A variety of surgical instruments include one or more elements that transmit RF energy to tissue (e.g., to coagulate or seal the tissue). Some such instruments comprise a pair of jaws that open and close on tissue, with conductive tissue contact surfaces that are operable to weld tissue clamped between the jaws. In open surgical settings, some such instruments may be in the form of forceps having a scissor grip.
In addition to having RF energy transmission elements, some surgical instruments also include a translating tissue cutting element. An example of such a device is the ENSEAL® Tissue Sealing Device by Ethicon Endo-Surgery, Inc., of Cincinnati, Ohio. Further examples of such devices and related concepts are disclosed in U.S. Pat. No. 6,500,176 entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,112,201 entitled “Electrosurgical Instrument and Method of Use,” issued Sep. 26, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,125,409, entitled “Electrosurgical Working End for Controlled Energy Delivery,” issued Oct. 24, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,169,146 entitled “Electrosurgical Probe and Method of Use,” issued Jan. 30, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,186,253, entitled “Electrosurgical Jaw Structure for Controlled Energy Delivery,” issued Mar. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,189,233, entitled “Electrosurgical Instrument,” issued Mar. 13, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,220,951, entitled “Surgical Sealing Surfaces and Methods of Use,” issued May 22, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,309,849, entitled “Polymer Compositions Exhibiting a PTC Property and Methods of Fabrication,” issued Dec. 18, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,311,709, entitled “Electrosurgical Instrument and Method of Use,” issued Dec. 25, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,354,440, entitled “Electrosurgical Instrument and Method of Use,” issued Apr. 8, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,381,209, entitled “Electrosurgical Instrument,” issued Jun. 3, 2008, the disclosure of which is incorporated by reference herein.
Additional examples of electrosurgical cutting instruments and related concepts are disclosed in U.S. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2012/0116379, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” published May 10, 2012, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2012/0078243, entitled “Control Features for Articulating Surgical Device,” published Mar. 29, 2012, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2012/0078247, entitled “Articulation Joint Features for Articulating Surgical Device,” published Mar. 29, 2012, the disclosure of which is incorporated by reference herein; U.S. patent application Ser. No. 13/622,729, entitled “Surgical Instrument with Multi-Phase Trigger Bias,” filed Sep. 19, 2012, the disclosure of which is incorporated by reference herein; and U.S. patent application Ser. No. 13/622,735, entitled “Surgical Instrument with Contained Dual Helix Actuator Assembly,” filed Sep. 19, 2012, the disclosure of which is incorporated by reference herein.
Some versions of electrosurgical instruments that are operable to sever tissue may be selectively used in at least two modes. One such mode may include both severing tissue and coagulating tissue. Another such mode may include just coagulating tissue without also severing the tissue. Yet another mode may include the use of jaws to grasp and manipulate tissue without also coagulating and/or severing the tissue. When an instrument includes grasping jaws and tissue severing capabilities, the instrument may also include a feature that ensures closure of the jaws before the tissue is severed.
While several medical devices have been made and used, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a human or robotic operator of the surgical instrument. The term “proximal” refers the position of an element closer to the human or robotic operator of the surgical instrument and further away from the surgical end effector of the surgical instrument. The term “distal” refers to the position of an element closer to the surgical end effector of the surgical instrument and further away from the human or robotic operator of the surgical instrument.
I. Exemplary Electrosurgical Forceps
As previously noted, an electrosurgical instrument may include a set of jaws, with at least one of the jaws being pivotable relative to the other jaw to selectively compress tissue between the jaws. Once the tissue is compressed, electrodes in the jaws may be activated with bipolar RF energy to seal the tissue. In some instances, a cutting feature is operable to sever tissue that is clamped between the jaws. For instance, the cutting feature may be actuated after the RF energy has sealed the tissue. Various references that are cited herein relate to electrosurgical instruments where the jaws are part of an end effector at the distal end of an elongate shaft, such that the end effector and the shaft may be inserted through a port (e.g., a trocar) to reach a site within a patient during a minimally invasive endoscopic surgical procedure. A handpiece may be positioned at the proximal end of the shaft for manipulating the end effector. Such a handpiece may have a pistol grip configuration or some other configuration.
