Electrosurgical generator control system

Information

  • Patent Grant
  • 11864812
  • Patent Number
    11,864,812
  • Date Filed
    Thursday, September 5, 2019
    4 years ago
  • Date Issued
    Tuesday, January 9, 2024
    4 months ago
Abstract
Systems and methods for enhancing surgical outcomes by providing generators having optimal RF output for sealing, fusing and/or cutting tissue or vessels under all dynamic conditions are described. Examples of dynamic conditions may include varying tissue impedance load due to electrosurgical operations or tissue affects, any operational conditions and commands determined by the surgeon, surgical procedure and/or device script. This is achieved by implementing a digital closed-loop control system within the electrosurgical generator to regulate voltage, current, and power of the RF output. The digital closed-loop control system may include an RF amplifier for generating RF energy, a feedback system for constantly monitoring the electrical characteristics, e.g., voltage, current, and power, of the supplied RF energy to a connectable electrosurgical instrument and a microcontroller for processing measurement data from the feedback system and adjusting the output of the RF amplifier to meet a desired regulation target under any varying conditions.
Description
TECHNICAL FIELD

The present disclosure is generally directed to electrosurgical generator systems and methods and more particularly to electrosurgical control systems configured for regulating dynamically the generator's output to provide optimal radiofrequency (RF) energy for sealing, fusing and/or cutting tissues or vessels


BACKGROUND

Electrosurgical hand devices or instruments have become available that use radiofrequency (RF) energy to perform certain surgical tasks. Electrosurgical instruments may include one or more electrodes that are configured to be supplied with electrical energy from an electrosurgical generator. The electrical energy can be used to fuse, seal, or cut tissue to which it is applied. Examples of such electrosurgical or surgical instruments may include graspers, scissors, tweezers, blades or needles.


Electrosurgical instruments typically fall within two classifications: monopolar and bipolar. In monopolar instruments, electrical energy is supplied to one or more electrodes on the instrument with high current density while a separate return electrode is electrically coupled to a patient and is often designed to minimize current density. Monopolar electrosurgical instruments can be useful in certain procedures, but can include a risk of certain types of patient injuries such as electrical burns often at least partially attributable to functioning of the return electrode. In bipolar electrosurgical instruments, one or more electrodes is electrically coupled to a source of electrical energy of a first polarity and one or more other electrodes is electrically coupled to a source of electrical energy of a second polarity opposite the first polarity. Bipolar electrosurgical instruments, which operate without separate return electrodes, can deliver electrical signals to a focused tissue area with reduced risks.


Even with the relatively focused surgical effects of bipolar electrosurgical instruments, however, surgical outcomes are often highly dependent on surgeon skill. Enhanced generators have been made to reduce this dependency.


SUMMARY

In accordance with various embodiments, an electrosurgical system for sealing, fusing and/or cutting tissue is provided. The electrosurgical system may include an electrosurgical generator and an electrosurgical instrument or device. The electrosurgical generator, according to the embodiments of the present invention, may include a digital closed-loop control system that regulates the delivery of electrosurgical or radiofrequency (RF) energy, adjusts the RF energy and in various embodiments measures and monitors electrical properties, e.g., phase, current, voltage and power, of the supplied RF energy to the connectable electrosurgical instrument. In various embodiments, the digital control system enhances accuracy while ensuring stability in the measurements and regulation of the voltage, current and power of the RF output. This provides the optimal RF output for sealing, fusing and/or cutting tissue/vessels under dynamic conditions, such as for example, variable loads, procedural or operational conditions.


In accordance with one aspect of the present invention, a digital closed-loop control system for use with an electrosurgical generator that supplies electrosurgical RF energy to a surgical site is provided. The digital closed-loop control system may include a feedback system monitoring continually electrical properties of the supplied RF energy and generating digital RF signals relating thereto and a microcontroller configured with a variable gain factor to regulate and control an RF amplifier that generates the supplied RF energy across a plurality of RF regulation modes to provide optimal RF output for surgical procedures under any surgical, operational or procedural conditions.


In accordance with a second aspect of the present invention, a method for dynamically controlling an electrosurgical generator that supplies electrosurgical RF energy to a surgical site through an electrosurgical instrument is provided. The method includes the steps of retrieving desired RF setpoints or target values for a plurality of RF regulation modes and generating RF energy at the desired RF setpoints; measuring electrical characteristics of RF output via at least one channel from a feedback system and communicating real and imaginary components of measured data to a microcontroller. The microcontroller, after receiving the transmitted data, performs power calculations to obtain magnitudes of measured data and tissue impedance load for each of the plurality of RF regulation modes.


