Various embodiments are directed to electrosurgical cutting and sealing instruments with cam-actuated jaws that may be used, for example, in open and minimally invasive surgical environments.
Minimally invasive procedures are desirable because such procedures can reduce pain and provide relatively quick recovery times as compared to conventional open medical procedures. Many minimally invasive procedures are performed with an endoscope (including without limitation laparoscopes). Such procedures permit a physician to position, manipulate, and view medical instruments and accessories inside the patient through a small access opening in the patient's body. Laparoscopy is a term used to describe such an “endosurgical” approach using an endoscope (often a rigid laparoscope). In this type of procedure, accessory devices (such as end effectors for creating energy-induced tissue welds) are inserted into a patient through trocars placed through the body wall. Still less invasive treatments include those that are performed through insertion of an endoscope through a natural body orifice to a treatment region. Examples of this approach include, but are not limited to, cystoscopy, hysteroscopy, esophagogastroduodenoscopy, and colonoscopy.
Many of these procedures employ a flexible endoscope during the procedure. Flexible endoscopes often have a flexible, steerable articulating section near the distal end that can be controlled by the clinician by utilizing controls at the proximal end. Some flexible endoscopes are relatively small (1 mm to 3 mm in diameter), and may have no integral accessory channel (also called biopsy channels or working channels). Other flexible endoscopes, including gastroscopes and colonoscopes, have integral working channels having a diameter of about 2.0 to 3.7 mm for the purpose of introducing and removing medical devices and other accessory devices to perform diagnosis or therapy within the patient. For example, some end effectors are used to create an energy-induced weld or seal. Certain specialized endoscopes or steerable overtubes are available, such as large working channel endoscopes having a working channel of 5 mm, or larger, in diameter, which can be used to pass relatively large accessories, or to provide capability to suction large blood clots. Other specialized endoscopes include those having two or more working channels.
A common task both in minimally invasive and open surgical environments is to grasp, cut and fasten tissue while leaving the cut ends hemostatic (e.g., not bleeding). For example, it is often desirable to cut and seal bodily lumens, such as individual blood vessels or tissue including various vasculature. When sealing a fluid-carrying bodily lumen, it is often necessary for the seal to have sufficient strength to prevent leakage of the fluid, which may exert considerable fluid pressure.
Instruments exist for simultaneously making a longitudinal incision in tissue and fastening the tissue on opposing sides of the incision. Such instruments commonly include an end effector having a pair of cooperating jaw members that, if the instrument is intended for minimally invasive applications, are capable of passing through a cannula passageway or endoscopic working channel. In use, the clinician is able to close the jaw members to clamp the tissue to be cut. A reciprocating cutting instrument (or knife) is drawn distally along the jaw members to transect the clamped tissue. Simultaneously, a fastening mechanism fastens the cut ends of the tissue on opposing sides of the incision. Known fastening mechanisms include staples, sutures or various instruments utilizing energy sources. For example, various energy sources such as radio frequency (RF) sources, ultrasound sources and lasers have been developed to coagulate, seal or join together tissue volumes.
Various embodiments are directed to a surgical instrument comprising an handle, a shaft, an end effector, and a reciprocating member. The shaft may be coupled to the handle and may extend distally along a longitudinal axis. The end effector may be positioned at a distal end of the shaft and may comprise first and second jaw members. The first and second jaw member may, respectively, define first and second longitudinal slots. Further, the second jaw member may be pivotable towards the first jaw member about a pivot point and comprising a cam pin positioned offset from the pivot point. The reciprocating member may be translatable distally and proximally parallel to the longitudinal axis through the first longitudinal slot and the second longitudinal slot. A distal portion of the reciprocating member may define a blade. The reciprocating member may define a cam slot for receiving the cam pin. Distal motion of the reciprocating member may exert a force on the cam pin such that the second jaw member pivots towards the first jaw member, and proximal motion of the reciprocating member exerts a force on the cam pin such that the second jaw member pivots away from the first jaw member.
