1. Technical Field
The present disclosure relates to an electrosurgical system and method and, more particularly, to an electrosurgical generator configured to dynamically control energy output.
2. Background of Related Art
Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, seal, ablate, or coagulate tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of a surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
In bipolar electrosurgery, a hand-held instrument typically carries two electrodes, e.g., electrosurgical forceps. One of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active (i.e., current supplying) electrode such that an electrical circuit is formed between the two electrodes. In this manner, the applied electrical current is limited to the body tissue positioned between the two electrodes.
Conventional electrosurgical generators include a high voltage direct current power supply connected to a radio frequency (RF) output stage that converts DC energy generated by the power supply into RF energy. The power supply includes an output filter which substantially eliminates undesirable frequencies (e.g., noise) from the DC energy and stores large amounts of energy. Rapid tissue desiccation during the application of RF energy creates a potential for patient burn hazards due to excess energy dosage at the tissue site when the power source fails to rapidly alter the supplied energy dosage in response with dynamic changes in tissue impedance. Rising tissue impedance levels caused by desiccation unload the energy source and sustain the energy delivered to the tissue due to the large amount of stored energy in the output filter.
According to one embodiment of the present disclosure, a circuit for controlling the discharging of stored energy in an electrosurgical generator includes a pulse modulator which controls an output of a power supply. At least one comparator is configured to provide an error signal to the pulse modulator based on a comparison between an output generated by the power supply and a feedback signal generated in response to the application of energy to tissue. A discharge circuit is configured to control the discharge of the output of the power supply to an inductive load disposed in parallel with the output of the power supply based on the comparison between the power supply output and the feedback signal.
According to another embodiment of the present disclosure, a circuit for controlling the discharging of stored energy in an electrosurgical generator includes a pulse modulator which controls an output of a power supply. At least one comparator is configured to provide an error signal to the pulse modulator based on a comparison between an output generated by the power supply and a feedback signal generated in response to the application of energy to tissue. A discharge circuit has a first switching component configured to discharge the output of the power supply to an inductive load disposed in parallel with the output of the power supply if the feedback signal is less than the power supply output and a second switching component configured to control switching of the first switching component based on the discharge rate of the output to the inductive load.
The present disclosure also provides a method for controlling the discharging of stored energy in an electrosurgical generator. The method includes applying energy stored in an output of a power supply to tissue. The method also includes generating at least one control signal based on at least one of a sensed tissue property and a sensed energy delivery property, (i.e. power, voltage, current, time etc.). The method also includes generating an error signal based on a comparison between the at least one control signal and the energy stored in the output. The method also includes discharging the stored energy to an inductive load in parallel with the output of the power supply based upon the comparison between the energy stored in the output and the control signal.
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
In general, the present disclosure provides for an electrosurgical generator including a power supply configured to rapidly re-direct stored output energy through inductive energy transfer utilizing a controlled switching circuit to regulate, in real-time, the level of power sourced to the RF energy delivered to tissue during treatment.
More specifically, when the generator senses increased impedance in tissue due to rapid tissue desiccation, the generator of the present disclosure can control, in real time, the amount of treatment energy applied to tissue through use of a so-called “discharge” circuit. The discharge circuit provides a rapid response and time rate control of the electrosurgical energy delivered to tissue by discharging energy stored in an output filter of the power supply into an inductive load based on a feedback signal generated by the controller. The feedback signal may be based on a sensed tissue property (e.g., impedance) and/or an energy property (e.g., voltage, output energy level, etc.). This control provides for more accurate application of target treatment energy levels to treat tissue.
The generator according to the present disclosure can perform monopolar and bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar active electrode, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured for generating radio frequency power specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing, ablation).
The present disclosure may be adapted for use with either monopolar or bipolar electrosurgical systems.
Electrically conductive sealing plates 112 and 122, which act as active and return electrodes, are connected to the generator 20 through cable 23, which includes the supply and return lines coupled to the active and return terminals 30, 32 (
Forceps 10 generally includes a housing 60 and a handle assembly 74 that includes moveable handle 62 and handle 72 which is integral with the housing 60. Handle 62 is moveable relative to handle 72 to actuate the end effector assembly 40 to grasp and treat tissue. The forceps 10 also includes shaft 64 that has a distal end 68 that mechanically engages the end effector assembly 40 and a proximal end 69 that mechanically engages the housing 60 proximate a rotating assembly 80 disposed at a distal end of the housing 60.