The method further includes the steps of generating an error signal across the plurality of RF regulation modes and selecting one regulation mode based on the calculated error values; calculating a variable gain factor for each of the plurality of regulation modes using specific algorithms and selecting one variable gain factor based on calculated error values; determining output control signals for Buck and H-Bridge circuitry of an RF amplifier of the electrosurgical generator; and controlling an amount of RF output of the electrosurgical generator in response to the output control signals to maintain a desired output value of the generator.


In accordance with a third aspect of the present invention, there is provided an electrosurgical system for performing surgical procedures. The electrosurgical system may include an electrosurgical generator adapted to supply RF energy to a surgical site and an electrosurgical instrument connected to the electrosurgical generator. The electrosurgical instrument having at least one active electrode adapted to apply electrosurgical RF energy to tissue at the surgical site. The electrosurgical generator may include a primary FPGA (fully programmable gate array) which is configured to cause: generating error signals across a plurality of RF regulation modes and selecting one regulation mode; computing a variable gain factor for the plurality of regulation modes and selecting one variable gain factor; generating an integral signal by integrating the selected error signal and multiplying the generated integral signal by the selected variable gain factor; and driving duty cycles for Buck and H-Bridge circuitry of the RF amplifier using respectively a predicted output voltage and the generated integral signal.


In accordance with a fourth aspect of the present invention, an electrosurgical generator is provided. The electrosurgical generator may include an RF amplifier for supplying RF energy, a feedback system adapted to continually monitor electrical properties of supplied RF energy to generate digital RF signals relating thereto and a primary microcontroller programmed to compute a variable gain factor and a preload function that allows for dynamically controlling the supplied RF energy across a plurality of RF regulation modes and a plurality of RF resolution settings under any surgical, operational or procedural conditions.


In accordance with a fifth aspect of the present invention, a method for impedance evaluation of an electrosurgical instrument, connected to an electrosurgical generator, prior to performing surgical procedures is provided. The method includes the steps of initiating a low voltage mode or passive mode upon activation of the connected electrosurgical instrument; generating RF output limited to values defined by the low voltage mode; measuring electrical characteristics of the RF output and transmitting digitally the measured data to a microcontroller of the electrosurgical generator; calculating other electrical characteristics of the RF output based on the received measured data and transmitting the calculated results to a primary processor within the microcontroller; and determining whether the calculated results has met a certain criteria set by a device script of the connected electrosurgical instrument.


In accordance with a sixth aspect of the present invention, there is provided an electrosurgical generator that includes an RF amplifier for supplying RF energy and a microcontroller configured to dynamically control the supplied RF energy across at least one regulation mode from a plurality of RF regulation modes and a plurality of RF resolution settings.


In accordance with a seventh aspect of the present invention, there is provided an electrosurgical generator that includes an RF amplifier for supplying RF energy and a microcontroller configured to determine at least one of a variable gain factor and a preload function to dynamically control the supplied RF energy.


Many of the attendant features of the present inventions will be more readily appreciated as the same becomes better understood by reference to the foregoing and following description and considered in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWING

The present disclosure is described in conjunction with the appended figures:



FIG. 1 is a perspective view of an electrosurgical generator in accordance with various embodiments of the present invention.



FIG. 2 is a perspective view of an electrosurgical hand device in accordance with various embodiments of the present invention.



FIG. 3 is a perspective view of an alternative embodiment of an electrosurgical hand device in accordance with various embodiments of the present invention.



FIG. 4 depicts a block diagram of an electrosurgical generator in accordance with various embodiments of the present invention.



FIG. 5 depicts, in greater detail, a block diagram of an embodiment of a feedback system within a control system of an electrosurgical generator.



FIG. 6 depicts, in greater detail, a block diagram of an embodiment of a primary microcontroller within a control system of an electrosurgical generator.



FIGS. 7-8 is a schematic illustration of operational modes and functional blocks of various circuitry and systems within a primary microcontroller of an electrosurgical control system of the present invention.



FIG. 9 depicts a block diagram of an embodiment a control system of an electrosurgical generator operating in a passive regulation mode.



FIG. 10 illustrates a flow diagram of an embodiment of a passive regulation mode operations or process of an electrosurgical generator according to the embodiments of the present invention.





In the appended figures, similar components and/or features may have the same reference label. Where the reference label is used in the specification, the description is applicable to any one of the similar components having the same reference label.


DETAILED DESCRIPTION

The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiments of the disclosure. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.


