Since their introduction, printers have become very popular peripherals for computers. One type of printer is the laser printer. In a laser printer, a laser scans an image onto a charged drum, which is coated with toner where the laser scanned the image. The image is developed with the toner, and is transferred to the media. A fuser, generally located in the printer, then fuses the toner permanently to the media. Laser printers, as well as other types of printers, are commonly available in both monochrome models and color models.
The laser-scanning mechanism of a laser printer is quite complex. The mechanism usually includes an elaborate combination of rotating mirrors and lenses to scan the laser from one end of the drum to the other end of the drum. These parts may occupy a large amount of space within the printer, increasing the printer's size and/or footprint. Furthermore, the parts may have to be shielded against unwanted vibrations, requiring additional design expense and also raising manufacturing costs.
The rotating mirror may have to rotate in excess of 30,000 revolutions-per-minute for the printer to achieve high-speed printing, since the drum is discharged serially. To obtain high image quality, the scanning mechanism may have to be manufactured to a high degree of tolerance, which also increases manufacturing costs. If the laser-scanning mechanism fails, the entire printer fails, since the drum cannot then be properly discharged. Even if the scanning mechanism does not catastrophically fail, improper operation or improper alignment of the mechanism can cause image quality to suffer.
An electrostatic-writing mechanism for an image-formation device having an optical photoconductor (OPC) mechanism of one embodiment of the invention includes a light source and an array of micromirror devices. The light source is to emit light. The array of micromirror devices is to selectively direct the light onto the OPC mechanism in accordance with a portion of an image.
The drawings referenced herein form a part of the specification. Features shown in the drawing are meant as illustrative of only some embodiments of the invention, and not of all embodiments of the invention, unless otherwise explicitly indicated, and implications to the contrary are otherwise not to be made.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments of the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Example Image-Formation Device
As the pre-charged OPC mechanism 108 revolves, the discharge mechanism 102 emits light 104 onto the surface of the OPC mechanism 108 to discharge certain spots of the OPC mechanism 108 in accordance with a print job, such as a portion of an image to be formed onto media. In this way, the discharge mechanism 102 draws the print job to be printed as a pattern of electrical charges, which can be referred to as an electrostatic image. The OPC mechanism 108 rotates counter-clockwise for purposes of illustration only, as indicated by the arrow 112. The manner by which the discharge mechanism 102 selectively discharges the OPC mechanism 108 is specifically described in subsequent sections of the detailed description.
After the pattern has been set, the image-formation device 100 coats the OPC mechanism 108 with charged toner, which is typically fine powder. In monochrome printers, black toner is used; in color printers, three primary colors, as well as black, are typically used. The toner also has a charge, so the toner clings to the discharged areas of the OPC mechanism 108, but not to the charged background. The toner is dispensed by a developer roller 114 that rotates in either clockwise or counter-clockwise direction against the OPC mechanism 108, after having rotated through the toner hopper 118 to pick up toner. For purposes of illustration only, the arrow 116 indicates a clockwise direction of rotation for the roller 114. The developer roller 114 is more generally referred to as a toner-application mechanism to apply toner onto areas of the OPC mechanism 108 that the discharge mechanism 102 has discharged.
With the powder pattern affixed, the OPC mechanism 108 rolls over a sheet of media 120, which moves in the direction indicated by the arrow 122. Before the media 120 rolls under the OPC mechanism 108, it is given a charge by the transfer corona wire 124 or by a transfer charge roller. The force upon the toner resulting from by this charge is stronger than the force holding the toner to the OPC mechanism 108, so the media 120 pulls the powder away from the OPC mechanism 108. The transfer corona wire 124, or the transfer charge roller, is more generally referred to as a toner-transfer mechanism to transfer toner from the OPC mechanism 108 onto the media 120.
The image-formation device 100 finally passes the media 120 through the fuser 130, which in the device 100 specifically is a pair of heated rollers 132 and 134 that move in opposite direction. Alternatively, only one of the rollers 132 and 134 is heated. Alternatively, the rollers could be driven or non-driven films. As the media 120 passes through these rollers 132 and 134, the loose toner powder melts, and flows onto the surface of the media 120. The fuser 130 rolls the media 120 to an output tray (not shown in
The image-formation device 100 has been described as the OPC mechanism 108 being pre-charged and then selectively discharged in accordance with an image to be formed onto the media 120. However, alternatively, the OPC mechanism 108 can be initially uncharged, and then selectively charged in accordance with the image to be formed onto the media 120. Both cases generally are referred to as the OPC mechanism 108 being electrostatically written in accordance with the image to be formed onto the media 120, where electrostatic writing is inclusive of selectively discharging the pre-charged OPC mechanism 108 and selectively charging the uncharged OPC mechanism 108.