With reference to
A closed loop control scheme generally includes a feedback control loop wherein the sensor module 22 provides feedback to the controller 24 (i.e., information obtained from one or more sensing mechanisms that sense various tissue parameters such as tissue impedance, tissue temperature, output current and/or voltage, etc.). The controller 24 then signals the power supply 27, which then adjusts the DC power supplied to the RF output stage, accordingly. The controller 24 also receives input signals from the input controls of the generator 20 and/or forceps 10. The controller 24 utilizes the input signals to adjust the power output of the generator 20 and/or instructs the generator 20 to perform other control functions.
The microprocessor 25 is capable of executing software instructions for processing data received by the sensor module 22, and for outputting control signals to the generator 20, accordingly. The software instructions, which are executable by the controller 24, are stored in the memory 26 of the controller 24.
The controller 24 may include analog and/or logic circuitry for processing the sensed values and determining the control signals that are sent to the generator 20, rather than, or in combination with, the microprocessor 25.
The sensor module 22 may include a plurality of sensors (not explicitly shown) strategically located for sensing various properties or conditions, e.g., tissue impedance, voltage at the tissue site, current at the tissue site, etc. The sensors are provided with leads (or wireless) for transmitting information to the controller 24. The sensor module 22 may include control circuitry which receives information from multiple sensors, and provides the information and the source of the information (e.g., the particular sensor providing the information) to the controller 24.
More particularly, the sensor module 22 may include a real-time voltage sensing system (not explicitly shown) and a real-time current sensing system (not explicitly shown) for sensing real-time values related to applied voltage and current at the surgical site. Additionally, an RMS voltage sensing system (not explicitly shown) and an RMS current sensing system (not explicitly shown) may be included for sensing and deriving RMS values for applied voltage and current at the surgical site.
The measured or sensed values are further processed, either by circuitry and/or a processor (not explicitly shown) in the sensor module 22 and/or by the controller 24, to determine changes in sensed values and tissue impedance. Tissue impedance and changes thereto may be determined by measuring the voltage and/or current across the tissue and then calculating changes thereof over time. The measured and calculated values may be then compared with known or desired voltage and current values associated with various tissue types, procedures, instruments, etc. This may be used to drive electrosurgical output to achieve desired impedance and/or change in impedance values. As the surgical procedure proceeds, tissue impedance fluctuates in response to adjustments in generator output as well as removal and restoration of liquids (e.g., steam bubbles) from the tissue at the surgical site. The controller 24 monitors the tissue impedance and changes in tissue impedance and regulates the output of the generator 20 in response thereto to achieve the desired and optimal electrosurgical effect.
Referring to
When the power source output fails to match the applied control signal, the resulting voltage difference at positive and negative input pins +A1 and −A1 causes the first comparator 110 to output an analog error signal (e.g., analog voltage) to drive a pulse modulator (“PM”) 115. PM may be, for example, a pulse width modulator, a phase shift modulator or any such device known in the art for converting the analog error signal to a digital pulse control signal. The PM 115 converts the analog error signal to a digital pulse control signal (e.g., digital voltage) to implement control of a full-bridge power stage 120 by phase shifting the switching of one half-bridge with respect to the other. It allows constant frequency pulse-width modulation to provide high efficiency at high frequencies and can be used either as a voltage mode or current mode controller. More specifically, an AC/DC converter 125 converts an available ac signal (e.g., from an ac line voltage) to a dc signal to drive the full-bridge power stage 120, the output of which is, in turn, controlled by the digital pulse control signal to reflect the applied control signal from the controller 24. The resulting controlled output of the full-bridge power stage 120 drives an output filter 130 (e.g., a low-pass filter), having an inductor 132 and an output capacitor 134, to generate a DC output voltage Vc across the output capacitor 134. The resulting output voltage Vc is converted to RF energy by the RF output stage 28 and output to the electrosurgical instrument. A feedback compensator 140 continuously monitors the output voltage Vc (e.g., input to the RF output stage 28) and, in turn, provides a proportionally scaled feedback of the power source output to input pin −A1 of the first comparator 110 to match the applied control signal from the controller 24.