This disclosure relates in general to electrosurgical systems. It specifically relates to a new generation of electrosurgical generators capable of regulating voltage, current and power of the RF output under dynamically changing impedance loads and control conditions.


Embodiments of the present invention are directed to systems and methods for enhancing surgical outcomes by providing generators having optimal RF output for sealing, fusing and/or cutting tissue or vessels under all dynamic conditions such as, for example, varying tissue impedance load due to electrosurgical operations or tissue affects and any operational conditions and commands determined by the surgeon, surgical procedure and/or device script. This is achieved by implementing a digital closed-loop control system to regulate voltage, current, and power of the RF output. The digital closed-loop control system may include an RF amplifier for generating RF energy, a feedback system for constantly measuring and monitoring the electrical characteristics, e.g., voltage, current, and power, of the supplied RF energy to a connectable electrosurgical instrument and a microcontroller for processing measurement data from the feedback system and adjusting the output of the RF amplifier to meet a desired regulation target under any varying conditions.


According to the embodiments of the present invention, the feedback system measures, via at least one channel, analog RF output and digitizes the measurements. The feedback system in various embodiments collects its voltage and current measurements simultaneously from the RF amplifier and digitizes the measurements through analog to digital converters (ADC). The feedback system is configured to process the digitized values, to derive real and imaginary components of the voltage and current RF output, and to supply the real and imaginary components to the primary microcontroller.


In accordance with the embodiments of the present invention, the primary microcontroller, calculates individual error values for voltage, current and power and based on the individual error values selects a regulation mode. The primary microcontroller in various embodiments calculates, using specific algorithms, a specific variable gain factor for each regulation mode that allows the electrosurgical system according to the embodiments of the present invention to have a critically damped step response under any variable conditions, e.g., surgical, operational or procedural.


In the following, the electrosurgical system and method according to the present invention is explained in detail with sections individually describing: the electrosurgical generator, the electrosurgical instrument and the digital closed-loop control system and method used according to the embodiments of the present invention for providing optimal RF output under any dynamically outside changing conditions.


In accordance with various embodiments, an electrosurgical generator is provided that controls the delivery of electrosurgical or radiofrequency (RF) energy, adjusts the RF energy and in various embodiments measures and monitors electrical properties, e.g., phase, current, voltage and power, of the supplied RF energy to a connectable electrosurgical instrument to ensure optimal sealing, fusing and/or cutting of tissues or vessels. In various embodiments, the generator may include a feedback system that determines such electrical properties and through a microcontroller regulates and/or controls an RF amplifier that generates the required RF energy to provide the optimal RF output for sealing, fusing and/or cutting tissue or vessels under dynamic conditions, such as for example, varying loads, procedural or operational conditions.


Referring first to FIGS. 1-2, an exemplary embodiment of an electrosurgical system for use in surgical procedure is illustrated. As shown in these figures, the electrosurgical system may include an electrosurgical generator 10 and a removably connectable electrosurgical tool or instrument 20. The electrosurgical hand device or instrument 20 can be electrically coupled to the generator 10 via a cabled connection with a device key or connector 21 extending from the instrument 20 to a device connector or access port 12 on the generator 10. The electrosurgical instrument 20 may include audio, tactile and/or visual indicators to apprise a user of a particular or predetermined status of the instrument 20 such as, for example, a start and/or end of a fusion operation. In some embodiments, a manual controller such as a hand or foot switch can be connectable to the generator 10 and/or instrument 20 to allow predetermined selective control of the instrument such as to commence a fusion operation.


In accordance with various embodiments, the electrosurgical generator 10 includes a display 14 that may indicate the status of the electrosurgical system including, among other information, the status of the one or more electrosurgical instruments and/or accessories, connectors or connections thereto, the state or operations of the generator and error indicators. The electrosurgical generator 10 in accordance with various embodiments of the present invention may include a user interface such as, for example, a plurality of buttons 16. The plurality of buttons 16 allows for user interaction with the electrosurgical generator 10. This user interaction may include, for example, requesting an increase or decrease in the electrical energy supplied to one or more instruments 20 that are coupled to the electrosurgical generator 10. In various embodiments, the generator 10 further includes a user-accessible power-on switch or button 18 that when activated powers the generator 10 and activates or initiates a self-verification system test of the generator. In other embodiments, the display 14 can be a touch screen display thus integrating data display and user interface functionalities.