Also, various embodiments are directed to a surgical instrument comprising a handle, a shaft, an end effector, a reciprocating member and an overtube. The shaft may be coupled to the handle and may extend distally along a longitudinal axis. The end effector may be positioned at a distal end of the shaft and may comprise first and second jaw members. The first and second jaw member may, respectively, define first and second longitudinal slots. Further, the first and second jaw members may be pivotable relative to one another about a pivot point and may comprise first and second cam portions positioned proximally from the respective pivot points. The reciprocating member may be translatable distally and proximally parallel to the longitudinal axis through the first longitudinal slot and the second longitudinal slot. A distal portion of the reciprocating member may define a blade. The overtube may be positioned over the shaft and may be translatable distally toward the pivot point. The overtube may also be configured to contact the first and second cam portions as it translates distally to apply a force on the first and second cam portions tending to close the first and second jaw members.
In addition, various embodiments are directed to a surgical instrument comprising a handle, a shaft, a reciprocating member, and an end effector. The shaft may be coupled to the handle and may extend distally along a longitudinal axis. The end effector may be positioned at a distal end of the shaft and may comprise first and second jaw members. The first and second jaw members may, respectively, define first and second longitudinal slots. The second jaw member may be pivotable relative to the first jaw member about the pivot point. The reciprocating member may comprise an I-beam member translatable distally and proximally relative to the longitudinal axis through the first longitudinal slot and the second longitudinal slot; and a blade member translatable distally and proximally separately from the I-beam member.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
Various embodiments are directed to electrosurgical devices for cutting and sealing, for example, cutting and sealing a bodily lumen. According to various embodiments, the electrosurgical devices may comprise a cam-actuated end effector. The cam-actuated end effector may comprise a pair of jaw members and a reciprocating member that may be translatable distally through the jaw members to provide a clamping force tending to force the jaw members together and to transect tissue between the jaw members with a sharpened leading edge. The jaw members may comprise electrodes and/or another electrically active surface for sealing tissue (e.g., tissue that has been severed). Some embodiments of the end effectors may be bilateral (both jaw members are pivotable) or unilateral (only one jaw member is pivotable).
According to various embodiments, the reciprocating member may define a cam slot configured to receive a cam pin coupled to a movable jaw member. Distal and proximal movement of the reciprocating member may cause the cam pin to translate within the cam slot, which may, in turn, cause the movable jaw member to pivot from an open position (e.g., proximal position of the reciprocating member) to a closed (e.g., distal position of the reciprocating member). In embodiments where two jaw members are movable, both jaw members may comprise a cam pin and the reciprocating member may define a pair of cam slots or grooves. The cam-actuated nature of the jaw member or members may increase the acuity of the instrument and allow the clinician to increase the force with which the jaw members are opened. This may make the surgical instrument useful for dissecting as well as for cutting and sealing.
According to various embodiments an end effector may comprise a pair of movable jaw members pivotable about a pivot pin or other pivot point. The jaw members may comprise a cam portion proximal of the pivot point. Each cam portion may define a cam slot. A shuttle may comprise one or more cam pins received within the cam slots. Distal and proximal movement of the shuttle may cause the cam pin or pins to slide within the respective cam slots of the jaw members. This may, in turn, cause the jaw members to open and close. In some embodiments, an overtube may be provided. The overtube may extend distally and contact the cam portions of the jaw members, forcing them towards a longitudinal axis of the end effector.
According to various embodiments, the reciprocating member of any of the end effectors described above may comprise an I-beam member and a blade member. The I-beam member may define a slot for receiving the blade member such that the blade member may translate distally and proximally relative to the I-beam member. In use, the I-beam member may be translated distally separately from the blade member. In this way, the I-beam member may act to close the jaw members, and/or to provide a clamping force tending to force the jaw members together without the blade member extending to transect tissue or material present between the jaw members. The blade member may then be separately extended to transect the tissue or material. In this way, the end effector may be used for grasping as well as for cutting and sealing.
According to various embodiments, one or both of the jaw members 108, 110 may include, or serve as electrodes in monopolar or bi-polar electrosurgical applications including, for example, cutting, coagulation and welding.