In some instances, it may be desirable to provide an electrosurgical instrument that does not have an elongate shaft or handpiece similar to those described in the various references cited herein. In particular, it may be desirable to provide an electrosurgical instrument that is configured similar to a forceps device, with a scissor grip. Such instruments may be used in a variety of medical procedures. Various examples of electrosurgical shears/forceps devices are disclosed in U.S. patent application Ser. No. 13/752,588, entitled “Electrosurgical Hand Shears,” filed Jan. 29, 2013, the disclosure of which is incorporated by reference herein. Various other examples of electrosurgical forceps instruments will be described in greater detail below; while other examples will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary Electrosurgical Forceps with Link-Driven Firing Beam
A cable (130) also extends from the proximal end of second arm (120). Cable (130) is coupled with a control unit (132), which is further coupled with a power source (134). Control unit (132) and power source (134) are operable to provide RF power to electrodes (113, 123) in jaws (112, 114), to thereby seal tissue captured between jaws (112, 114). In some versions, control unit (132) comprises a GEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio. By way of example only, control unit (132) may be configured in accordance with at least some of the teachings of U.S. Pub. No. 2011/0087212, entitled “Surgical Generator for Ultrasonic and Electrosurgical Devices,” published Apr. 14, 2011, the disclosure of which is incorporated by reference herein. A pivoting trigger (136) is positioned in second arm (120) and is operable to selectively switch the RF power to electrodes (113, 123) on and off.
A link (140) is pivotally coupled with first arm (110) by a pin (142). A firing beam (150) is pivotally coupled with link (140) by a pin (144). Firing beam (150) extends into jaws (112, 122) and includes a distal cutting edge (152) that is operable to sever tissue captured between jaws (112, 122) as will be described in greater detail below. Firing beam (150) also includes a lower flange (154) and an upper flange (156), which are configured to bear against opposing surfaces of jaws (112, 122) to maintain jaws (112, 122) in a closed position as firing beam (150) translates distally through jaws (112, 122). As best seen in
In some instances of use, an operator may simply wish to grasp and perhaps seal tissue with jaws (112, 122). In such instances, the operator may release their grip on rings (114, 124) after reaching the configuration shown in
B. Exemplary Electrosurgical Forceps with Rack-Driven Firing Beam
A pivoting trigger (260) is pivotally coupled with second arm (220) by a pin (262). Trigger (260) includes a set of teeth (264) that are positioned along an arcuate path to provide a pinion. Trigger (260) also includes a button assembly (266). Button assembly (266) is operable to selectively activate the electrodes of jaws (212, 222) with RF energy. In the present example, button assembly (266) is configured such that when an operator depresses button assembly (266), the electrodes of jaws (212, 222) will be activated with RF energy before trigger (260) pivots about pin (262).
Teeth (264) of trigger (260) mesh with complementary teeth (242) of a rack (240). Rack (240) is slidably disposed in second arm (220). Rack (240) is secured to a firing beam (250), which is substantially similar to firing beam (150) described above. It should therefore be understood that pivoting of trigger (260) about pin (262) will drive firing beam (250) longitudinally. Thus, if an operator wishes to grasp tissue with instrument (200), the operator may position the tissue between jaws (212, 222) and move ring (214) toward ring (224). If the operator wishes to seal tissue with instrument (200), the operator may depress button assembly (266), which will activate the electrodes of jaws (212, 222) with RF energy. If the operator wishes to sever the tissue with instrument (200), the operator may depress trigger (260), which will drive firing beam (250) distally. In some versions, this may require pressing on button assembly (266) with a force that is greater than the force required to activate the electrodes of jaws (212, 222).
C. Exemplary Electrosurgical Forceps with Two-Stage Pivoting Trigger
As best seen in
As best seen in
As best seen in
It should also be understood that
Instrument (300) of the present example also includes a trigger assembly (360) that is operable to selectively activate electrodes in jaws (312, 322) with RF energy and unlock firing beam (350).
