend in large part on being accurately reproduced at the listener's ears. It is axiomatic that headphones are the best sort of transducer to use, because their use completely eliminates the unpredictable and destructively “masking” interference of listening room response.
Although the effects of room response cannot be eliminated altogether, they can be mitigated through the use of a dipole array approximated by an electrostatic loudspeaker in accordance with embodiments herein as opposed to the usual frequency variable monopole (box speaker). Dipole loudspeakers are very effective in suppressing near-wall reflections, and therefore reduce room interaction and increase the direct sound to reflected sound by around 4.8 dB. (The derivation of that figure and supporting logic are based on material from Sigmund Linkwitz's web site, http://www.linkwitzlab.com; such material is reproduced in the Provisional Application.)
The present application claims priority from U.S. provisional application Ser. No. 60/755,928, filed Jan. 3, 2006, and U.S. provisional application Ser. No. 60/811,951, filed Jun. 8, 2006. These related applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3668336 | Wright | Jun 1972 | A |
3894333 | Chang | Jul 1975 | A |
6188772 | Norris et al. | Feb 2001 | B1 |
6201874 | Croft et al. | Mar 2001 | B1 |
6304662 | Norris et al. | Oct 2001 | B1 |
6393129 | Conrad et al. | May 2002 | B1 |
6459799 | Smits | Oct 2002 | B1 |
20050147265 | Smits et al. | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 0001195 | Jan 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20070189559 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60755928 | Jan 2006 | US | |
60811951 | Jun 2006 | US |