A translating member 116 may extend within the shaft 104 from the end effector 106 to the handle 102. The translating member 116 may be made from any suitable material. For example, the translating member 116 may be, a metal wire (e.g., a tri-layered steel cable), a plastic or metal shaft, etc. In some embodiments, one or more additional translating members (not shown in
An opening-closing mechanism of the end effector 106 operates on the basis of cam mechanisms that provide a positive engagement of camming surfaces both distal and proximal to a pivoting location (i) for moving the jaw assembly to the (second) closed position to engage tissue under very high compressive forces, and (ii) for moving the jaws toward the (first) open position to apply substantially high opening forces for “dissecting” tissue. This feature allows the surgeon to insert the tip of the closed jaws into a dissectable tissue plane—and thereafter open the jaws to apply such dissecting forces against the tissues.
According to various embodiments, the lower and upper jaws 110, 108 may have a first end 318, in the open position, that defines first (proximally-facing) arcuate outer surface portions indicated at 320a and 320b that are engaged by a first surface portions 322a and 322b of a reciprocating I-beam member 340 (
In this embodiment of
According to various embodiments, the first and second jaws 108 and 110 may define tissue-engaging surfaces or planes 350a and 350b that contact and deliver energy to engaged tissues, in part, from RF electrodes 120, 122. The engagement plane 350a of the lower jaw 110 may be adapted to deliver energy to tissue, and the tissue-contacting surface 350b of upper jaw 108 may be electro surgically active or passive as will be described below. Alternatively, the engagement surfaces 350a, 350b of the jaws can carry any suitable electrode arrangement known in the art.
The jaws 108, 110 may have teeth or serrations 356 in any location for gripping tissue. The embodiment of
According to various embodiments, the jaws 108, 110 may rollably contact one another along the interface 370 between inner surfaces 372 of the first end 318 of the jaws. As jaws 108 and 110 articulate, the pivot point is moving as the point of contact changes at the interface between surfaces 370 and 372. Thus, the jaw assembly may not need to define a true single pivot point as is typical of hinge-type jaws known in the art. The pivotable action of the jaws along interface 370 may be described as a rolling pivot that optionally can allow for a degree of dynamic adjustment of the engagement gap g at the proximal end of the jaws.
The opening-closing mechanism of end effector 1200 may provide cam surfaces for positive engagement between reciprocating member 340 and the jaws (i) for moving the jaws to a closed position to engage tissue under high compressive forces, and (ii) for moving the jaws toward the (first) open position thereby providing high opening forces to dissect tissue with outer surfaces of the jaw tips. The reciprocating member 340 operates as described previously to reciprocate within bore 308 of the shaft 104. As can be seen in
In the example embodiment of
As can be seen best in
The pins 1274 and 1274′ may provide additional functionality by providing a degree of “vertical” freedom of movement within the first (proximal) end portion 1258 of the jaw. As can be seen in
Referring to
The reciprocating member 340 (
In the embodiment of
The embodiment of
For example, the degree of “vertical” freedom of movement of the upper jaw allows for the system to “tilt” the distal tip 1513 of upper jaw 1508 toward the axis 1515 to thereby allow the distal jaw tips 1513 to grasp tissue. This is termed a non-parallel closed position herein. The tilting of the jaw is accomplished by providing a plurality of cam surfaces in the upper jaw 1508 and the reciprocating member 340.
As can be seen in
Now turning to
Now turning to
Thus, the system functions by providing a slidable cam mechanism for lifting the proximal end of the jaw while maintaining the medial jaw portion in a fixed position to thereby tilt the distal jaw to the second jaw-closed position, with the pivot occurring generally about secondary pivot P2 which is distal from the primary pivot location P1.
The cam slot 2004 may have a distal portion 2016, a transition portion 2014 and a proximal portion 2012 (
Retracting the member 340′ in the proximal position may cause the cam pin 2002 to translate from the proximal portion 2012, through the transition portion 2014 to the distal portion 2016. The process may serve to force the jaw member 2008 to the open position shown in
The cam pin concept shown in
Each of the cam slots 2314, 2312 may comprise distal portions 2320, 2346, transition portions 2318, 2344, and proximal portions 2316, 2322. When the member 340″ is pulled proximally, as shown in
Each of the jaw members 2502, 2504 may comprise respective cam portions 2506, 2508 positioned substantially or entirely proximally from the pivot point 2516. The cam portions 2506, 2508 may define cam slots 2510, 2512. A shuttle 2520 may be coupled to the cam portions 2506, 2508 via a cam pin 2518 received through both of the cam slots 2510, 2512. According to various embodiments, the cam pin 2518 may comprise two cam pins on opposite sides of the shuttle 2520. Also, according to various embodiments, the drive pin 2518 or pins may not extend all the way through the cam slots 2510, 2512.