Trigger assembly (360) is configured such that trigger assembly (360) may be actuated in two stages, through two ranges of motion about pin (366). When housing (362) is pulled by the operator through a first range of motion about pin (366), housing (362) drives dome switch (364) into protrusion (372). The spring constant of spring (376) is greater than the spring constant of dome switch (364), such that dome switch (364) is actuated by protrusion (372) before lock member (370) moves. Thus, dome switch (364) is actuated upon completion of the first range of motion of trigger assembly (360). This causes RF energy to be delivered to electrodes in jaws (312, 322). As the operator continues to press housing (362) through a second range of motion about pin (366), housing (362) and dome switch (364) bear against lock member (370) to the point where lock member (370) begins to pivot about pin (366). This eventually causes locking arm (374) to disengage notch (358), as can be seen in the transition from
After reaching the stage shown in
Once firing beam (350) has reached a full range of distal travel as shown in
In some exemplary uses, the operator may hold trigger assembly (360) in an actuated position, leaving firing beam (350) unlocked as the operator repeatedly squeezes and releases rings (314, 324). This may enable the operator to repeatedly open and close jaws (312, 322) on tissue. In some instances, the operator may stop short during each squeezing action, such that the operator just seals tissue each time the operator squeezes rings (314, 324). In some other instances, the operator may repeatedly squeeze rings (314, 324) through full actuation strokes, driving firing beam (350) distally each time. In other words, the operator may cut a long continuous line through tissue by repeatedly squeezing and releasing rings (314, 324), using instrument (300) like a conventional set of shears. Other suitable ways in which instrument (300) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.
Some versions of electrosurgical instruments may include one or more components that are reusable, with other components that are intended to be disposed of after a single use. By way of example only, electronic and/or metallic components of a surgical instrument may be reused due to cost concerns, environmental concerns, and/or other concerns. In view of the foregoing, it may be desirable to enable an operator of a surgical instrument to separate disposable components of the surgical instrument from reusable components of the surgical instrument with relative ease. This would enable the operator to easily dispose of the disposable components and have the reusable components be sterilized and otherwise processed for reuse. In some instances, disposable components may be provided as cartridges that are selectively loaded on reusable components of surgical instruments. Various illustrative examples of such combinations are described in greater detail below; while other examples will be apparent to those of ordinary skill in the art in view of the teachings herein.
A. Exemplary Electrosurgical Forceps with Cartridge Having Sliding Overtube Coupling
First arm (410) is pivotably coupled with sleeve (470) by a joint (472). The proximal end of sleeve (470) includes a pair of lateral notches (474). Sleeve (470) is configured to slidingly receive jaw (422). Jaw (422) is positioned at the distal end of a support member (424), which is also configured to fit within sleeve (470). A firing beam (450) also fits in sleeve (470). Firing beam (450) is configured and operable similar to firing beam (150) described above, such that firing beam (450) is operable to sever tissue captured between jaws (412, 422). Various suitable ways in which firing beam (450) may be selectively advanced and retracted through jaws (412, 422) will be apparent to those of ordinary skill in the art in view of the teachings herein. When jaw (422), support member (424), and firing beam (450) are inserted through sleeve (470) such that jaw (412) is adjacent to jaw (422), latches (480) snap into lateral notches (474). In the present example, latches (480) are resiliently biased to snap into lateral notches (474). This engagement substantially secures arms (410, 420) together. A pair of buttons (482) on opposing sides of second arm (420) may be depressed to disengage latches (480) from notches (474).
Thus, first arm (410) may be selectively coupled with second arm (420) for use during a medical procedure; and first arm (410) may then be removed from second arm (420). In the present example, first arm (410) is provided as a reusable component while second arm (420) is provided as a disposable component. My way of example only, first arm (410) may be formed entirely of steel, some other metal, and/or some other kind of material that may be processed and reused repeatedly without adversely impacting performance of first arm (410). Cable (430) may also be provided as a reusable component. Other suitable components, features, variations, and operabilities for instrument (400) will be apparent to those of ordinary skill in the art in view of the teachings herein.
