The invention relates to electrostatic precipitators or collectors, including for diesel engine electrostatic crankcase ventilation systems for blowby gas for removing suspended particulate matter including oil droplets from the blowby gas.
Electrostatic precipitators, including for diesel engine electrostatic crankcase ventilation systems, are known in the prior art. In its simplest form, a high voltage corona discharge electrode is placed in the center of a grounded tube or canister forming an annular ground plane providing a collector electrode around the discharge electrode. A high DC voltage, such as several thousand volts, e.g. 15 kV, on the center discharge electrode causes a corona discharge to develop near the electrode due to high electric field intensity. This electric field ionizes the gas in such corona discharge ionization zone, which in turn creates ions which in turn electrically charge suspended particles in the gas. The charged particles are in turn precipitated electrostatically onto the interior surface of the collecting tube or canister, i.e. attracted to such ground plane. Electrostatic collectors have been used in diesel engine crankcase ventilation systems for removing suspended particulate matter including oil droplets from the blowby gas, for example so that the blowby gas can be returned to the atmosphere, or to the fresh air intake side of the diesel engine for further combustion, thus providing a blowby gas recirculation system. The oil mist collects on the ground electrode provided by the canister, which collected oil mist is drained from the unit.
The present invention arose during continuing development efforts directed toward improved performance of an electrostatic precipitator, including reducing contamination of the ground electrode, including the noted oil mist collected on the annular ground plane canister in a diesel engine electrostatic crankcase ventilation system application.
The following description of
The collector includes an outer ground plane canister 22,
Gas to be cleaned enters inlet fitting 52 as shown at arrow 12 and flows in a first axial direction upwardly as shown at arrow 54 along a first flow path segment through the noted initial flow passage along hollow interior 50 of post 24, then turns as shown at arrow 56 and flows in a second opposite axial direction 58 along a second flow path segment through the noted inner annular passage 46 along outer wall 44 of post 24 and inner wall 40 of drum 26, and then turns as shown at arrow 60 and flows in the noted first axial direction upwardly as shown at arrow 62 along a third flow path segment through outer annular passage 38 along outer wall 36 of drum 26 and inner wall 34 of canister 22. The canister is closed at its top by an electrically insulating disk 64 having a plurality of circumferentially spaced apertures 66 providing exit flow of the gas therethrough into plenum 68 and then to outlet port 70 for exit flow as shown at arrow 14. A high voltage electrode 72 extends through disk 64 and is electrically connected to drum 26.
In the preferred embodiment, the drum has a plurality of corona discharge elements provided by a plurality of inner discharge tips 74 protruding radially inwardly into inner annular flow passage 46 toward outer wall 44 of post 24 such that inner discharge tips 74 protrude into the noted second flow path segment 58, and/or provided by a plurality of outer discharge tips 76 protruding radially outwardly into outer annular flow passage 38 toward inner wall 34 of canister 22 such that outer discharge tips 76 protrude into the noted third flow path segment 62, which discharge tips may be like those shown in commonly owned co-pending U.S. patent application Ser. No. 10/634,565, filed Aug. 5, 2003, now abandoned. Drum 26 may be a metal or other conductive member, or may be an insulator and have conductor segments therealong connected to respective tips. Outer annular flow passage 38 is concentric to and radially outward of inner annular flow passage 46. Inner annular flow passage 46 is concentric to and radially outward of initial flow passage 50. The gas flows in a serpentine path through canister 22, including a first U-shaped bend 56 between first and second flow path segments 54 and 58, and a second U-shaped bend 60 between second and third flow path segments 58 and 62.