In various embodiments, the electrosurgical generator 10 of the present invention is configured to output radiofrequency (RF) energy through the connectable electrosurgical instrument or hand device 20 to seal, fuse and/or cut tissue or vessels via one or more electrodes. The electrosurgical generator 10, according to the embodiments of the present invention, is configured to generate up to 300V, 8 A, and 375 VA of RF energy and it is also configured to determine a phase angle or difference between RF output voltage and RF output current of the generator during activation or supply of RF energy. In this way, the electrosurgical generator 10 regulates voltage, current and/or power and monitors RF energy output (e.g., voltage, current, power and/or phase). In one embodiment, the generator 10 may stop, terminate or otherwise disrupt RF energy output under predetermined conditions. By way of example, these predetermined conditions may be any of the following conditions: when a device switch is de-asserted (e.g., fuse button released), a time value is met, and/or active phase angle and/or change of phase is greater than or equal to a phase and/or change of phase stop value indicating end of an operation such as fusion or cutting of tissue.


The electrosurgical instrument 20, according to the embodiments of the present invention, may include an elongate shaft 26 having a proximal end coupled to or from which an actuator 24 extends and a distal end coupled to or from which jaws 22 extend. A longitudinal axis extending from the proximal end to the distal end of the elongate shaft 26. In one embodiment, the actuator 24 may include a movable handle 23 which is pivotably coupled to a stationary handle or housing 28. The movable handle 23 is coupled to the stationary handle or housing 28 through a central or main floating pivot. In operation, the movable handle 23 is manipulated by a user, e.g., a surgeon, to actuate the jaws 22 at the distal end of the elongate shaft 26, and thereby, selectively opening and closing the jaws 22. When tissue or vessels are grasped between the jaws 22, a switch or button 29 is activated by the surgeon to seal, fuse and/or cut the tissue/vessels between the jaws 22. Once the button 29 is activated, associated circuitry or contacts are connected to connect appropriate electrodes of the jaws with associated connections of the generator 10 to supply RF energy to tissue grasped between the jaws 22 or otherwise in contact with the one or more electrodes of the jaws.


In various embodiments, the electrosurgical instrument 20 further includes a mechanical or electrical cutting blade that can be coupled to a blade actuator such as a blade lever or trigger 25 of the stationary handle or housing 28. The cutting blade is actuated by the blade trigger 25 to divide or cut the tissue between the jaws 22. In various embodiments, a blade slider is connected to the blade trigger 25 and a protrusion extends from a proximal portion of the blade slider into an opening in one end of the blade trigger connecting the components together. The other end of the blade trigger is exposed and accessible by the user with the blade trigger 25 being pivotable about a trigger pivot at or near the mid-point of the blade trigger. As such, as the blade trigger 25 is pulled or rotated by the user proximally, the end of the blade trigger connected to the blade slider slides or moves the blade slider distally. Integrated with or attached to a distal end of the blade slider is a cutting blade, knife or cutting edge or surface. As such, as the blade slider translates longitudinally through a blade channel in the jaws, tissue grasped between the jaws 22 is cut. In one embodiment, the cutting edge or surface is angled to facilitate cutting of the tissue between the jaws 22. In various embodiments, the cutting blade is a curved blade, a hook, a knife, or other cutting element that is sized and configured to cut tissue between the jaws 22.


In accordance with various embodiments, the elongate shaft 26 comprises an actuation tube or rod coupling the jaws 22 with the actuator. In one embodiment, the actuator includes a rotation shaft assembly including a rotation knob 27 which is disposed on an outer cover tube of the elongate shaft 26. The rotation knob 27 allows a surgeon to rotate the shaft of the device while gripping the actuator. In various embodiments, the elongate shaft 26 is rotatable 360 degrees and in other embodiments, rotation of the elongate shaft 26 is limited to 180 degrees, i.e., ninety degrees clockwise and ninety degrees counter clockwise. FIG. 3 illustrates an alternative embodiment of an electrosurgical hand device 20′ connectable to the electrosurgical generator 10. The electrosurgical hand device 20′ is similar but includes different features and has a different surgical use than the electrosurgical hand device 20.


Referring next to FIG. 4, a block diagram of an electrosurgical generator 10 according to the embodiments of the present invention is shown. As shown in this figure, the electrosurgical generator 10 may include a power entry module 31, e.g., an AC main input, coupled to a power supply module, e.g., two 48V DC power supplies 32, 33. The power supply module converts the AC voltage from the AC main input to a DC voltage and via a house keeping power supply 34 provides power to various circuitry of the generator 10 and in particular supplies power to an RF amplifier 40 that generates or outputs the RF energy. In one embodiment, the RF amplifier 40 may include a Buck and H-Bridge circuitry to convert a DC voltage input into an RF output and in another embodiment into a variable amplitude 350 kHz sine wave. The DC voltage input is a 96V DC input that is generated by the two 48V DC power supplies 32, 33 coupled in series. One of the 48V DC power supply 32, 33 is configured to generate low voltage rails and in particular supply standby voltage to power on the generator 10.