The cam slots 2510, 2512 may be curved such that distal motion of the shuttle 2520 may cause the jaw members 2502, 2504 to pivot about the pivot point 2516 to the open position shown in
The end effector 2500 may also comprise a reciprocating I-beam member 2524 similar to the member 340 described above.
According to various embodiments, the reciprocating member 2524 and the shuttle 2520 may be configured to translate distally and proximally substantially independent of one another. For example, the reciprocating member 2524 may define a slot 2536 in the transverse member 2532 for receiving the shuttle 2520 and the cam pin 2518.
Referring back to
According to various embodiments, the shapes of the cam portions 2506 and 2508 and/or the overtube 3802 may be optimized to reduce the force necessary to force the overtube 3802 distally and/or to increase the compression force put on the jaw members 2502, 2504. For example, the cam portions 2506, 2508 may have curved sections 3810, 3812 positioned to contact the overtube 3802. The curved portions may be shaped to act as a camming surface to guide the overtube 3802 over the cam portions 2506, 2508 and progressively increase the compressive force provided by the overtube 3802 as it is translated distally. In some embodiments, the overtube 3802 may also comprise beveled camming surfaces 3808 around its interior distal edge to also guide the overtube 3802 over the cam portions 2506, 2508 and progressively increase the compressive force provided by the overtube 3802 as it is translated distally. Also, according to various embodiments, it will be appreciated that the end effector 2500′ may utilize a reciprocating member 2524 with flanges 2528a, 2528b, as illustrated in
In various surgical settings, it may be desirable to close the jaw members of an end effector without cutting tissue therebetween. In this way, an end effector may be used as a grasper as well as a dissecting/sealing instrument.
To close an end effector, the I-beam member 4102 may be pushed distally. The flange portions 4144A, 4144B may act to close and compress jaw member portions, for example, as illustrated and described with respect to
According to various embodiments, the end effectors 106, 1200, 1500, 2000, 2300, 2500, 2500′ may be used to cut and fasten tissue utilizing electrical energy. The examples described below are illustrated with the end effector 106. It will be appreciated, however, that similar configurations and techniques may be used with any of the end effectors described above. Referring to the end effector 106 shown in
Failing to heat tissue portions in a uniform manner can lead to ohmic heating, which can create portions of tissue that are not effectively joined and reduce the strength of the joint. Non-uniformly denatured tissue volume may still be “coagulated” and can prevent blood flow in small vasculature that contains little pressure. However, such non-uniformly denatured tissue may not create a seal with significant strength, for example in 2 mm to 10 mm arteries that contain high pressures. It is often difficult to achieve substantially uniform heating with a bipolar RF device in tissue, whether the tissue is thin or thick. For example, as RF energy density in tissue increases, the tissue surface tends to become desiccated and resistant to additional ohmic heating. Localized tissue desiccation and charring can sometimes occur almost instantly as tissue impedance rises, which then can result in a non-uniform seal in the tissue. Also, many RF jaws cause further undesirable effects by propagating RF density laterally from the engaged tissue thus causing unwanted collateral thermal damage.
To achieve substantially uniform coagulation, various embodiments described herein may utilize a “power adjustment” approach, a “current-path directing” approach and/or an approach referred to herein as a “weld” or “fusion” approach. According to the “power adjustment” approach, the RF generator 124 can rapidly adjust the level of total power delivered to the jaws' engagement surfaces in response to feedback circuitry, which may be present within the generator 124 and/or at the end effector 106, and may be electrically coupled to the active electrodes. The feedback circuitry may measure tissue impedance or electrode temperature. For example, temperature probes present on the jaw members 109, 110, 1202, 1204 may be in communication with the generator 123 and may sense electrode temperature.