B. Exemplary Electrosurgical Forceps with Cartridge Having Snap Arm
As best seen in
C. Exemplary Electrosurgical Forceps with Cartridge Having Vertically Deflecting Resilient Firing Beam Lock
As best seen in
As best seen in
In the present example, second arm (620) includes channels (not shown) that are similar to channels (326, 327, 328, 329) described above. For instance, channels in second arm (620) that are similar to channels (326, 327) may receive a pin that couples links (640, 644), similar to pin (346). Likewise, channels in second arm (620) that are similar to channels (328, 329) may receive pin (648) and a lateral protrusion (645) of link (644). When firing beam (650) is unlocked and ring (614) is squeezed toward arm (620), the pins and protrusion (645) slide along the channels to guide links (640, 644) as links (640, 644) approach a substantially straight configuration, thereby advancing firing beam (650) distally through jaws (612, 622).
Grip portion (604) of instrument (600) includes a finger ring (624) and a trigger assembly (660) that is operable to activate RF energy at electrodes in jaws (612, 622) and unlock firing beam (650) for distal advancement. Trigger assembly (660) comprises a pair of trigger body halves (662), each half (662) defining a respective opening (664). As best seen in
As best seen in FIGS. 23 and 25A-25B, each trigger body half (662) also includes an inwardly extending protrusion (666). Protrusions (666) are slidably received in slots (626) of grip portion (604). Slots (626) are positioned to generally align with openings (634) when cartridge portion (602) is fully seated in grip portion (604). Protrusions (666) are configured to move within slots (626) to selectively engage tabs (674) of firing beam locking member (670). As shown in
Instrument (600) of the present example also includes a set of contactless electrical features that are configured to drive at least part of the operation of instrument (600). In particular, as best seen in
Reed switch (623) is configured to be activated by a magnet (603) that is mounted at the proximal end of cartridge portion (602). In particular, reed switch (623) may be used to detect whether cartridge portion (602) is fully seated in grip portion (604). A control logic in the circuit may be configured to prevent an electrical signal from being sent to contacts (608) in the absence of cartridge portion (602).
Reed switch (643) is configured to be activated by a magnet (641) located near the joint of links (640, 644). Reed switch (643) may be positioned such that magnet (641) activates reed switch (643) as soon as firing beam (650) has been driven to a distal position by links (640, 644). A control logic in the circuit may be configured to cut off RF power to the electrodes in jaws (612, 622) after firing beam (650) reaches the distal position (or after a predetermined time period has elapsed after firing beam (650) reaches the distal position, etc.).
Reed switch (695) is configured to be activated by a magnet (693) in trigger assembly (660). In particular, reed switch (695) may be positioned such that magnet (693) activates reed switch (695) as soon as trigger assembly (660) is fully actuated. A control logic in the circuit may be configured to activate the electrodes in jaws (612, 622) with RF energy once trigger assembly (660) is fully actuated. It should be understood that the configuration of trigger assembly (660) and firing beam locking member (670) will prevent firing beam (650) from advancing distally until after the electrodes in jaws (612, 622) have been activated with RF energy.
