The present disclosure relates to electrosurgical instruments and, more particularly, to electrosurgical forceps for grasping, treating, and/or dividing tissue.
A surgical forceps is a plier-like instrument which relies on mechanical action between its jaws to grasp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to treat tissue, e.g., coagulate, cauterize, and/or seal tissue.
Typically, once tissue is treated, the surgeon has to accurately sever the treated tissue. Accordingly, many electrosurgical forceps have been designed which incorporate a knife configured to effectively sever tissue after the tissue is treated.
As used herein, the term “distal” refers to the portion that is being described which is further from a surgeon, while the term “proximal” refers to the portion that is being described which is closer to a surgeon. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about +/−10 degrees from true parallel and true perpendicular.
An electrosurgical forceps provided in accordance with aspects of the present disclosure includes a first shaft member, a second shaft member pivotably coupled to the first shaft member, a first jaw member secured to and extending distally from the first shaft member, a second jaw member secured to and extending distally from the second shaft member, and a knife. The first jaw member includes a jaw frame, an insulative spacer disposed on the jaw frame and defining a longitudinally-extending channel, and a tissue-contacting plate disposed on the insulative spacer. The knife is selectively translatable through the first shaft member from a retracted position to an extended position in which the knife extends at least partially between the first and second jaw members. The knife includes a distal edge having a sharp, upper segment and a dull, lower segment depending from the upper segment. The lower segment is configured to abut the insulative spacer when the knife is in the extended position.
In aspects, the lower segment of the distal edge of the knife may protrude distally beyond the upper segment.
In further aspects, the upper segment of the distal edge of the knife may extend at an oblique angle relative to a longitudinal axis defined by the knife, and the lower segment may be perpendicular relative to the longitudinal axis.
In some aspects, the lower segment of the distal edge of the knife may be received in the channel of the insulative spacer, and the upper segment may be received in a longitudinally-extending channel defined by the tissue-contacting plate.
In other aspects, the lower segment of the distal edge of the knife may be configured to abut an inner peripheral surface of the insulative spacer upon the knife moving to the extended position. The inner peripheral surface of the insulative spacer may define an outer periphery of the channel.
In another aspect of the present disclosure, an electrosurgical forceps is provided that includes a first shaft member having a first inner frame, a second shaft member pivotably coupled to the first shaft member, a first jaw member secured to and extending distally from the first shaft member, a second jaw member secured to and extending distally from the second shaft member, a knife, and an elongate shell attached to a lateral side of the first inner frame. The knife is selectively translatable through the first shaft member from a retracted position to an extended position in which the knife extends at least partially between the first and second jaw members. The elongate shell defines a longitudinally-extending passageway configured for slidable receipt of the knife therethrough.
In aspects, the elongate shell may have an inner surface that defines the passageway. The inner surface may be configured to permit movement of the knife along a longitudinal axis defined by the knife and resist lateral and vertical movement of the knife relative to the longitudinal axis.
In further aspects, the elongate shell may be fabricated from plastic.
In other aspects, the knife may have a blade stop protruding outwardly therefrom configured to abut a proximal edge of the elongate shell when the knife moves to the extended position to prevent further distal movement of the knife along the passageway.
In some aspects, the elongate shell may have a connection tab extending laterally therefrom and configured to engage a correspondingly shaped aperture defined in the lateral side of the first inner frame.
In aspects, the elongate shell may have a rectangular shape.
Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views:
Referring to
Continuing with reference to
Referring to
Inner frame 114 defines one or more location apertures 115c, a trigger aperture 115d, and a longitudinal slot 115e that each extends through both body plate 115a and reinforcing plate 115b. The one or more location apertures 115c are configured to receive corresponding posts 117 of outer housing 116 to locate and maintain inner frame 114 in position within outer housing 116. Body plate 115a extends distally beyond reinforcing plate 115b to enable attachment of jaw member 210 thereto, e.g., via staking or other suitable engagement. The portion of body plate 115a that extends distally beyond reinforcing plate 115b further defines a pivot aperture 115f and a pair of longitudinally-spaced connection apertures 115h extending transversely therethrough. Connection apertures 115h are configured for receipt of a pair of correspondingly-shaped tabs 134 of an elongate shell 132 of forceps 100.
With reference to
Elongate shell 132 has a pair of tabs 134 (only one tab is illustrated) extending laterally therefrom. Tabs 134 are configured for receipt within the pair of apertures 115h in the lateral side of body plate 115a of inner frame 114. Tabs 134 may be sized for a friction-fit engagement within apertures 115h of body plate 115a. In some aspects, elongate shell 132 may be detachably coupled to lateral side of body plate 115a of inner frame 114. In other aspects, elongate shell 132 may be assembled to body plate 115a of inner frame 114 by sliding elongate shell 132 over body plate 115a of inner frame 114.
