The printing unit 18 includes an operator console 24 where job tickets may be reviewed and/or modified for print jobs performed by the machine 10. The pages to be printed during a print job may be scanned by the printing machine 10 or received over an electrical communication link. The page images are used to generate bit data that are provided to a raster output scanner (ROS) 30 for forming a latent image on the photoreceptor 28. Photoreceptor 28 continuously travels the circuit depicted in the figure in the direction indicated by the arrow. The development station 100 develops toner on the photoreceptor 28. At the transfer station 22, the toner conforming to the latent image is transferred to the substrate by electric fields generated by the transfer station. The substrate bearing the toner image travels to the fuser station 26 where the toner image is fixed to the substrate. The substrate is then carried to the output unit 20. This description is provided to generally describe the environment in which a double magnetic roll development system for developer having semi-conductive carrier particles may be used and is not intended to limit the use of such a development subsystem to this particular printing machine environment.
The overall function of developer station 100, which is shown in
Among the elements of the developer station 100, which is shown in
As can be seen in this embodiment, the upper magnetic roll 36 and the lower magnetic roll 38 form a development zone that is approximately as long as the two diameters of the magnetic rolls 36 and 38. A motor, not shown, is coupled to the rolls 36 and 38 to cause rotation of the various augers, magnetic rolls, and any other rotatable members within the developer station 100 at various relative velocities. There may be provided any number of such motors. The magnetic rolls 36 and 38 may be rotated in a direction that is opposite to the direction in which the photoreceptor moves past the developer station 100. That is, the two magnetic rolls are operated in the against mode for development of toner, although the magnetic rolls may also be operated in the with mode as well. In one embodiment of the developer station 100, the motor rotates the magnetic rolls at a speed in the range of about 1 to about 1.5 times the rotational speed of the photoreceptor 28. This rotational speed is lower than the rotational speed of magnetic rolls in developer systems that rotate in the same direction as the photoreceptor. That is, the magnetic rolls operated in the against mode may be rotated at lower speeds than magnetic rolls operated in the with mode. These slower speeds increase the life of the magnetic rolls over the life of magnetic rolls that are operated in the with mode to develop toner carried on semi-conductive carrier particles.
As may be observed from
As discussed above, a two-component developer material is comprised of toner particles and carrier particles. The carrier particles in a two-component developer are attracted to the magnets within the magnetic rolls. The toner particles adhere to the carrier particles by a triboelectrically generated charge. After the toner particles migrate to the photoreceptor as it passes by, the carrier particles are returned to the supply to acquire more toner. Thus, the carrier particles are to remain circulating within the housing 12. Despite the use of magnetic seals mounted at the ends of the rollers, some of the carrier particles escape the development station housing at the gap between the two rolls. To address this leakage of carrier particles, a magnetic barrier has been constructed that impedes the outward progression of carrier particles even though the components are not axially aligned with the ends of the gap, as known magnetic seals are. The magnetic barrier for reducing the loss of carrier particles at the ends of the gap between the rollers, is located at a position that generates magnetic fields that extend across the ends of the gap between the rollers. As these fields impede carrier particles migrating at the ends of the gap, a resulting wall of carrier particles mechanically interferes with the outward movement of other particles and reduces the likelihood that they egress from the development system at the ends of the gap between the rollers.
The outboard cap and outboard magnetic restrictor are shown in more detail in
The arcurate structures 208 accommodate the circumference of the magnetic rolls 36 and 38. As shown in
To address loss of carrier particles from the gap between the magnetic rolls 36 and 38, a magnet holder 218 is mounted to the flange 210. The magnet holder may be mounted by using adhesives, mechanical fasteners, and other known mounting methods. The magnet holder is located on the interior side of the flange 210 so it extends into the cavity in which the magnetic rolls are housed. A center magnet 224 is secured by the magnet holder 218. The center magnet may snap fit into the magnet holder 218, although other securing methods may be used. A magnet end 228 extends from the magnet center at a position that is proximate the gap between the magnetic rolls 36 and 38. The magnetic fields generated by the magnet end 228 impede the movement of carrier particles that may be migrating out of the gap between the magnetic rolls towards and out of the cap. These carrier particles form a mechanical barrier to reduce the likelihood that other carrier particles egress from the gap between the rollers.