In an exemplary use, cartridge portion (602) and grip portion (604) are initially provided as separate components. Second arm (620) of cartridge portion (602) is then inserted into grip portion (604) until latch (630) snaps into place to secure portions (602, 604) together. At this stage, contacts (608, 632) engage each other to provide a path for electrical continuity between portions (602, 604); and magnet (603) cooperates with reed switch (623) to register the coupling of portions (602, 604). Jaws (612, 622) are then positioned at a surgical site in a patient, with tissue between jaws (612, 622). The operator then squeezes rings (614, 624) toward each other to compress the tissue between jaws (612, 622). Once links (644, 640) reach a point where catch (658) bears against firing beam locking member (670), arm (610) can pivot no further toward arm (620). The operator then pivots trigger assembly (660) about posts (690). Magnet (693) eventually trips reed switch (695), which then causes RF energy to be delivered to electrodes in jaws (612, 622). In addition, protrusions (666) drive into tabs (674), deflecting firing beam locking member (670) out of engagement with catch (658). The operator then squeezes rings (614, 640) further, causing links (640, 644) to pivot to generally straight positions, thereby driving firing beam (650) distally. It should be understood that first arm (610) may bend to some degree during this stage. The distally advancing firing beam (650) severs the tissue between jaws (612, 622). Once firing beam (650) reaches the distal position, magnet (641) trips reed switch (643), effectively cutting off the RF energy at the electrodes in jaws (612, 622). The operator then relaxes their grip on rings (614, 640), releasing the tissue from jaws (612, 622) and retracting firing beam (650) proximally.
The above process may be repeated as many times as desired. For instance, jaws (612, 622) and firing beam (650) may be actuated repeatedly along a continuous line for any suitable length. Alternatively, jaws (612, 622) and firing beam (650) may be actuated repeatedly at different tissue sites. It should also be understood that jaws (612, 622) may be used to only grasp tissue, or to only grasp and seal tissue, without necessarily also severing the tissue with firing beam (650). After the operator is done using instrument (600), the operator may depress latch (630) and separate cartridge portion (602) from grip portion (604). The operator may then dispose of cartridge portion (602) and send grip portion (604) through a sterilization/reclamation process. Grip portion (604) may thus be later used in another surgical procedure with another cartridge portion (602). Other suitable components, features, variations, and operabilities for instrument (600) will be apparent to those of ordinary skill in the art in view of the teachings herein.
D. Exemplary Electrosurgical Forceps with Cartridge Having Laterally Deflecting Resilient Firing Beam Lock
A firing beam (750) is slidably disposed in body (708). Firing beam (750) extends into jaws (712, 714) and includes a distal cutting edge (752) that is operable to sever tissue captured between jaws (712, 714) as will be described in greater detail below. As best seen in
Grip portion (702) includes a first arm (720) and a second arm (730) that are pivotally coupled by a pin (703). A first jaw support (732) is positioned at the distal end of second arm (730) and is configured to receive and support first jaw (712). A second jaw support (722) is positioned at the distal end of first arm (720) and is configured to receive and support second jaw (714). Thus, second jaw support (722) and second jaw (714) pivot together relative to the combination of first jaw support (732) and first jaw (712). A thumb ring (724) at the proximal end of first arm (720) may be squeezed toward second arm (730) to pivot second jaw support (722) and second jaw (714) toward the combination of first jaw support (732) and first jaw (712). A finger ring (734) of second arm (730) may be held for support during such squeezing of thumb ring (724).
As best seen in
Grip portion (704) also includes a trigger assembly (760) that is operable to activate RF energy at electrodes in jaws (712, 714) and unlock firing beam (750) for distal advancement. Trigger assembly (760) comprises a pair of trigger body halves (762, 763). As best seen in
Instrument (700) of the present example also includes a set of contactless electrical features that are configured to drive at least part of the operation of instrument (700). In particular, as best seen in
Reed switch (772) is configured to be activated by a magnet (782) that is mounted at the proximal end of cartridge portion (702). In particular, reed switch (772) may be used to detect whether cartridge portion (702) is fully seated in grip portion (704). A control logic in the circuit may be configured to prevent an electrical signal from being sent to contacts (not shown) that engage contacts (701), in the absence of cartridge portion (702).
Reed switch (774) is configured to be activated by a magnet (784) located near the joint of links (740, 744). Reed switch (774) may be positioned such that magnet (784) activates reed switch (774) as soon as firing beam (750) has been driven to a distal position by links (740, 744). A control logic in the circuit may be configured to cut off RF power to the electrodes in jaws (712, 714) after firing beam (750) reaches the distal position (or after a predetermined time period has elapsed after firing beam (750) reaches the distal position, etc.).