Knife 140 has a blade stop 147 (
With reference to
Referring to
Lower segment 148b of distal edge 148 of knife 140 protrudes distally beyond upper segment 148. As such, lower segment 148b abuts a distal end of inner peripheral surface 213b of insulative spacer 213 when knife 140 is in the extended position. In some aspects, upper and lower segments 148a, 148b of distal edge 148 may be co-terminal. Upper segment 148a of distal edge 148 extends at an oblique angle relative to the longitudinal axis of knife 140, and lower segment 148b is perpendicular relative to the longitudinal axis of knife 140. In some aspects, upper and lower segments 148a, 148b of distal edge 148 may extend at various angles relative to one another and/or the longitudinal axis of knife 140.
With reference to
For a detailed description of various components and manners of operating forceps 100 of the present disclosure, reference may be made to U.S. patent application Ser. No. 15/593,672, filed on May 12, 2017, the entire contents of which is incorporated by reference herein.
The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Patent Application Publication No. 2012/0116416 (now U.S. Pat. No. 8,828,023), and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.
Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5100420 | Green et al. | Mar 1992 | A |
5258001 | Corman | Nov 1993 | A |
D343453 | Noda | Jan 1994 | S |
5304203 | El-Mallawany et al. | Apr 1994 | A |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5344424 | Roberts et al. | Sep 1994 | A |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5496314 | Eggers | Mar 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5665100 | Yoon | Sep 1997 | A |
5752644 | Bolanos et al. | May 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5814043 | Shapeton | Sep 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
5913874 | Berns et al. | Jun 1999 | A |
5960544 | Beyers | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
6050996 | Schmaltz et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
6293954 | Fogarty et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6329778 | Culp et al. | Dec 2001 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6406485 | Hossain et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6673092 | Bacher | Jan 2004 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7431730 | Viola | Oct 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
7854185 | Zhang et al. | Dec 2010 | B2 |
D630324 | Reschke | Jan 2011 | S |
7896878 | Johnson et al. | Mar 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8147489 | Moses et al. | Apr 2012 | B2 |
D661394 | Romero et al. | Jun 2012 | S |
8298233 | Mueller | Oct 2012 | B2 |
D670808 | Moua et al. | Nov 2012 | S |
8343151 | Siebrecht | Jan 2013 | B2 |
8366709 | Schechter et al. | Feb 2013 | B2 |
8394096 | Moses et al. | Mar 2013 | B2 |
D680220 | Rachlin | Apr 2013 | S |
8409246 | Kerr et al. | Apr 2013 | B2 |
8409247 | Garrison et al. | Apr 2013 | B2 |
8425504 | Orton et al. | Apr 2013 | B2 |
8425511 | Olson | Apr 2013 | B2 |
8430877 | Kerr et al. | Apr 2013 | B2 |
8439913 | Horner et al. | May 2013 | B2 |
8469716 | Fedotov et al. | Jun 2013 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8469992 | Roy et al. | Jun 2013 | B2 |
8480671 | Mueller | Jul 2013 | B2 |
8491624 | Kerr et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8491626 | Roy et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8540749 | Garrison et al. | Sep 2013 | B2 |
8551091 | Couture et al. | Oct 2013 | B2 |
8556929 | Harper et al. | Oct 2013 | B2 |
8568397 | Horner et al. | Oct 2013 | B2 |
8568408 | Townsend et al. | Oct 2013 | B2 |
8585736 | Horner et al. | Nov 2013 | B2 |
8591510 | Allen, IV et al. | Nov 2013 | B2 |
8597295 | Kerr | Dec 2013 | B2 |
8623018 | Horner et al. | Jan 2014 | B2 |
8628557 | Collings et al. | Jan 2014 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8647343 | Chojin et al. | Feb 2014 | B2 |
8652135 | Nau, Jr. | Feb 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8672939 | Garrison | Mar 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8685009 | Chernov et al. | Apr 2014 | B2 |