With continued reference to
An inductive load 150 (e.g., an inductor) is connected in parallel with the output filter 130 and in series with the first switching component 160. The first switching component 160 is normally off and may be a transistor, such as a field-effect transistor (FET), metal-oxide semiconductor field-effect transistor (MOSFET), insulated gate bipolar transistor (IGBT), relay, or the like. A first resistive element 162 is in series with the first switching component 160 and with ground 168, which is known as a source follower circuit. The source follower limits the amount of current that flows through the first resistive element 162, the switching component 160, and the inductor 150.
In the case of the power source output being greater than the applied control signal (i.e., −A1>+A1), the switching circuit 145 utilizes inductive energy transfer to rapidly re-direct the stored output energy of the power source 27 away from the RF output stage 28 until the power source output matches the applied control signal (i.e., −A1=+A1). More specifically, the second comparator 180 provides a drive voltage sufficient to close the first switching component 160 to discharge the stored energy from the output capacitor 134 to the inductive load 150. The activation of the first switching component 160 causes a conduction current IQ1 to discharge from the capacitor 134 to ground 168 through the inductive load 150 and the first resistive element 162 to generate corresponding voltages VLr and VR1, respectively. That is, while the first switching component 160 is switched on, the inductive load 150 absorbs the energy discharged by the output capacitor 134 to rapidly decrease the output voltage Vc until the power source output again matches the applied control signal (i.e., −A1=+A1). Under this match condition, the second comparator 180 no longer provides the sufficient drive voltage, resulting in the first switching component 160 to return to the normally off position to interrupt the flow of the conduction current IQ1 through the inductive load 150. The interruption of current flow through the inductive load 150 causes the magnetic flux field on the inductive load 150 to collapse due to a back electromagnetic force of voltage thereacross (e.g., a so-called “back EMF effect”). The back EMF voltage turns on diode 155, connected in shunt with the inductive load 150, to become forward-biased, providing a path for the inductor 150 magnetic flux and conductive current to be reset to zero. In addition this process prevents the back EMF voltage from increasing to a level sufficient to cause damage and/or stress to other components of the ADC 145 (e.g., the first switching component 160, the first resistive element 162, etc.).
The ADC 145 includes a second normally off switching component 170 that provides so-called “turn-on limiting” of the first switching component 160 to control the flow of the conduction current IQ1 through the inductive load 150. More specifically, the second switching component 170 operates to monitor the voltage drop VR1 across the first resistive element 162 caused by the conduction current IQ1. Resistors 164 and 166 establish the threshold for component 170 turn on limiting. As the conduction current IQ1 through the first switching component 160 increases, the voltage drop VR1 across the first resistive element 162 increases to drive the second switching component 170 on, when the threshold for turn on limiting of component 170 is reached. The turn on of the second switching component 170 effectively reduces the drive voltage applied to the first switching component 160 to a steady state value from the second comparator 180, thereby regulating the current flow through the first switching component 160. The resulting reduced drive voltage of the first switching component 160 stabilizes the flow of conduction current IQ1 through the first switching component 160 and, thus, through the first resistive element 162 thereby regulating the voltage drop VR1 thereacross. In this manner, the output voltage Vc across the output capacitor 134 discharges at an incremental time rate of change, represented by equation (1) below:
Vc=1/C*∫0tIQ1dt (1)
Where:
Vc is the output voltage across the capacitor 134;
C is the capacitance of the capacitor 134; and
IQ1 is the conductive current through the inductive load 150.