Reed switch (776) is configured to be activated by a magnet (767) that is positioned in a recess (766) formed in trigger body half (763). In particular, reed switch (776) may be positioned such that magnet (767) activates reed switch (776) as soon as trigger assembly (760) is fully actuated. A control logic in the circuit may be configured to activate the electrodes in jaws (712, 714) with RF energy once trigger assembly (760) is fully actuated. It should be understood that the configuration of trigger assembly (760), catch (758), and projection (709) will prevent firing beam (750) from advancing distally until after the electrodes in jaws (712, 714) have been activated with RF energy.
In an exemplary use, cartridge portion (702) and grip portion (704) are initially provided as separate components. Body (708) of cartridge portion (702) is then inserted into grip portion (704) until latch (706) snaps into place to secure portions (702, 704) together. At this stage, contacts (701) engage contacts in grip portion (704) to provide a path for electrical continuity between portions (702, 704); and magnet (782) cooperates with reed switch (772) to register the coupling of portions (702, 704). Jaws (712, 714) are then positioned at a surgical site in a patient, with tissue between jaws (712, 714). The operator then squeezes rings (724, 734) toward each other to compress the tissue between jaws (712, 714). Once links (744, 740) reach a point where pin (748) enters notch (759) of firing beam (750) and catch (758) bears against protrusion (709), arm (720) can pivot no further toward arm (730). The operator then pivots trigger assembly (760) relative to second arm (730). Magnet (767) eventually trips reed switch (776), which then causes RF energy to be delivered to electrodes in jaws (712,714). In addition, chamfer (765) cams against catch (758), deflecting catch (758) out of engagement with protrusion (709). The operator then squeezes rings (724, 734) further, causing links (740, 744) to pivot to generally straight positions, thereby driving firing beam (750) distally. It should be understood that first arm (720) may bend to some degree during this stage. The distally advancing firing beam (750) severs the tissue between jaws (712, 714). Once firing beam (750) reaches the distal position, magnet (784) trips reed switch (774), effectively cutting off the RF energy at the electrodes in jaws (712, 714). The operator then relaxes their grip on rings (724, 734), releasing the tissue from jaws (712, 714) and retracting firing beam (750) proximally.
The above process may be repeated as many times as desired. For instance, jaws (712, 714) and firing beam (750) may be actuated repeatedly along a continuous line for any suitable length. Alternatively, jaws (712, 714) and firing beam (750) may be actuated repeatedly at different tissue sites. It should also be understood that jaws (712, 714) may be used to only grasp tissue, or to only grasp and seal tissue, without necessarily also severing the tissue with firing beam (750). After the operator is done using instrument (700), the operator may depress latch (706) and separate cartridge portion (702) from grip portion (704). The operator may then dispose of cartridge portion (702) and send grip portion (704) through a sterilization/reclamation process. Grip portion (704) may thus be later used in another surgical procedure with another cartridge portion (702). Other suitable components, features, variations, and operabilities for instrument (700) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Grip housing (830) also includes a pair of dogleg slots (840). Dogleg slots (840) each include an upper longitudinally extending portion, a lower longitudinally extending portion, and a slanted portion coupling the upper and lower longitudinally extending portions. A pair of transversely oriented pins (842) are slidably positioned in slots (840), each pin (842) being located in a respective slot (840). The ends of pins (842) are secured to slider actuators (844), which are positioned lateral to grip housing (830). Actuators (844) are operable to slide pins (842) along the length of slots (840). The distal-most pin (842) is configured to engage a notch (854) formed in a firing beam (850). Firing beam (850) of this example includes a distal cutting edge (852) and is configured to translate distally through jaws (812, 824) to sever tissue captured between jaws (812, 824). Firing beam (850) also includes a lower projection (856) that is coupled with one end of a coil spring (870). The other end of coil spring (870) is secured to grip housing (830). Coil spring (870) is configured to resiliently bias firing beam (850) toward a proximal position, retracted proximal to jaws (812, 824).