According to the embodiments of the present invention, the electrosurgical generator 10 further includes a control system or a digital integral servo control system 100 to regulate and control the RF output. As shown in FIG. 4, the control system 100 may include the RF Amplifier 40, a primary microcontroller 50 and a feedback system 60. The RF output and in various embodiments the amplitude of the RF waveform output is controlled and regulated by the electrosurgical control system 100 which is embedded or integrated within the electrosurgical generator 10. The control system 100 varies between regulating voltage, current, or power of the RF output generated by the RF Amplifier 40. In various embodiments, the feedback system 60 measures the RF output and, after processing the measured data, digitally feeds the RF output's real and imaginary components to the primary microcontroller 50. The primary microcontroller 50, according to the embodiments of the present invention, processes the received data from the feedback system 60 and adjusts the output of the RF amplifier 40 to meet a desired regulation target. In various embodiments, the feedback system 60 comprises of analog input, digital processing and digital output.


In various embodiments, the electrosurgical generator 10 logs all RF output data onto an internal memory device, e.g., a secure digital (SD) or non-volatile memory card. The memory device is configured to be read through an interface port 35, e.g., a universal serial bus (USB) port, on the electrosurgical generator 10. In various embodiments, the generator 10 is configured to copy the data from the internal memory device to a connectable portable storage device, e.g., a USB flash drive, through the interface port of the generator.


In accordance with various embodiments of the present invention, the electrosurgical generator 10 is further configured to provide RF output in three resolution settings or modes: low voltage, normal or medium voltage and high voltage ranges. In various embodiments, device scripts stored and located on connectable electrosurgical hand devices, e.g., instrument 20, and/or connectors coupled thereto, e.g., device key 21, are used to determine or set the RF output or voltage mode.


Referring back to FIGS. 1 & 4 and in accordance with various embodiments, the electrosurgical generator 10 is configured to alert the surgeon when the vessel has reached a completed procedure state, e.g., a completed seal state, or if an error or fault condition has occurred. The electrosurgical generator 10 in various embodiments may include visual, tactile and/or audible outputs to provide such alerts or other indicators or information to the surgeon as dictated by the surgical procedure, device script or health or operational information regarding the device 20 and/or generator 10. In one embodiment, the generator 10 via a front panel interface 38 alerts the surgeon through the LCD display 14, which is integrated into a front panel of the generator, and in various embodiments provides specific audible alarm or informational tones through a speaker 36 also integrated into the front panel of the generator. The generator 10 in various embodiments may include a front panel overlay 39 that provides a user interface or access including navigational push buttons to allow user access to systems settings such as volume or display brightness. The front panel overlay 39 may also include the system power button or connection. In various embodiments, a fan system 37 is provided to assist in heat dissipation. Additionally, as illustrated in the FIG. 4, signal or sig represents connections that, for example, comprise of digital signals used to communicate information across systems and/or printed circuit boards, power represents connections that, for example, comprise of voltage rails used to power systems and/or printed circuit boards and RF represents connections that, for example, comprise of high voltage, high current RF energy used to seal, fuse or cut tissue or vessels.



FIG. 5 illustrates, in greater detail, a block diagram of an embodiment of a feedback system 60 within the control system 100 of an electrosurgical generator 10. As described further above and also shown in FIG. 5, the control system 100 may include the RF Amplifier 40, the primary microcontroller 50 and the feedback system 60. In accordance with various embodiments of the present invention, the RF amplifier 40 generates an RF output and the feedback system 60 measures various electrical properties of the RF signal outputted from RF amplifier 40. According to the embodiments of the present invention, the verification system 60 may include a main channel 601, a redundant channel 602 and a verification channel 603. The main channel 601 and redundant channel 602 in various embodiments may include separate but identical components. Additionally, the main and redundant channels 601 and 602 follow separate but identical electrical paths and in one embodiment are both connected to the RF amplifier 40 and the RF output.