8685021 | Chernov et al. | Apr 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8702737 | Chojin et al. | Apr 2014 | B2 |
8702749 | Twomey | Apr 2014 | B2 |
8734445 | Johnson et al. | May 2014 | B2 |
8740898 | Chojin et al. | Jun 2014 | B2 |
8745840 | Hempstead et al. | Jun 2014 | B2 |
8747434 | Larson et al. | Jun 2014 | B2 |
8756785 | Allen, IV et al. | Jun 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8795269 | Garrison | Aug 2014 | B2 |
8808288 | Reschke | Aug 2014 | B2 |
8814864 | Gilbert | Aug 2014 | B2 |
8840639 | Gerhardt, Jr. et al. | Sep 2014 | B2 |
8845636 | Allen, IV et al. | Sep 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8852228 | Nau, Jr. | Oct 2014 | B2 |
8858553 | Chojin | Oct 2014 | B2 |
8864753 | Nau, Jr. et al. | Oct 2014 | B2 |
8864795 | Kerr et al. | Oct 2014 | B2 |
8887373 | Brandt et al. | Nov 2014 | B2 |
8888771 | Twomey | Nov 2014 | B2 |
8888775 | Nau, Jr. et al. | Nov 2014 | B2 |
8898888 | Brandt et al. | Dec 2014 | B2 |
8900232 | Ourada | Dec 2014 | B2 |
8906018 | Rooks et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8932293 | Chernov et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939972 | Twomey | Jan 2015 | B2 |
8945175 | Twomey | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968305 | Dumbauld et al. | Mar 2015 | B2 |
8968316 | Roy et al. | Mar 2015 | B2 |
8968357 | Mueller | Mar 2015 | B2 |
8968359 | Kerr et al. | Mar 2015 | B2 |
9005200 | Roy et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9028484 | Craig | May 2015 | B2 |
9028492 | Kerr et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9039704 | Joseph | May 2015 | B2 |
9039732 | Sims et al. | May 2015 | B2 |
9084608 | Larson et al. | Jul 2015 | B2 |
9113933 | Chernova et al. | Aug 2015 | B2 |
9113934 | Chernov et al. | Aug 2015 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
9211657 | Ackley et al. | Dec 2015 | B2 |
9265568 | Chernov et al. | Feb 2016 | B2 |
9333002 | Garrison | May 2016 | B2 |
9381059 | Garrison | Jul 2016 | B2 |
9456870 | Chernov et al. | Oct 2016 | B2 |
9498278 | Couture et al. | Nov 2016 | B2 |
9498279 | Artale et al. | Nov 2016 | B2 |
9504519 | Kerr et al. | Nov 2016 | B2 |
9585709 | Krapohl | Mar 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9655672 | Artale et al. | May 2017 | B2 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040092927 | Podhajsky et al. | May 2004 | A1 |
20050070889 | Nobis et al. | Mar 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050113828 | Shields et al. | May 2005 | A1 |
20050154387 | Moses | Jul 2005 | A1 |
20050159745 | Truckai et al. | Jul 2005 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070260241 | Dalla Betta et al. | Nov 2007 | A1 |
20080215048 | Hafner et al. | Sep 2008 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090240246 | Deville et al. | Sep 2009 | A1 |
20090302090 | Shah | Dec 2009 | A1 |
20090308909 | Nalagatla et al. | Dec 2009 | A1 |
20100016857 | McKenna et al. | Jan 2010 | A1 |
20100130977 | Garrison et al. | May 2010 | A1 |
20100179545 | Twomey et al. | Jul 2010 | A1 |
20100179547 | Cunningham et al. | Jul 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100274244 | Heard | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100305567 | Swanson | Dec 2010 | A1 |
20110054469 | Kappus et al. | Mar 2011 | A1 |
20110060314 | Wallace et al. | Mar 2011 | A1 |
20110060356 | Reschke et al. | Mar 2011 | A1 |
20110072638 | Brandt et al. | Mar 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110218530 | Reschke | Sep 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110238067 | Moses et al. | Sep 2011 | A1 |
20110257680 | Reschke et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110270251 | Horner et al. | Nov 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110295313 | Kerr | Dec 2011 | A1 |
20120059372 | Johnson | Mar 2012 | A1 |
20120059409 | Reschke et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120083786 | Artale | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120123402 | Chernov et al. | May 2012 | A1 |
20120123404 | Craig | May 2012 | A1 |