As can be seen from
Once pins (842) reach the position shown in
In an exemplary use, cartridge body (822) and the rest of instrument (800) are initially provided as separate components. Cartridge body (822) is then inserted into grip housing (830) until latch (826) snaps into place to secure body (822) and housing (830) together. Jaws (812, 824) are then positioned at a surgical site in a patient, with tissue between jaws (812, 824). The operator then squeezes rings (814, 832) toward each other to compress the tissue between jaws (812, 824). Downwardly projecting member (818) engages arm (880) and pivots arm (880) about pin (882), from the position shown in
The above process may be repeated as many times as desired. For instance, jaws (812, 824) and firing beam (850) may be actuated repeatedly along a continuous line for any suitable length. Alternatively, jaws (812, 824) and firing beam (850) may be actuated repeatedly at different tissue sites. It should also be understood that jaws (812, 824) may be used to only grasp tissue, or to only grasp and seal tissue, without necessarily also severing the tissue with firing beam (850). After the operator is done using instrument (800), the operator may depress latch (826) and separate cartridge body (822) from grip housing (830). The operator may then dispose of cartridge body (822) and send the rest of instrument (800) through a sterilization/reclamation process. The rest of instrument (800) may thus be later used in another surgical procedure with another cartridge body (822). Other suitable components, features, variations, and operabilities for instrument (800) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Second arm (920) also includes a pair of dogleg slots (940). Dogleg slots (940) each include an upper longitudinally extending portion, a lower longitudinally extending portion, and a slanted portion coupling the upper and lower longitudinally extending portions. A pair of transversely oriented pins (942) are slidably positioned in slots (940), each pin (942) being located in a respective slot (940). The ends of pins (942) are secured to slider actuators (944), which are positioned lateral to second arm (920). Actuators (944) are operable to slide pins (942) along the length of slots (940). The distal-most pin (942) is configured to engage a notch (954) formed in a firing beam (950). Firing beam (950) of this example includes a distal cutting edge (not shown) and is configured to translate distally through jaws (912, 922) to sever tissue captured between jaws (912, 922). One end of a coil spring (970) is secured to slider actuators (944) while the other end of coil spring (970) is secured to second arm (920). Coil spring (970) is configured to resiliently bias slider actuators (944) toward a proximal position.
As shown in
As the operator continues to advance actuators (944) distally, pins (942) transition along the slanted portions coupling the upper and lower longitudinally extending portions of slots (840), such that the distal-most pin (942) disengages prongs (962) as shown in
The above process may be repeated as many times as desired. For instance, jaws (912, 922) and firing beam (950) may be actuated repeatedly along a continuous line for any suitable length. Alternatively, jaws (912, 922) and firing beam (950) may be actuated repeatedly at different tissue sites. It should also be understood that jaws (912, 922) may be used to only grasp tissue, or to only grasp and seal tissue, without necessarily also severing the tissue with firing beam (950). Other suitable components, features, variations, and operabilities for instrument (900) will be apparent to those of ordinary skill in the art in view of the teachings herein.
It should be understood that any of the versions of instruments described herein may include various other features in addition to or in lieu of those described above. By way of example only, any of the instruments described herein may also include one or more of the various features disclosed in any of the various references that are incorporated by reference herein. It should also be understood that the teachings herein may be readily applied to any of the instruments described in any of the other references cited herein, such that the teachings herein may be readily combined with the teachings of any of the references cited herein in numerous ways. Other types of instruments into which the teachings herein may be incorporated will be apparent to those of ordinary skill in the art.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures. By way of example only, various teachings herein may be readily incorporated into a robotic surgical system such as the DAVINCI™ system by Intuitive Surgical, Inc., of Sunnyvale, Calif. Similarly, those of ordinary skill in the art will recognize that various teachings herein may be readily combined with various teachings of U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” published Aug. 31, 2004, the disclosure of which is incorporated by reference herein.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Pat. App. No. 61/641,443, entitled “Electrosurgical Device for Cutting and Coagulating,” filed May 2, 2012, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61641443 | May 2012 | US |