Similarly, components of the verification channel 603 are separate from the main and redundant channels 601 and 602 but are similar. In one embodiment, the verification channel 603 may include the same components as the main and redundant channels 601 and 602, but the components in the verification channel 603 have higher ratings, e.g., higher resolution and/or lower drift, and are often more costly. In another embodiment, the verification channel 603 may include the same components as the main and redundant channels 601 and 602. The verification channel 603 also follows a separate but identical electrical path as the main and redundant channels 601 and 602 and in one embodiment is connected to the RF amplifier 40 and the RF output. In various embodiments, the feedback system 60 measures analog RF output and digitizes the measurements. The feedback system 60 is configured to measure and digitize the RF output via at least one channel, e.g., main channel 601. In this embodiment, the feedback system 60 through the main channel 601 measures the analog RF output via a front end circuitry 611.


As shown in FIG. 5, the front end circuitry 611 may include a shunt resistor 615 coupled to a pre-amplifier 613 to measure the current of the RF output. In various embodiments, the front end circuitry 611 further includes a voltage divider 614 coupled to a pre-amplifier 612 to measure the voltage of the RF output. Outputs of the pre-amplifiers 612, 613 are supplied to an analog to digital converter (ADC) 616, thereby digitizing the current and voltage measurements. The digitized values are further processed to derive real and imaginary components of the voltage and current RF output. In various embodiments, the digitized values from the ADC 616 are supplied to a fully programmable gate array (FPGA) 617 of the feedback system 60. The FPGA 617 is configured for processing the digitized voltage and current measurements values to generate real and imaginary components of the voltage and current RF output using a discrete Fourier transform. The digital real and imaginary components are then supplied to the primary microcontroller 50 and, in one embodiment, via a serial communication protocol.


With reference to FIG. 6, a schematic illustration of an embodiment of a control system 100 depicting, in greater detail, a block diagram of an embodiment of a primary microcontroller 50 of an electrosurgical generator 10 is shown. As shown in this figure, the primary microcontroller 50 may include a primary ARM (advanced reduced instruction set machine) processor 501 and a primary FPGA (fully programmable gate array) 510. The primary ARM processor 501 is configured to establish desired output values, such as for example, voltage, current and/or power as setpoints 502. In various embodiments, the desired output values may be provided by a device script. In accordance with various embodiments, the primary FPGA 510 of the primary microcontroller 50 receives the digital real and imaginary components of the voltage and current measurements and calculates the magnitudes of the voltage, current and power of the RF output. The magnitude of the voltage, current and power of the RF output is calculated using a VCW (voltage, current, power) calculator 511, as shown in FIG. 6. Individual error values for voltage, current and power are also calculated by an error processor 512. In one embodiment, error values are calculated by subtracting a desired voltage, current and power setpoints from the measured magnitudes.


The error processor 512 calculates the relative error between the main channel measurements and the setpoints values 502, and based on the error values determines or selects a regulation mode. Accordingly, the error processor 512 determines which of the three regulation modes, e.g., voltage, current and power, should be reinforced or activated by the electrosurgical generator 10. In various embodiments, the calculated error values for the selected mode is integrated by an integrator 513 to generate an error signal that is directly proportional to and is used to correct the output of the RF amplifier 40.


According to the embodiments of the present invention, the calculated error values may also be used to determine a variable gain factor for each regulation modes, e.g., voltage, current and power, of the generator 10. The variable gain is configured to use a different predefined set of calculations or algorithm based on the selected regulation mode. As shown in FIG. 6, a VG (variable gain) module 515 is used to compute the variable gain value (Ki) for each regulation modes, e.g., voltage, current and power. The variable gain factor, according to the embodiments of the present invention, may be computed as a function of the voltage, current and power setpoints, the calculated outside impedance load or tissue load, the Buck voltage value as well as the value of the error integral or any combination thereof. As such, the variable gain in various embodiments provides critical step responses for all setpoints and impedance load conditions or any changes thereto. In other words, the variable gain according to the embodiments of the present invention allows for the electrosurgical generator 10 to be critically damped under any varying conditions such as, for example, surgical, operational and procedural conditions. In various embodiments, the variable gain factor may be recalculated on a predetermined schedule or timing such as, for example, every period of the RF output.