The disclosed construction provides a multistage space-efficient electrostatic collector for cleaning the gas flowing therethrough along a gas path and includes a first stage provided by a first corona discharge zone 46 along the gas flow path, and a second stage provided by a second corona discharge zone 38 along the gas flow path and spaced along the gas flow path from the first corona discharge zone 46. The electrostatic collector is provided by a corona discharge electrode 26 and two ground planes 24 and 22. The first corona discharge zone 46 is between corona discharge electrode 26 and first ground plane 24. The second corona discharge zone 38 is between corona discharge electrode 26 and second ground plane 22. The second ground plane is provided by the noted canister 22 extending axially along axis 28. The corona discharge electrode is provided by the noted hollow drum 26 in the canister and extending axially along axis 28. The first corona discharge zone 46 is inside the drum. The second corona discharge zone 38 is outside the drum. The noted first ground plane 24 is inside the drum. Each of the corona discharge electrode 26 and the second ground plane 22 is annular, and each of the noted first and second corona discharge zones 46 and 38 is an annulus. Ground plane 22 and corona discharge zone 38 and corona discharge electrode 26 and corona discharge zone 46 are concentric. Corona discharge zone 46 concentrically surrounds ground plane 24. Corona discharge electrode 26 concentrically surrounds corona discharge zone 46. Corona discharge zone 38 concentrically surrounds corona discharge electrode 26. Ground plane 22 concentrically surrounds corona discharge zone 38. Ground plane 24 is annular and defines initial gas flow zone 50 therethrough along the gas flow path at 54 and is spaced along the gas flow path from first and second corona discharge zones 46 and 38. Ground plane 24 concentrically surrounds initial gas flow zone 50. Gas flow along the gas flow path changes direction at 60 between the first and second corona discharge zones 46 and 38. Preferably, the change of direction is 180°. Gas flow along the gas flow path flows in a flow direction 58 along first corona discharge zone 46 and then reverses direction at 60 and flows in another flow direction 62 along second corona discharge zone 38. The first and second corona discharge zones 46 and 38 are concentric to each other. Flow direction 62 is parallel and opposite to flow direction 58. Second corona discharge zone 38 surrounds first corona discharge zone 46. The gas flow path has an initial gas flow zone at 50 directing gas flow therethrough prior to gas flow through first corona discharge zone 46. The initial gas flow zone 50 is a non-corona-discharge zone. The gas flow path is a serpentine path including initial gas flow zone 50, first corona discharge zone 46, and second corona discharge zone 38. The gas flow path has a first flow reversal zone at 56 between initial gas flow zone 50 and first corona discharge zone 46, and a second flow reversal zone at 60 between first corona discharge zone 46 and second corona discharge zone 38. Gas flows in a flow direction 54 along initial gas flow zone 50, then reverses at 56 and flows in flow direction 58 along first corona discharge zone 46, then reverses at 60 and flows in flow direction 62 along second corona discharge zone 38. Flow direction 58 is parallel and opposite to flow directions 54 and 62. Initial gas flow zone 50 and first corona discharge zone 46 and second corona discharge zone 38 are concentric. Second corona discharge zone 38 surrounds first corona discharge zone 46, and first corona discharge zone 46 surrounds initial gas flow zone 50.
The parent application provides a method for increasing residence time within the corona discharge zone of gas flowing through an electrostatic collector, provided by directing gas flow along a first corona discharge path 58 through zone 46 and then directing gas flow along a second corona discharge path 62 through zone 38. In the preferred method, the gas flow is directed along an initial flow path 54 through zone 50 in the electrostatic collector prior to directing gas flow along the first corona discharge path 58.
An anti-collector guide 108 is provided in first zone 104 for preventing collection of charged particles thereat, and instead directing the charged particles to flow to second zone 106 downstream thereof for collection at zone 106. A corona discharge electrode 110 is provided at first zone 104, and may include discharge tips 112, creating an electric field providing the corona discharge ionization. The anti-collector guide 108 is provided by a field-shield in zone 104, shielding the charged particles from the electric field, to prevent collection of such charged particles in zone 104. Field-shield 108 divides zone 104 into first and second subzones 114 and 116. First subzone 114 is on one side of field-shield 108 and guides the charged particles to zone 106. Second subzone 116 is on the opposite side of field-shield 108 and is between corona discharge electrode 110 and field-shield 108 and provides the noted ionization. The first subzone 114, the second subzone 116, and the second zone 106 functionally separate ionization, charging, and collection stages, respectively, of the electrostatic precipitator into separate functions.
In preferred form, field-shield 108 is a perforated tube, e.g. a screen or other type of tube, extending axially along axis 118, and guiding incoming gas at 120 from an inlet axial tube end 122 to an axially distally opposite outlet axial tube end 124. Corona discharge electrode 110 is preferably an axially extending hollow drum surrounding tube 108. The noted first subzone 114 is inside tube 108. The noted second subzone 116 is outside tube 108 and between tube 108 and drum 110. The ions created by ionization in subzone 116 pass through the perforations in tube 108 to create charged particles in subzone 114 inside tube 108. The charged particles are shielded by tube 108 from the electric field in subzone 116 outside tube 108 created by corona discharge electrode 110. Tube 108 is at ground potential.