Discharge Mechanism Having Micromirror Devices
The light source 202 emits light 206 over the array of the micromirror devices 204 when the OPC mechanism 108 is pre-charged and ready to be selectively discharged. The light 206 is preferably substantially uniform over the entire array of the micromirror devices 204. The light source 202 may be a light bulb, a wide-field laser, an array of light-emitting diodes (LED's), or another type of light source.
The array of the micromirror devices 204 is preferably a linear array of the micromirror devices 204. The micromirror devices 204 selectively direct the light 206 emitted by the light source 202 onto the pre-charged OPC mechanism 108 to selectively discharge the pre-charged OPC mechanism 108, in accordance with a current portion of an image that is thus preferably a current line of the image. Each of the micromirror devices 204 therefore preferably corresponds to a pixel of the current line of the image. The micromirror devices 204 may be piezoelectric micromirror devices, digital micromirror devices (DMD's), spatial light modulators (SLM's), and/or other types of micromirror devices.
If a current line of the image to be formed onto the media 120 of
For the linear array of the micromirror devices 204 as a whole, this process occurs on a line-by-line basis, for each line of the image to be formed onto the media 120. The micromirror devices 204 are individually controlled at the same time to either reflect the light 206 towards their corresponding spots on the OPC mechanism 108, or away from the OPC mechanism 108. Because the micromirror devices 204 are controlled at the same time, the OPC mechanism 108 is said to be discharged a line at a time, or on a line-by-line basis. Because the micromirror devices 204 are individually controlled, such that each device can either reflect the light 206 to discharge its corresponding spot on the OPC mechanism 108 or reflect the light 206 away from the OPC mechanism 108 to not discharge this spot, the OPC mechanism 108 is said to be discharged selectively.
The pattern of each row, or line, of the image 408 is correspondingly transferred to the OPC mechanism 108, on a line-by-line basis, by selectively discharging spots on the OPC mechanism 108 that correspond to dark, or on, pixels of the image 408, as indicated by the arrow 410, as the OPC mechanism 108 rotates such that different portions thereof can be affected by the light 206 reflected by the micromirror devices 204. The OPC mechanism 108 thus ultimately has a correspondingly organized electrostatic, or discharge, pattern of the image 408. The surface of the OPC mechanism 108 in
The OPC mechanism 108 can be conceptually or logically considered to have individual spots that correspond to the pixels of the image 408. These individual spots are likewise organized in columns A, B, C, D, E, and F, and in rows, including the rows 402′, 404′, and 406′. Each spot is individually indicated by a row and a column. For instance, the third spot of the row 402′ is indicated as the spot 402C′. Spots on the OPC mechanism 108 that remain pre-charged, and have not been discharged, are indicated in
The selective discharge of the OPC mechanism 108 on a line-by-line basis is accomplished by individually controlling the micromirror devices 204A, 204B, 204C, 204D, 204E, and 204F, as corresponding to the pixels of the image 408 in the columns A, B, C, D, E, and F, respectively, on a line-by-line basis. The micromirror devices 204A, 204B, 204C, 204D, 204E, and 204F are individually controlled to either reflect the light 206 from the light source 202 towards their corresponding spots of the OPC mechanism 108 in the columns A, B, C, D, E, and F, or away from the OPC mechanism 108, depending on whether the pixels in a current line, or row, of the image 408 are on or off. The micromirror devices 204A, 204B, 204C, 204D, 204E, and 204F are controlled substantially at the same time for each line, or row, of the image 408, such that the OPC mechanism 108 is selectively discharged on a line-by-line basis.