In accordance with various embodiments and with further reference to FIG. 6, the primary microcontroller 50 is configured to predict the necessary output voltage of the generator 10 to regulate the RF amplifier 40. In various embodiments, the primary FPGA 510 of the primary microcontroller 50 may use the calculated impedance loads and the voltage, current and power setpoints to predict the necessary voltage of the generator 10. The predicted value is then used by a Buck Duty Cycle calculator 514 to calculate a duty cycle value for a pulse width modulator (PWM) of an integrated Buck circuit of the RF amplifier 40. On the other hand, the product of the error integral and the calculated variable gain factor for the selected mode (Ki*∫e(t)) may be used to derive a duty cycle value for an H-Bridge circuit of the RF amplifier 40. As such, the control system 100 according to the embodiments of the present invention is capable of providing dynamic regulation of the variable or varying RF output of the generator 10. In various embodiments, the electrosurgical generator 10 may be switching between voltage, current and power regulation modes. In such embodiments, the control system 100 is configured to perform a preload calculation or preload function, the details of which will be discussed further down below, to provide a gradual, non-disruptive transition in the RF output.


The control system 100, according to the embodiments of the present invention, provides regulation of RF output under dynamically changing impedance loads, e.g., due to electrosurgical operations or electrosurgical tissues affects, and control conditions, e.g., device scripts or user operations. The control system 100 being configured with a variable gain rather than a fixed gain allows the control system 100 to adjust for different load impedances and output voltages and thus not be limited to be optimized, e.g., for the lowest load impedance and/or highest output voltage. The control system 100 is also configured to account for the system becoming over damped as impedance increases that can result in non-optimal phase margin and dynamic or unpredictable behavior and thus affect the ability of the control system 100 to track or follow dynamic commands, e.g., device script operations. The control system 100 of the generator ensures that tissue electrosurgical effects, such as for example, sealing, fusing or cutting, are optimized through critical responses of the control system to dynamically changing tissue impedance conditions and operational conditions and commands determined by the surgeon, surgical procedure and/or device script.


As described further above, the feedback system 60 according to the embodiments of the present invention may include a second channel, e.g., the redundant channel 602, which is nearly identical to the main channel 601. The measurements from the redundant channel 602 and the resulting calculations are being constantly compared to the measurements and calculations of the main channel 601 to verify the operation of the main channel 601. As such, if the main and redundant channels 601 and 602 have differing measurements or calculations, then a generator error is recognized and the supply of RF energy halted.


In accordance with various embodiments, the feedback system 60 may include various other systems and circuitry, e.g., a sampler or other calculator (not shown in the figures), to provide sampling and/or other calculations as required by the electrosurgical control system 100 of the present invention. In various embodiments, the feedback system 60 measures analog voltage and current of the RF output of the RF amplifier 40 and in various embodiments the feedback system 60 takes a predetermined number of samples per each RF output cycle operating at 350 KHz for each measurement of voltage and current. In some embodiments, the feedback system 60 may utilize demodulations and transforms to obtain zero frequency components or filtering out unwanted higher order frequency harmonics out of the measured voltage and current values. As described further above, the feedback system 60 communicates or transmits, e.g., serially, the measured real and imaginary voltage and current values to the primary microcontroller 50.


In what follows, operational modes and functional blocks of various circuitry and systems within the primary FPGA 510 will be explained in detail with sections individually describing: the VCW calculator 511, the error processor 512, the integrator 513, the Buck Duty Cycle calculator 514 and the VG module 515.



FIGS. 7-8 is a schematic illustration of operational modes and functional blocks of various circuitry and systems within a primary microcontroller 50 of an electrosurgical control system 100 of the present invention. According to the embodiments of the present invention, the primary FPGA 510 receives the measured real and imaginary voltage and current components or values from the feedback system 60 and uses these components to calculate their respective root means square (RMS) magnitudes using the VCW calculator 511. The VCW calculator 511 may further include a load calculator 560 (best shown in FIG. 7). The load calculator 560 uses the feedback system voltage and current measurement values to calculate the impedance load or tissue load. In some embodiments, filtered voltage and current measurement values are used for calculating the impedance load.


The primary FPGA 510 is further configured to perform error processing using the error processor 512. As shown in FIG. 7, the error processor 512 may include an error calculator 514 and an error selector 516. The error processor 512 calculates the error between the main channel measurements from the feedback system 60 and the setpoints values and determines which regulation mode is required for the correction of the RF output power. This is achieved by calculating the relative error between the setpoints and the measurements and in various embodiments this error calculation is performed simultaneously on voltage, current, and power by the error calculator 514. The error processor 512 utilizes the error selector 516 for determining which regulation mode needs to be enforced by the electrosurgical generator 10. Accordingly, the error selector 516 will select the regulation mode based on the most positive calculated error value. As such, the error with the most positive value will dictate which regulation mode is to be used by the electrosurgical generator 10. The primary FPGA 510 in various embodiments also normalizes the calculated magnitudes with respect to its maximum count value and then converted to floating point values.