In a second “current-path directing” approach, the end effector jaws carry an electrode arrangement in which opposing polarity electrodes are spaced apart by an insulator material, which may cause current to flow within an extended path through captured tissue rather than simply between surfaces of the first and second jaws. For example, electrode configurations similar to those shown below in
“Current-path directing” techniques are also used to improve the quality of energy-delivered seals.
A third approach, according to various embodiments, may be referred to as a “weld” or “fusion” approach. The alternative terms of tissue “welding” and tissue “fusion” are used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example in welding blood vessels that exhibit substantial burst strength immediately post-treatment. Such welds may be used in various surgical applications including, for example, (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts or lumens where permanent closure is desired; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof.
The welding or fusion of tissue as disclosed herein may be distinguished from “coagulation”, “hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For example, any surface application of thermal energy can cause coagulation or hemostasis—but does not fall into the category of “welding” as the term is used herein. Such surface coagulation does not create a weld that provides any substantial strength in the treated tissue.
A “weld,” for example, may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density may be provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam is maintained at a selected level of hydration—without desiccation—for a selected time interval, which may be very brief. The targeted tissue volume may be maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
To implement the welding described above, the electrodes 120, 122 (or electrodes that are part of the other end effector embodiments described herein) may, one or both, comprise an electrically conductive portion, such as copper or another suitable metal or alloy, and a portion comprising a positive temperature coefficient (PTC) material having a selected increased resistance that differs at selected increased temperatures thereof. The PTC material may be positioned between the electrically conductive portion and any tissue to be acted upon by the end effector 106. One type of PTC material is a ceramic that can be engineered to exhibit a selected positively slope curve of temperature-resistance over a temperature range of about 37° C. to 100° C. Another type of PCT material may comprise a polymer having similar properties. The region at the higher end of such a temperature range brackets a targeted “thermal treatment range” at which tissue can be effectively welded. The selected resistance of the PTC matrix at the upper end of the temperature range may substantially terminate current flow therethrough.
In operation, it can be understood that the electrodes 120 or 122 will apply active RF energy (ohmic heating within) to the engaged tissue until the point in time that the PTC matrix is heated to exceed the maximum of the thermal treatment range. Thereafter, RF current flow from the engagement surface will be lessened—depending on the relative surface areas of the first and second electrodes 120, 122. This instant and automatic reduction of RF energy application may prevent any substantial dehydration of tissue proximate to the engagement plane. By thus maintaining an optimal level of moisture around the engagement plane, the working end can more effectively apply energy to the tissue—and provide a weld thicker tissues with limited collateral thermal effects.
In various embodiments, surgical instruments utilizing various embodiments of the transection and sealing instrument 100, with the various end effectors and actuating mechanisms described herein may be employed in conjunction with a flexible endoscope.
In at least one such embodiment, the endoscope 4814, a laparoscope, or a thoracoscope, for example, may be introduced into the patient trans-anally through the colon, the abdomen via an incision or keyhole and a trocar, or trans-orally through the esophagus or trans-vaginally through the cervix, for example. These devices may assist the clinician to guide and position the transection and sealing instrument 100 near the tissue treatment region to treat diseased tissue on organs such as the liver, for example.
In one embodiment, Natural Orifice Translumenal Endoscopic Surgery (NOTES)™ techniques may be employed to introduce the endoscope 4814 and various instruments into the patient and carry out the various procedures described herein. A NOTES™ technique is a minimally invasive therapeutic procedure that may be employed to treat diseased tissue or perform other therapeutic operations through a natural opening of the patient without making incisions in the abdomen. A natural opening may be the mouth, anus, and/or vagina. Medical implantable instruments may be introduced into the patient to the target area via the natural opening. In a NOTES™ technique, a clinician inserts a flexible endoscope into one or more natural openings of the patient to view the target area, for example, using a camera. During endoscopic surgery, the clinician inserts surgical devices through one or more lumens or working channels of the endoscope 4814 to perform various key surgical activities (KSA). These KSAs include forming an anastomosis between organs, performing dissections, repairing ulcers and other wounds. Although the devices and methods described herein may be used with NOTES™ techniques, it will be appreciated that they may also be used with other surgical techniques including, for example, other endoscopic techniques, and laparoscopic techniques.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician manipulating an end of an instrument extending from the clinician to a surgical site (e.g., through a trocar, through a natural orifice or through an open surgical site). The term “proximal” refers to the portion closest to the clinician, and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
While several embodiments have been illustrated and described, and while several illustrative embodiments have been described in considerable detail, the described embodiments are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. Those of ordinary skill in the art will readily appreciate the different advantages provided by these various embodiments.