In the illustrated embodiment, one or more resistive elements 164 and 166 are utilized to set the desired proportion of the voltage drop VR1 across the first resistive element 162 sufficient to turn on the second switching element 170. That is, each of resistive elements 164 and 166 may be interchanged with resistive elements of various resistance values to vary the proportion of the voltage drop VR1 across the first resistive element 162 at which the second switching component 170 turns on. For example, the resistance ratio provided by the combination of the resistive elements 164 and 166, adjusts the proportion of the voltage drop VR1 necessary to turn on the second switching component 170. The resistive elements 164 and 166 of
A buffer 172 (e.g., one or more resistors) between the first switching component 160 and the output of the second comparator 180 provides an isolation buffer therebetween when the second switching component 170 is turned on. As seen in
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of and claims the benefit of and priority to U.S. patent application Ser. No. 12/205,525 filed by Orszulak on Sep. 5, 2008, now U.S. Pat. No. 8,377,053, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3641422 | Farnsworth et al. | Feb 1972 | A |
3978393 | Wisner et al. | Aug 1976 | A |
4767999 | VerPlanck | Aug 1988 | A |
5540683 | Ichikawa et al. | Jul 1996 | A |
5694304 | Telefus et al. | Dec 1997 | A |
5712772 | Telefus et al. | Jan 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5936446 | Lee | Aug 1999 | A |
6093186 | Goble | Jul 2000 | A |
6238387 | Miller, III | May 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
6923804 | Eggers et al. | Aug 2005 | B2 |
7244255 | Daners et al. | Jul 2007 | B2 |
D574323 | Waaler | Aug 2008 | S |
7573693 | Hornung | Aug 2009 | B2 |
8152802 | Podhajsky et al. | Apr 2012 | B2 |
8162932 | Podhajsky et al. | Apr 2012 | B2 |
8167875 | Podhajsky et al. | May 2012 | B2 |
8174267 | Brannan et al. | May 2012 | B2 |
8180433 | Brannan et al. | May 2012 | B2 |
8211100 | Podhajsky et al. | Jul 2012 | B2 |
8226639 | Podhajsky et al. | Jul 2012 | B2 |
8242782 | Brannan et al. | Aug 2012 | B2 |
8248075 | Brannan et al. | Aug 2012 | B2 |
8257349 | Orszulak | Sep 2012 | B2 |
8287527 | Brannan et al. | Oct 2012 | B2 |
8287529 | Orszulak | Oct 2012 | B2 |
8333759 | Podhajsky | Dec 2012 | B2 |
8346370 | Haley et al. | Jan 2013 | B2 |
8377053 | Orszulak | Feb 2013 | B2 |
8403924 | Behnke et al. | Mar 2013 | B2 |
8409186 | Behnke et al. | Apr 2013 | B2 |
20070093801 | Behnke | Apr 2007 | A1 |
20130035679 | Orszulak | Feb 2013 | A1 |
20130053840 | Krapohl | Feb 2013 | A1 |
20130066311 | Smith | Mar 2013 | A1 |
20130067725 | Behnke | Mar 2013 | A1 |
20130072920 | Behnke | Mar 2013 | A1 |
20130072921 | Behnke | Mar 2013 | A1 |
20130072922 | Behnke | Mar 2013 | A1 |
20130072923 | Behnke | Mar 2013 | A1 |
20130079763 | Heckel | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
179607 | Mar 1905 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
390937 | Apr 1989 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4206433 | Sep 1993 | DE |
4339049 | May 1995 | DE |
19506363 | Aug 1996 | DE |
19717411 | Nov 1998 | DE |
19848540 | May 2000 | DE |
10 2008058737 | Apr 2010 | DE |
246350 | Nov 1987 | EP |
267403 | May 1988 | EP |
296777 | Dec 1988 | EP |
310431 | Apr 1989 | EP |
325456 | Jul 1989 | EP |
336742 | Oct 1989 | EP |
390937 | Oct 1990 | EP |
556705 | Aug 1993 | EP |
608609 | Aug 1994 | EP |
836868 | Apr 1998 | EP |
880220 | Nov 1998 | EP |
882955 | Dec 1998 | EP |
1051948 | Nov 2000 | EP |
1366724 | Jan 2006 | EP |
1645235 | Apr 2006 | EP |
1776929 | Apr 2007 | EP |
1275415 | Oct 1961 | FR |
1347865 | Nov 1963 | FR |
2313708 | Dec 1976 | FR |
2364461 | Jul 1978 | FR |
2502935 | Oct 1982 | FR |
2517953 | Jun 1983 | FR |
2573301 | May 1986 | FR |
607850 | Sep 1948 | GB |
702510 | Jan 1954 | GB |
855459 | Nov 1960 | GB |