20120123410 | Craig | May 2012 | A1 |
20120130367 | Garrison | May 2012 | A1 |
20120136354 | Rupp | May 2012 | A1 |
20120172868 | Twomey et al. | Jul 2012 | A1 |
20120172873 | Artale et al. | Jul 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120184988 | Twomey et al. | Jul 2012 | A1 |
20120184989 | Twomey | Jul 2012 | A1 |
20120184990 | Twomey | Jul 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
20120215219 | Roy et al. | Aug 2012 | A1 |
20120239034 | Horner et al. | Sep 2012 | A1 |
20120253344 | Dumbauld et al. | Oct 2012 | A1 |
20120259331 | Garrison | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120283727 | Twomey | Nov 2012 | A1 |
20120296205 | Chernov et al. | Nov 2012 | A1 |
20120296238 | Chernov et al. | Nov 2012 | A1 |
20120296239 | Chernov et al. | Nov 2012 | A1 |
20120296317 | Chernov et al. | Nov 2012 | A1 |
20120296323 | Chernov et al. | Nov 2012 | A1 |
20120296324 | Chernov et al. | Nov 2012 | A1 |
20120296334 | Kharin | Nov 2012 | A1 |
20120303025 | Garrison | Nov 2012 | A1 |
20120323238 | Tyrrell et al. | Dec 2012 | A1 |
20120330308 | Joseph | Dec 2012 | A1 |
20120330309 | Joseph | Dec 2012 | A1 |
20130018364 | Chernov et al. | Jan 2013 | A1 |
20130018372 | Sims et al. | Jan 2013 | A1 |
20130018411 | Collings et al. | Jan 2013 | A1 |
20130022495 | Allen, IV et al. | Jan 2013 | A1 |
20130030432 | Garrison et al. | Jan 2013 | A1 |
20130041370 | Unger | Feb 2013 | A1 |
20130046295 | Kerr et al. | Feb 2013 | A1 |
20130046303 | Evans et al. | Feb 2013 | A1 |
20130046306 | Evans et al. | Feb 2013 | A1 |
20130046337 | Evans et al. | Feb 2013 | A1 |
20130060250 | Twomey et al. | Mar 2013 | A1 |
20130066318 | Kerr | Mar 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130072927 | Allen, IV et al. | Mar 2013 | A1 |
20130079760 | Twomey et al. | Mar 2013 | A1 |
20130079762 | Twomey et al. | Mar 2013 | A1 |
20130079774 | Whitney et al. | Mar 2013 | A1 |
20130085491 | Twomey et al. | Apr 2013 | A1 |
20130085496 | Unger et al. | Apr 2013 | A1 |
20130103030 | Garrison | Apr 2013 | A1 |
20130103031 | Garrison | Apr 2013 | A1 |
20130103035 | Horner et al. | Apr 2013 | A1 |
20130123837 | Roy et al. | May 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20130138102 | Twomey et al. | May 2013 | A1 |
20130138129 | Garrison et al. | May 2013 | A1 |
20130144284 | Behnke, II et al. | Jun 2013 | A1 |
20130178852 | Allen, IV et al. | Jul 2013 | A1 |
20130185922 | Twomey et al. | Jul 2013 | A1 |
20130190753 | Garrison et al. | Jul 2013 | A1 |
20130190760 | Allen, IV et al. | Jul 2013 | A1 |
20130197503 | Orszulak | Aug 2013 | A1 |
20130226177 | Brandt et al. | Aug 2013 | A1 |
20130296856 | Unger | Nov 2013 | A1 |
20140214019 | Baxter, III | Jul 2014 | A1 |
20140221994 | Reschke | Aug 2014 | A1 |
20140221995 | Guerra et al. | Aug 2014 | A1 |
20140221999 | Cunningham et al. | Aug 2014 | A1 |
20140228842 | Dycus et al. | Aug 2014 | A1 |
20140230243 | Roy et al. | Aug 2014 | A1 |
20140236149 | Kharin et al. | Aug 2014 | A1 |
20140243811 | Reschke et al. | Aug 2014 | A1 |
20140243824 | Gilbert | Aug 2014 | A1 |
20140249528 | Hixson et al. | Sep 2014 | A1 |
20140250686 | Hempstead et al. | Sep 2014 | A1 |
20140257274 | MCullough, Jr. et al. | Sep 2014 | A1 |
20140257283 | Johnson et al. | Sep 2014 | A1 |
20140257284 | Artale | Sep 2014 | A1 |
20140257285 | Moua | Sep 2014 | A1 |
20140276803 | Hart | Sep 2014 | A1 |
20140284313 | Allen, IV et al. | Sep 2014 | A1 |
20140288549 | McKenna et al. | Sep 2014 | A1 |
20140288553 | Johnson et al. | Sep 2014 | A1 |
20140330308 | Hart et al. | Nov 2014 | A1 |
20140336635 | Hart et al. | Nov 2014 | A1 |
20140353188 | Reschke et al. | Dec 2014 | A1 |
20150018816 | Latimer | Jan 2015 | A1 |
20150025528 | Arts | Jan 2015 | A1 |
20150032106 | Rachlin | Jan 2015 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150051640 | Twomey et al. | Feb 2015 | A1 |
20150066026 | Hart et al. | Mar 2015 | A1 |
20150066076 | Kerr et al. | Mar 2015 | A1 |
20150080889 | Cunningham et al. | Mar 2015 | A1 |
20150082928 | Kappus et al. | Mar 2015 | A1 |
20150088122 | Jensen | Mar 2015 | A1 |
20150088126 | Duffin et al. | Mar 2015 | A1 |