While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the embodiments. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The described embodiments are therefore intended to cover all such modifications, alterations and adaptations without departing from the scope of the appended claims.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
The entire disclosures of the following non-provisional United States patents are hereby incorporated by reference herein:
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
Preferably, the embodiments described herein will be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that may penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
The embodiments are not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the claims. Accordingly, it is expressly intended that all such equivalents, variations and changes that fall within the scope of the claims be embraced thereby.
In summary, numerous benefits have been described which result from employing the embodiments described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical applications to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
The present application is a continuation of U.S. patent application Ser. No. 12/758,253, now U.S. Pat. No. 8,834,518, filed on Apr. 12, 2010 and published as US2011/0251612, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2867039 | Zach | Jan 1959 | A |
3166971 | Stoecker | Jan 1965 | A |
3525912 | Wallin | Aug 1970 | A |
3580841 | Cadotte et al. | May 1971 | A |
3703651 | Blowers | Nov 1972 | A |
3777760 | Essner | Dec 1973 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4203430 | Takahashi | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4463759 | Garito et al. | Aug 1984 | A |
4492231 | Auth | Jan 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4617927 | Manes | Oct 1986 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4830462 | Karny et al. | May 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
5020514 | Heckele | Jun 1991 | A |
5061269 | Muller | Oct 1991 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5156633 | Smith | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5417709 | Slater | May 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5827323 | Klieman | Oct 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5984938 | Yoon | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6132368 | Cooper | Oct 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6480796 | Wiener | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6789939 | Schrödinger et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6821273 | Mollenauer | Nov 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
7935114 | Takashino et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8070036 | Knodel et al. | Dec 2011 | B1 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
8613383 | Beckman et al. | Dec 2013 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030105474 | Bonutti | Jun 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030216722 | Swanson | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040019350 | O'Brien et al. | Jan 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040193148 | Wham et al. | Sep 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040232196 | Shelton, IV et al. | Nov 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050085809 | Mucko et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106158 | Madan et al. | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070146113 | Truckai et al. | Jun 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070175949 | Shelton, IV et al. | Aug 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070191830 | Crompton, Jr. et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070232920 | Kowalski et al. | Oct 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232927 | Madan et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239025 | Wiener et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080188851 | Truckai et al. | Aug 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080262491 | Swoyer et al. | Oct 2008 | A1 |
20080269862 | Elmouelhi et al. | Oct 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080294158 | Pappone et al. | Nov 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090099582 | Isaacs et al. | Apr 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090131929 | Shimizu | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090248002 | Takashino et al. | Oct 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20090320268 | Cunningham et al. | Dec 2009 | A1 |