An outer ground plane 126 surrounds drum 110. Second zone 106 is outside of and surrounds drum 110 and is between drum 110 and outer ground plane 126. Outer ground plane 126 is provided by a canister extending axially along axis 118 between first and second axial ends 128 and 130. First axial end 128 has both a gas inlet 132 and a cleaned gas outlet 134. Gas inlet 132 is at inlet axial tube end 122. Cleaned gas outlet 134 receives cleaned gas from zone 106. Gas flows from gas inlet 132 in a first axial direction as shown at arrow 120 through the noted first zone through the inside of tube 108 to outlet axial tube end 124, then flows radially outwardly as shown at arrow 136 to second zone 106, then flows in a second opposite axial direction as shown at arrow 138 to cleaned gas outlet 134. The charged particles are collected in zone 106 by their attraction to ground plane 126, from which such contaminant is drained from the canister at lower drain 140.
Outer ground plane 126 surrounds drum 158. Second zone 156 is outside of and surrounds drum 158 and is between drum 158 and outer ground plane 126. Outer ground plane 126 is provided by a canister extending axially along axis 118 between first and second axial ends 128 and 130. First axial end 128 has both the noted gas inlet 132 and the noted cleaned gas outlet 134. Gas flows from gas inlet 132 in a first axial direction as shown at arrow 120 through the inside of drum 158 and through the noted one or more first zones 154 through the one or more venturis 156, then flows radially outwardly as shown at arrows such as 168 to second zone 166, then flows in a second opposite axial direction as shown at arrow 138 through second zone 166 to cleaned gas outlet 134. The charged particles are collected in zone 166 by their attraction to ground plane 126, from which such contaminant is drained from the canister at lower drain 140.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different configurations described herein may be used alone or in combination with other configurations. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/824,317, filed Apr. 8, 2004, now U.S. Pat. No. 7,112,236.
Number | Name | Date | Kind |
---|---|---|---|
1605648 | Cooke | Nov 1926 | A |
2085349 | Wintermute | Jun 1937 | A |
2114682 | Gumaer | Apr 1938 | A |
2142128 | Hoss et al. | Sep 1939 | A |
3569751 | Ruhnke | Mar 1971 | A |
3668835 | Vicard | Jun 1972 | A |
3755991 | Steuernagel | Sep 1973 | A |
3910779 | Penney | Oct 1975 | A |
3985524 | Masuda | Oct 1976 | A |
3999964 | Carr | Dec 1976 | A |
4202674 | Rodenberger et al. | May 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4231766 | Spurgin | Nov 1980 | A |
4239514 | Junkers | Dec 1980 | A |
4251234 | Chang | Feb 1981 | A |
4339782 | Yu et al. | Jul 1982 | A |
4381927 | Noll | May 1983 | A |
4478613 | Brettschneider et al. | Oct 1984 | A |
4673416 | Sakakibara et al. | Jun 1987 | A |
4713092 | Kikuchi et al. | Dec 1987 | A |
5911213 | Ahlborn et al. | Jun 1999 | A |
5922111 | Omi et al. | Jul 1999 | A |
5934261 | Schumann et al. | Aug 1999 | A |
6090189 | Wikstrom et al. | Jul 2000 | A |
6152988 | Plaks et al. | Nov 2000 | A |
6221136 | Liu et al. | Apr 2001 | B1 |
6251171 | Marra et al. | Jun 2001 | B1 |
6287368 | Ilmasti | Sep 2001 | B1 |
6294003 | Ray | Sep 2001 | B1 |
6312507 | Taylor et al. | Nov 2001 | B1 |
6348103 | Ahlborn et al. | Feb 2002 | B1 |
6364941 | Liu et al. | Apr 2002 | B2 |
6506238 | Endo | Jan 2003 | B1 |
6524369 | Krigmont | Feb 2003 | B1 |
6527821 | Liu et al. | Mar 2003 | B2 |
6582500 | Ohadi et al. | Jun 2003 | B1 |
6635106 | Katou et al. | Oct 2003 | B2 |
6902604 | Heckel et al. | Jun 2005 | B2 |
6994076 | Heckel et al. | Feb 2006 | B2 |
7112236 | Hoverson et al. | Sep 2006 | B2 |
20030131727 | Fissan et al. | Jul 2003 | A1 |
20030177901 | Krigmont | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
307656 | Oct 1919 | DE |
3702469 | Aug 1988 | DE |
3930872 | Mar 1991 | DE |
0 044 361 | Jan 1982 | EP |
52-67074 | Jun 1977 | JP |
53-2767 | Jan 1978 | JP |
WO-0030755 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10824317 | Apr 2004 | US |
Child | 11436829 | US |