The inboard cap and inboard magnetic restrictor are shown in more detail in
The arcurate structures 308 accommodate the circumference of the magnetic rolls 36 and 38. As shown in
To address loss of carrier particles from the gap between the magnetic rolls 36 and 38, a magnet holder 318 is mounted to the flange 310. The magnet holder may be mounted by using adhesives, mechanical fasteners, and other known mounting methods. The magnet holder is located on the interior side of the flange 310 so it extends into the cavity in which the magnetic rolls are housed. A magnet center 224 is secured by the magnet holder 318. The center magnet may snap fit into the magnet holder 318, although other securing methods may be used. A magnet end 228 extends from the magnet center at a position that is proximate the gap between the magnetic rolls 36 and 38. The magnetic fields generated by the magnet end 228 impede the movement of carrier particles that may be migrating out of the gap between the magnetic rolls towards and out of the cap. These carrier particles form a mechanical barrier to reduce the likelihood that other carrier particles egress from the gap between the rollers. The longer axis of the magnet end 228 may be parallel to the longer axis of the magnet center. The magnet end and the magnet center may be oriented relative to one another to accommodate the space restrictions for locating the magnet end proximate the gap between the rollers.
An exemplary embodiment of the magnet end 228 is shown in
During assembly of an electrostatographic imaging machine, the arcurate structures in the inboard and outboard caps are fitted with magnet seal material to seal the ends of the rollers as is well-known. Additionally, the flanges 210 and 310 have magnet holders 218 and 318 mounted to them. The magnet centers 224 are snap fitted into the magnet holders 218 and 318, respectively. The magnet ends 228 are mounted to the magnet centers 224 as depicted above for the inboard and outboard caps. The outboard cap 200 and the inboard cap 300 are then mounted by screws or other mechanical fasteners at the outboard and inboard ends of the magnet rolls 36 and 38 to position the magnet ends proximate the gap between the rollers at the ends of the gap. As shown above, the magnet centers 224 and the magnet ends 228 generate magnetic fields that cover the ends of the gap between the magnet rolls 36 and 38. Consequently, as carrier particles translate outwardly in this gap, they encounter the magnetic field and their movement is impeded. As subsequent carrier particles build on the halted particles, a mechanical barrier to the further migration of carrier particles from the gap is formed. Thus, the magnet centers and ends form a magnetic restrictor that generates magnetic fields that effectively close the ends of the gap between the magnetic rollers and help ensure that carrier particles remain within the development station 100 rather than contaminate the interior of the electrostatographic imaging machine.
The embodiment described above has been discussed with regard to an arrangement for restricting the gap between two vertically arranged magnet rolls to reduce the loss of carrier particles from a development station. The components may also be adapted to magnetically restrict flow from a gap between other magnetic roll arrangements used to develop toner on moving photoreceptors. Of course for other magnetic roll arrangements, the structure, shape, and magnetic materials may be adapted to block any gap between the rolls in any suitable way. Therefore, the claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others.
Reference is made to commonly-assigned co-pending U.S. patent application Ser. No. 11/262,575, entitled “Xerographic Developer Unit Having Multiple Magnetic Bursh Rolls Rotating Against The Photoreceptor,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/262,577 entitled “Xerographic Developer Unit Having Multiple Magnetic Brush Rolls With A Grooved Surface,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/262,576 entitled “Xerographic Developer Unit Having Multiple Magnetic Brush Rolls Rotating With The Photoreceptor,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/263,370 entitled “Variable Pitch Auger To Improve Pickup Latitude In Developer Housing”, which was filed on Oct. 31, 2005, and U.S. patent application Ser. No. 11/263,371 entitled “Developer Housing Design With Improved Sump Mass Variation Latitude,” which was filed on October 31, 2005, the disclosures of which are incorporated herein.