20090326530 | Orban, III et al. | Dec 2009 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036380 | Taylor et al. | Feb 2010 | A1 |
20100076433 | Taylor et al. | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100168620 | Klimovitch et al. | Jul 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20110015627 | Dinardo et al. | Jan 2011 | A1 |
20110082486 | Messerly et al. | Apr 2011 | A1 |
20110087214 | Giordano et al. | Apr 2011 | A1 |
20110087215 | Aldridge et al. | Apr 2011 | A1 |
20110087216 | Aldridge et al. | Apr 2011 | A1 |
20110087217 | Yates et al. | Apr 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
20110118754 | Dachs, II et al. | May 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110224668 | Johnson et al. | Sep 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110301605 | Horner | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120078248 | Worrell et al. | Mar 2012 | A1 |
20120083783 | Davison et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116379 | Yates et al. | May 2012 | A1 |
20120116380 | Madan et al. | May 2012 | A1 |
20120116391 | Houser et al. | May 2012 | A1 |
20120130256 | Buysse et al. | May 2012 | A1 |
20120136353 | Romero | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120150170 | Buysse et al. | Jun 2012 | A1 |
20120150192 | Dachs, II et al. | Jun 2012 | A1 |
20120172859 | Condie et al. | Jul 2012 | A1 |
20120265196 | Turner et al. | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20120323238 | Tyrrell et al. | Dec 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130030428 | Worrell et al. | Jan 2013 | A1 |
20130030433 | Heard | Jan 2013 | A1 |
20130035685 | Fischer et al. | Feb 2013 | A1 |
20130079762 | Twomey et al. | Mar 2013 | A1 |
20130085496 | Unger et al. | Apr 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130253502 | Aronow et al. | Sep 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20130338661 | Behnke, II | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140001235 | Shelton, IV | Jan 2014 | A1 |
20140001236 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005653 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005680 | Shelton, IV et al. | Jan 2014 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140005693 | Shelton, IV et al. | Jan 2014 | A1 |
20140005694 | Shelton, IV et al. | Jan 2014 | A1 |
20140005695 | Shelton, IV | Jan 2014 | A1 |
20140005701 | Olson et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005703 | Stulen et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140094801 | Boudreaux et al. | Apr 2014 | A1 |
20140180281 | Rusin | Jun 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140194915 | Johnson et al. | Jul 2014 | A1 |
20140214019 | Baxter, III et al. | Jul 2014 | A1 |
20140228844 | Hörlle et al. | Aug 2014 | A1 |
20140257284 | Artale | Sep 2014 | A1 |
20140303551 | Germain et al. | Oct 2014 | A1 |
20140316408 | Davison et al. | Oct 2014 | A1 |
20140330271 | Dietz et al. | Nov 2014 | A1 |
20140343550 | Faller et al. | Nov 2014 | A1 |
20150018826 | Boudreaux | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150080879 | Trees et al. | Mar 2015 | A1 |
20150080891 | Shelton, IV et al. | Mar 2015 | A1 |
20150133915 | Strobl et al. | May 2015 | A1 |
20150133929 | Evans et al. | May 2015 | A1 |
20150141981 | Price et al. | May 2015 | A1 |
20150190189 | Yates et al. | Jul 2015 | A1 |
20150196352 | Beckman et al. | Jul 2015 | A1 |
20150230853 | Johnson et al. | Aug 2015 | A1 |
20150230861 | Woloszko et al. | Aug 2015 | A1 |
20150265347 | Yates et al. | Sep 2015 | A1 |
20150272602 | Boudreaux et al. | Oct 2015 | A1 |
20150272657 | Yates et al. | Oct 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150272660 | Boudreaux et al. | Oct 2015 | A1 |
20150289925 | Voegele et al. | Oct 2015 | A1 |
20150297286 | Boudreaux et al. | Oct 2015 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051315 | Boudreaux | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160051317 | Boudreaux | Feb 2016 | A1 |
20160058492 | Yates et al. | Mar 2016 | A1 |
20160074108 | Woodruff et al. | Mar 2016 | A1 |
20160128762 | Harris et al. | May 2016 | A1 |
20160135875 | Strobl et al. | May 2016 | A1 |
20160157927 | Corbett et al. | Jun 2016 | A1 |
20160175024 | Yates et al. | Jun 2016 | A1 |
20160175028 | Trees et al. | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160175030 | Boudreaux | Jun 2016 | A1 |