902775 | Aug 1962 | GB |
2165473 | Mar 1986 | GB |
2214430 | Sep 1989 | GB |
5358934 | Aug 2001 | GB |
63 005876 | Jan 1988 | JP |
2002-065690 | Mar 2002 | JP |
166452 | Jan 1965 | SU |
727201 | Apr 1980 | SU |
WO9807378 | Feb 1998 | WO |
WO0054683 | Sep 2000 | WO |
WO0211634 | Feb 2002 | WO |
WO0245589 | Jun 2002 | WO |
WO03090635 | Nov 2003 | WO |
WO2006050888 | May 2006 | WO |
WO2008053532 | May 2008 | WO |
Entry |
---|
U.S. Appl. No. 10/406,690, filed Apr. 3, 2003, Klicek. |
U.S. Appl. No. 10/573,713, filed Mar. 28, 2006, Wham et al. |
U.S. Appl. No. 10/761,524, filed Jan. 21, 2004, Wham. |
U.S. Appl. No. 11/242,458, filed Oct. 3, 2005, Becker et al. |
U.S. Appl. No. 12/241,942, filed Sep. 30, 2008, Brannan et al. |
U.S. Appl. No. 12/249,218, filed Oct. 10, 2008, Kerr. |
U.S. Appl. No. 12/249,263, filed Oct. 10, 2008, Ward et al. |
U.S. Appl. No. 12/407,896, filed Mar. 20, 2009, Craig. |
U.S. Appl. No. 13/358,129, filed Jan. 25, 2012, Brannan. |
U.S. Appl. No. 13/360,140, filed Jan. 27, 2012, Krapohl. |
U.S. Appl. No. 13/360,289, filed Jan. 27, 2012, Heckel. |
U.S. Appl. No. 13/360,306, filed Jan. 27, 2012, Heckel. |
U.S. Appl. No. 13/426,204, filed Mar. 21, 2012, Smith. |
U.S. Appl. No. 13/427,111, filed Mar. 22, 2012, Joseph. |
U.S. Appl. No. 13/442,460, filed Apr. 9, 2012, Krapohl. |
U.S. Appl. No. 13/446,096, filed Apr. 13, 2012, Orszulak. |
U.S. Appl. No. 13/469,960, filed May 11, 2012, Behnke. |
U.S. Appl. No. 13/485,083, filed May 31, 2012, Behnke. |
U.S. Appl. No. 13/587,400, filed Aug. 16, 2012, Orszulak. |
U.S. Appl. No. 13/652,932, filed Oct. 16, 2012, Wham. |
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Vallfors et al., “Automatically Controlled Bipolar Electrosoagulation-‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Prutchi et al. “Design and Development of Medical Electronic Instrumentation”, John Wiley & Sons, Inc. 2005. |
Momozaki et al. “Electrical Breakdown Experiments with Application to Alkali Metal Thermal-to-Electric Converters”, Energy conversion and Management; Elsevier Science Publishers, Oxford, GB; vol. 44, No. 6, Apr. 1, 2003 pp. 819-843. |
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Company Newsletter; Sep. 1999. |
Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687. |
Hadley I C D et al., “Inexpensive Digital Thermometer for Measurements on Semiconductors” International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162. |
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pp. Jan. 1989. |
Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics, 9 (3), May/Jun. 1982. |
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83; (1995) pp. 271-276. |
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499. |
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307. |
Cosman et al., “Radiofrequency Lesion Generation and Its Effect on Tissue Impedance” Applied Neurophysiology 51: (1988) pp. 230-242. |
Zlatanovic M., “Sensors in Diffusion Plasma Processing” Microelectronics 1995; Proceedings 1995; 20th International Conference CE on Nis, Serbia Sep. 12-14, 1995; New York, NY vol. 2 pp. 565-570. |
Ni W. et al. “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences—Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164. |
Chicharo et al. “A Sliding Goertzel Algorith” Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3. |
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151. |
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15:(1984) pp. 945-950. |
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Aced Radio (1995) vol. 2, No. 5, pp. 399-404. |
Medtrex Brochure—Total Control at Full Speed, “The O.R. Pro 300” 1 p. Sep. 1998. |
Valleylab Brochure “Valleylab Electroshield Monitoring System” 2 pp. Nov. 1995. |
Number | Date | Country | |
---|---|---|---|
20130158541 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12205525 | Sep 2008 | US |
Child | 13767717 | US |