In the following, a preferred embodiment of the present invention will be described with reference to the drawings.
The diaphragm 10 is formed, for example, by an electrically conductive plate-like (film-like) member having a thickness thereof varying from several microns to several ten microns. Specifically, the electrically conductive member is formed, such as for example, by a film of PET (polyethylene terephthalate) or PP (polypropylene) on which a metal film is deposited or an electrically conductive coating is applied. The diaphragm 10 is supported from both sides by pressures (elastic forces) applied from the elastic members 30. Alternatively, the diaphragm 10 may be fixed at its one side edge to a chassis (not shown) of the electrostatic speaker 1, with a predetermined tensile force applied to the diaphragm 10, using fixing means (not shown) which is formed by an insulating material such as vinyl chloride, acryl(methyl methacrylate), rubber, or the like.
The electrodes 21, 22 are made of a material, such as a punching metal which is a metal plate formed with holes (not shown), a sputtered nonwoven fabric, or a fabric applied with electrically conductive coating, each of which is electrically conductive and highly transparent to sound waves. The electrodes are fixed to the chassis (not shown) of the electrostatic speaker 1. The diaphragm 10 is disposed so that the distances d between the diaphragm 10 and the electrodes are equal to each other. In other words, the diaphragm 10 (more accurately, the diaphragm 10 which is in a non-displaced state where there is no input signal) is disposed at a position exactly intermediate between the electrodes facing the diaphragm.
The electrostatic speaker 1 includes a power source, not shown, and is adapted to apply to the electrodes 21, 22 voltages opposite in polarity to each other and apply a bias voltage to the diaphragm (vibrating membrane) 10. The electrostatic speaker 1 further includes an input unit that receives an audio signal from the outside, and is adapted to cause a value of the applied voltage to change according to the audio signal, thereby causing the diaphragm 10 to vibrate according to the audio signal. A sound wave generated by the vibration of the diaphragm 10 passes through the electrode 21 or 22 and is sounded to the outside of the speaker. It should be noted that the bias voltage may be applied using an electret material, which is comprised of a charged nonwoven fabric or the like.
The elastic members 30 are each comprised of an electrically nonconductive material, such as nonwoven fabric, cotton, or sponge, having a predetermined elastic characteristic and being deformable when applied with an external force. The elastic members 30 have surfaces thereof applied with adhesion layers and are fixed to the electrodes 21, 22 through the adhesion layers. Each elastic member 30 is not limited to a single material elastic member, but may be one having such a composite structure where a plurality of springs are covered by a coating material. When the diaphragm 10 is displaced (vibrated), each elastic member 30 is deformed according to its elastic modulus and exerts a force (restorative force) on the diaphragm 10 in the direction opposite the direction in which the diaphragm is displaced. It should be noted that the below-mentioned elastic characteristic of the elastic members 30 is, in a broad sense, an elastic characteristic that indicates how the elastic members are deformed when applied with an external force exerting in a predetermined direction (in this embodiment, a force applied from the diaphragm 10 and acting in the direction perpendicular to the electrodes 21, 22) and as a result how the elastic members generate a restorative force acting toward the outside. Such elastic characteristic of the elastic members 30 can be defined using a strain-stress curve, a modulus of linear elasticity (Young's modulus) in the thickness direction, and a non-linear elasticity (secant modulus) of the elastic members, and the like. The electrostatic speaker 1 according to this embodiment differs from the prior art electrostatic speaker in that the diaphragm 10 receives a restorative force from the interposed elastic members 30. The present embodiment is characterized by the elastic characteristic of the elastic members 30, which will be described in detail below.
The following description uses parameters which are the same as those used for the description of the prior art electrostatic speaker with reference to
F
se
=−B(8x3)/d5 (5)
The sum F′total of forces acting on the diaphragm 10 of the electrostatic speaker 1 is represented by the following equation (6).
F
total
=F
m
+F
s
′=F
m
+F
s
+F
se=(−A+4B/d3)x (6)
As described above, since the restorative force acting on the diaphragm 10 can be regarded as being linear in this embodiment, the linearity of F′total is not lost if the diaphragm 10 is in a position sufficiently away from the origin, i.e., even if the amplitude of the diaphragm 10 is considerably large. As a result, it is possible for the diaphragm 10 to make an ideal vibration. In other words, as compared with the prior art electrostatic speaker, a displacement range is expanded in which the linearity of the force acting on the diaphragm 10 is kept maintained, whereby both the sound pressure and sound quality can be improved simultaneously.
The following is an explanation of a method of constructing the elastic members 30 having the aforesaid elastic characteristic. In the present invention, the elastic members 30 may be constructed using a single material having an elastic characteristic represented by the equation (5). Without using such a single material having the above described characteristic, the elastic members 30 having the aforesaid elastic characteristic may be formed by various methods. The present invention is not limited in term of a method of fabricating and processing the elastic members 30. For example, the elastic members 30 may be formed by a composite material. Specifically, it is possible to obtain the above described elastic characteristic as a whole by joining a plurality of elastic members having a known elastic characteristic into one piece. In particular, in the case of using an arrangement formed by a single material not having the above described elastic characteristic, that elastic characteristic can be realized by fixing the elastic members 30 between the diaphragm 10 and the electrodes 21, 22 while applying a predetermined preload thereto when the elastic members are interposed between the diaphragm and the electrodes. In the following, the just-mentioned technique will be described.
In this embodiment, therefore, elastic members each having an elastic characteristic as shown in
This embodiment is characterized in that it uses the elastic members 30 each having the elastic characteristic that cancels the term of the third order of the electrostatic force Fm as shown in the equation (5). It should be noted that the elastic characteristic is not limited to one shown in the equation (5). For example, the elastic characteristic may include a term of the first order as shown by the following equation (7) where C is a constant.
F
se
=−B(8x3)/d5−Cx (7)
Even in this case, it is apparent that the linearity of the force F′total is not affected. The elastic characteristic of the elastic members 30 may further include a term for canceling terms of higher order (terms of the fifth order or higher orders) in the equation (2).
In this invention, it is not inevitably necessary to strictly mathematically satisfy the equation (5). In essence, the aforementioned advantages can be attained, if the elastic members have such an elastic characteristic that substantially cancels non-linear terms of the electrostatic force Fm represented by the equation (1) so that the non-linearity of the restorative force acting on the diaphragm is made substantially negligible. In the above described embodiment, only the force applied from the elastic member on the side to which the diaphragm 10 is displaced is considered as Fse. If the force (exerting in the direction opposite from the direction in which the restorative force is exerted) generated by the elastic member 30 on the opposite side and acting on the diaphragm 10 when the diaphragm is displaced is considered, the non-linear terms of the electrostatic force Fm can be canceled more accurately. A value of a proportionality coefficient 8B/d5 can be made coincide with or approximate to a proportionality coefficient in the elastic characteristic by adjusting B relating to an applied voltage value and/or a value of the distance d relating to the speaker thickness, at least so long as the linear elastic characteristic of the elastic members 30 is proportional to or substantially proportional to the cube power of the strain, even if the linear elastic characteristic of the elastic member 30 does not satisfy the equation (5) in a strict sense.
While the present invention has been described with reference to an exemplary embodiment, it is to be understood that the invention is not limited to the disclosed exemplary embodiment. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
Number | Date | Country | Kind |
---|---|---|---|
2006-144384 | May 2006 | JP | national |