20160175031 | Boudreaux | Jun 2016 | A1 |
20160175032 | Yang | Jun 2016 | A1 |
20160199123 | Thomas et al. | Jul 2016 | A1 |
20160199125 | Jones | Jul 2016 | A1 |
20160228171 | Boudreaux | Aug 2016 | A1 |
20160270840 | Yates et al. | Sep 2016 | A1 |
20160270841 | Strobl et al. | Sep 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160278848 | Boudreaux et al. | Sep 2016 | A1 |
20160296268 | Gee et al. | Oct 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20160296271 | Danziger et al. | Oct 2016 | A1 |
20160302844 | Strobl et al. | Oct 2016 | A1 |
20160317215 | Worrell et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2868227 | Feb 2007 | CN |
102834069 | Dec 2012 | CN |
4300307 | Jul 1994 | DE |
19608716 | Apr 1997 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
0340803 | Aug 1993 | EP |
0630612 | Dec 1994 | EP |
0705571 | Apr 1996 | EP |
0557806 | May 1998 | EP |
0640317 | Sep 1999 | EP |
0722696 | Dec 2002 | EP |
1293172 | Apr 2006 | EP |
0875209 | May 2006 | EP |
1704824 | Sep 2006 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1254637 | Aug 2007 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1435852 | Dec 2008 | EP |
1849424 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1810625 | Aug 2009 | EP |
2090238 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2243439 | Oct 2010 | EP |
1510178 | Jun 2011 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
2529681 | Dec 2012 | EP |
1767164 | Jan 2013 | EP |
2316359 | Mar 2013 | EP |
2578172 | Apr 2013 | EP |
2508143 | Feb 2014 | EP |
2472216 | Feb 2011 | GB |
H 08-229050 | Sep 1996 | JP |
2008-018226 | Jan 2008 | JP |
5714508 | May 2015 | JP |
WO 8103272 | Nov 1981 | WO |
WO 9307817 | Apr 1993 | WO |
WO 9322973 | Nov 1993 | WO |
WO 9510978 | Apr 1995 | WO |
WO 9635382 | Nov 1996 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9800069 | Jan 1998 | WO |
WO 9840020 | Sep 1998 | WO |
WO 9857588 | Dec 1998 | WO |
WO 9923960 | May 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO 0025691 | May 2000 | WO |
WO 0128444 | Apr 2001 | WO |
WO 02062241 | Aug 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 03001986 | Jan 2003 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020339 | Mar 2003 | WO |
WO 03028541 | Apr 2003 | WO |
WO 03030708 | Apr 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004078051 | Sep 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2005052959 | Jun 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2006036706 | Apr 2006 | WO |
WO 2006055166 | May 2006 | WO |
WO 2006119139 | Nov 2006 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008099529 | Aug 2008 | WO |
WO 2008101356 | Aug 2008 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009036818 | Mar 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009059741 | May 2009 | WO |
WO 2009082477 | Jul 2009 | WO |
WO 2009149234 | Dec 2009 | WO |
WO 2010017266 | Feb 2010 | WO |
WO 2010104755 | Sep 2010 | WO |
WO 2011008672 | Jan 2011 | WO |
WO 2011084768 | Jul 2011 | WO |
WO 2011089717 | Jul 2011 | WO |
WO 2011144911 | Nov 2011 | WO |
WO 2012044606 | Apr 2012 | WO |
WO 2012166510 | Dec 2012 | WO |
WO 2013034629 | Mar 2013 | WO |
WO 2013062978 | May 2013 | WO |
WO 2013102602 | Jul 2013 | WO |
WO 2013154157 | Oct 2013 | WO |
WO 2015197395 | Dec 2015 | WO |
Entry |
---|
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/d1-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Erbe Electrosurgery VIO® S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med.com/erbe/media/Marketingmaterialien/85140-170—ERBE—EN—VIO—200—S—D027541. |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, p. 13-89, 199-293, 335-393,453-496, 535-549. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
International Search Report for PCT/US2011/031147, dated Nov. 9, 2011 (7 pages). |
International Preliminary Report on Patentability for PCT/US2011/031147, dated Oct. 16, 2012 (10 pages). |
Written Opinion for PCT/US2011/031147, dated Nov. 9, 2011 (10 pages). |
U.S. Appl. No. 12/576,529, filed Oct. 9, 2009. |
U.S. Appl. No. 15/265,293, filed Sep. 14, 2016. |
U.S. Appl. No. 15/258,570, filed Sep. 7, 2016. |
U.S. Appl. No. 15/258,578, filed Sep. 7, 2016. |
U.S. Appl. No. 15/258,586, filed Sep. 7, 2016. |
U.S. Appl. No. 15/258,598, filed Sep. 7, 2016. |
Number | Date | Country | |
---|---|---|---|
20140343550 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12758253 | Apr 2010 | US |
Child | 14450922 | US |