20150088128 | Couture | Mar 2015 | A1 |
20150094714 | Lee et al. | Apr 2015 | A1 |
20160157925 | Artale et al. | Jun 2016 | A1 |
20160175031 | Boudreaux | Jun 2016 | A1 |
20170128120 | Cho et al. | May 2017 | A1 |
20180325580 | Sims et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
202086577 | Dec 2011 | CN |
102525639 | Jul 2012 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jan 1986 | DE |
3612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Mar 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19738457 | Mar 1999 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
10031773 | Nov 2001 | DE |
10045375 | Apr 2002 | DE |
20121161 | Apr 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
202007016233 | Jan 2008 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
1532932 | May 2005 | EP |
2301468 | Mar 2011 | EP |
2353535 | Aug 2011 | EP |
2436327 | Apr 2012 | EP |
2436330 | Apr 2012 | EP |
2529681 | Dec 2012 | EP |
3072467 | Sep 2016 | EP |
61501068 | Sep 1984 | JP |
6502328 | Mar 1992 | JP |
55106 | Jan 1993 | JP |
H0540112 | Feb 1993 | JP |
6121797 | May 1994 | JP |
6285078 | Oct 1994 | JP |
6511401 | Dec 1994 | JP |
H06343644 | Dec 1994 | JP |
H07265328 | Oct 1995 | JP |
H0856955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
H08289895 | Nov 1996 | JP |
H08317934 | Dec 1996 | JP |
H08317936 | Dec 1996 | JP |
09000538 | Jan 1997 | JP |
H0910223 | Jan 1997 | JP |
9122138 | May 1997 | JP |
0010000195 | Jan 1998 | JP |
H1024051 | Jan 1998 | JP |
H10155798 | Jun 1998 | JP |
1147149 | Feb 1999 | JP |
H1147150 | Feb 1999 | JP |
H1170124 | Mar 1999 | JP |
H11169381 | Jun 1999 | JP |
H11192238 | Jul 1999 | JP |
H11244298 | Sep 1999 | JP |
2000102545 | Apr 2000 | JP |
2000135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001003400 | Jan 2001 | JP |
2001008944 | Jan 2001 | JP |
2001029355 | Feb 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001190564 | Jul 2001 | JP |
2002136525 | May 2002 | JP |
2002528166 | Sep 2002 | JP |
2003116871 | Apr 2003 | JP |
2003175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004517668 | Jun 2004 | JP |
2004528869 | Sep 2004 | JP |
2005152663 | Jun 2005 | JP |
2005253789 | Sep 2005 | JP |
2005312807 | Nov 2005 | JP |
2006015078 | Jan 2006 | JP |
2006501939 | Jan 2006 | JP |
2006095316 | Apr 2006 | JP |
2008054926 | Mar 2008 | JP |
2011125195 | Jun 2011 | JP |
H0630945 | Nov 2016 | JP |
401367 | Oct 1973 | SU |
9400059 | Jan 1994 | WO |
9923933 | May 1999 | WO |
0024330 | May 2000 | WO |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Jun 2002 | WO |
02080786 | Oct 2002 | WO |
02080793 | Oct 2002 | WO |
2006021269 | Mar 2006 | WO |
2005110264 | Apr 2006 | WO |
2008040483 | Apr 2008 | WO |
2011018154 | Feb 2011 | WO |
2013009758 | Jan 2013 | WO |
2013022928 | Feb 2013 | WO |
2013134044 | Sep 2013 | WO |
2015017991 | Feb 2015 | WO |
Entry |
---|
Manufacturing_Materials_and_Processing proof of date (Year: 2021). |
Manufacturing: Materials and Processing, Dec. 19, 2006, The National Academies Press, pp. 1-70 (Year: 2006). |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz, abandoned. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich, abandoned. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1967), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. (6 pages). |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. (1 page). |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. (4 pages). |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. (1 page). |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. (15 pages). |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. (1 page). |
Vallfors et al., Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190. |
Examination Report No. 1 issued in corresponding Australian Application No. 2018201752 dated Aug. 8, 2018, 10 pages. |
Extended European Search Report issued in corresponding application No. 18171773.7 dated Oct. 8, 2018, 7 pages. |
Canadian Office Action issued in Canadian Application No. 2,997,771 dated Jan. 4, 2019, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200179035 A1 | Jun 2020 | US |