For instance, to impart the pattern of the row 402 of the image 408 as the logical row 402′ on the OPC mechanism 108, the micromirror device 204C is controlled to reflect the light 206 onto its corresponding spot 402C′ in the row 402′ on the OPC mechanism 108, whereas the other devices 204A, 204B, 204D, 204E, and 204F are controlled to reflect the light 206 away from the OPC mechanism 108. As such, the row 402′ on the OPC mechanism 108 remains pre-charged at the spots 402A′, 402B′, 402D′, 402E′, and 402F′, and is discharged at the spot 402C′. The pre-charged spots 402A′, 402B′, 402D′, 402E′, and 402F′ on the OPC mechanism 108 thus correspond to the off pixels 402A, 402B, 402D, 402E, and 402F of the image 408, whereas the pre-charged spot 402C′ corresponds to the on pixel 402C.
The OPC mechanism 108 rotates, or moves, such that the pattern of the row 404 of the image 408 is to be imparted as the logical row 404′ on the OPC mechanism 108 by the micromirror devices 204. The micromirror devices 204D and 204E are controlled to reflect the light 206 onto their corresponding spots 404D′ and 404E′ in the row 404′ on the OPC mechanism 108, whereas the other devices 204A, 204B, 204C, and 204F are controlled to reflect the light 206 away from the OPC mechanism 108. As such, the row 404′ on the OPC mechanism 108 remains pre-charged at the spots 404A′, 404B′, 404C′, and 404F′, and is discharged at the spots 404D′ and 404E′. The pre-charged spots 404A′, 404B′, 404C′, and 404F′ on the OPC mechanism 108 correspond to the off pixels 404A, 404B, 404C, and 404F of the image 408, whereas the pre-charged spots 404D′ and 404E′ correspond to the on pixels 404D and 404E.
As a final example, once the OPC mechanism 108 has rotated, or moved, such that the pattern of the row 406 of the image 408 is to be imparted as the logical row 406′ of the OPC mechanism 108, the micromirror device 204A is controlled to reflect the light 206 on its corresponding spot 406′ in the row 406′ on the OPC mechanism 108. The other devices 204B, 204C, 204D, 204E, and 204F are conversely controlled to reflect the light 206 away from the OPC mechanism 108. The row 406′ on the OPC mechanism 108 remains pre-charged at the spots 406B′, 406C′, 406D′, 406E′, and 406F′, and is discharged at the spot 406A′. The pre-charged spots 406B′, 406C′, 406D′, 406E′, and 406F′ on the OPC mechanism 108 correspond to the off pixels 406B, 406C, 406D, 406E, and 406F of the image 408, whereas the pre-charged spot 406A′ corresponds to the on pixel 406A.
Method
It is noted that, although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement is calculated to achieve the same purpose may be substituted for the specific embodiments shown. The image-formation device that has been described may be a printing device for use with a computer, for instance, a facsimile device, a photocopying device, or a device that has more than one such functionality. Embodiments of the invention are amenable to color image-formation devices as well as black-and-white image-formation devices.
In addition, embodiments of the invention have been substantially described in relation to an array of micromirror devices that is a linear array, such that a line of pixels of an image to be formed on media is able to be transferred to the OPC mechanism at a single time. In other embodiments, however, the array may be more than one pixel in height, such that a number of lines of pixels of an image to be formed on media are able to be transferred to the OPC mechanism at a single time. That is, the array may be an n pixel-by-m pixel array, where each of n and m is greater than one, instead of a 1 pixel-by-m pixel array. Thus, n lines of the image are electrostatically transferred to the OPC mechanism at one time.
Furthermore, whereas embodiments of the invention have been substantially described to the discharging of a pre-charged optical photoconductor (OPC) mechanism, other embodiments of the invention are also applicable to charging an uncharged OPC mechanism. Such other embodiments of the invention operate in the same way as the discharging embodiment does, except that the OPC mechanism does not need to be pre-charged. The OPC mechanism is thus charged, instead of discharged, in accordance with an image to be formed on media. This application is thus intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5453778 | Venkateswar et al. | Sep 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5877800 | Robinson et al. | Mar 1999 | A |
5933682 | Rushing | Aug 1999 | A |
6069727 | Cho et al. | May 2000 | A |
6188426 | Nakamura | Feb 2001 | B1 |
6480218 | Kurematsu | Nov 2002 | B2 |
20010015750 | Enomoto et al. | Aug 2001 | A1 |
20010017702 | Kito | Aug 2001 | A1 |
20020051141 | Kito | May 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040239748 A1 | Dec 2004 | US |