The integrator 513 is constantly integrating the error with the most positive value, e.g., selected regulation mode. In operation, since the RF amplifier 40 may be switching between different RF regulation modes, e.g., voltage, current and power regulation modes, the integrator 513 needs to be preloaded with another value that allows the RF output to stay constant while transitioning between various regulation modes. For this purpose, a preload function or preload calculator 532 is implemented within the primary FPGA 510 (best shown in FIG. 7). The preload function or calculator 532 is configured to calculate the variable gain for the mode to which the RF amplifier is transitioning to and preload this value into the integrator 513 using a relay or switch 533 (best shown in FIG. 7). The preload function is calculated using the counts for the Buck and H-Bridge circuitry of the RF amplifier and the calculated tissue impedance load. This ensures a seamless transition between various regulation modes.


The primary FPGA 510 provides a variable integral control system to dictate the output for the Buck and H-Bridge (best shown in FIG. 8) controls of the RF amplifier 40. In various embodiments, variables used by the variable integral control system may include, for example, impedance load or tissue load calculations, setpoints for voltage current and power as well as the calculated RMS magnitude for the voltage, current, and power. The load calculator 560 may use filtered voltage and current measurement values for calculating the impedance or tissue load. In some embodiments, the variable integral control system only directly regulates voltage and in order to regulate current or power, a corresponding voltage value must be calculated. In various embodiments, the Buck duty cycle calculator 514 (best shown in FIG. 7) uses the calculated impedance load and the setpoints for voltage, current and power to predict where the output voltage of the RF amplifier 40 should be. The predicted voltage value is then used to generate the counts for the integrated Buck PWM circuit of the RF amplifier 40. The output voltage of the Buck PWM circuits of the RF Amplifier 40 sets the main voltage rails of the integrated H-Bridge PWM circuit of the RF amplifier 40.


According to the embodiments of the present invention, using the prediction set forth by the variable integral control system, the primary FPGA 510 sets counts for the Buck PWM circuit of the RF amplifier 40 and in various embodiments responds quickly to reach roughly close to the desired output value, e.g., the predicted voltage value. In various embodiments, the primary FPGA 510 drives PWM signals to the Buck and H-Bridge (best shown in FIG. 8) configurations or circuitry of the RF amplifier 40. In various embodiments, the determination of the PWM signals for the H-Bridge configurations is used to fine tune the RF output to the desired output. The duty cycle for the H-Bridge circuit of the RF amplifier 40 is defined by the multiplication of the calculated variable gain factor and an integral signal or error integral for the selected mode (best shown in FIG. 8). As can be seen in FIG. 8, the VG (variable gain) module 515 may include a variable gain calculator 534 and a multiport selector 535. The variable gain calculator 534 calculates the variable gain for each regulation mode, e.g., voltage, current and power, and selects the appropriate variable gain factor based on the same criteria that was used by the error processor 512, e.g. the error with the most positive value. The calculated variable gain may be defined as a function of the calculated impedance load, voltage, current and power setpoints, the Buck voltage value and the integral error or accumulated error. In various embodiments, the primary FPGA 510 converts respective numerical duty cycle counts to drive the PWM signals that controls the Buck and H-Bridge configurations.


In various embodiments, the primary ARM processor 501 verifies the validity of the setpoints and ensures the setpoints for voltage, current, and power meet the threshold for the mode the electrosurgical generator 10 is operating in. In accordance with various embodiments, calibration values are stored in an EEPROM of the feedback system 60. These values are specific predefined coefficients used to eliminate discrepancies or tolerances on the feedback system 60. In various embodiments, all three channels 601, 602 and 603 have calibration values for voltage, current, and power for normal or medium, high, and low voltage modes with the exception of the verification channel 603 not having a low voltage mode. The modes as such dictates the correct calibration coefficients for voltage, current, and power being used in the servo calculations. This also is based on the regulation mode the generator is operating in.


In various embodiments, the error processor 512 further includes one or more constants, such as a normalization factor, error coefficient and/or point positions (useful for floating point conversions). In various embodiment, the primary microcontroller 50 calculates the error between the main channel measurements and the setpoint values to determine which regulation mode to be used for the correction of the servo, e.g., the output of the RF energy. In various embodiments, the primary microcontroller 50 uses the calculated measurements and the error processor coefficient to obtain an absolute measurement. With this absolute measurement, the primary microcontroller 50 uses the calibration coefficient to obtain a calibrated absolute measurement and with the normalization factor obtains a relative measurement. The primary microcontroller compares the difference between the relative measurement and the setpoint established by the primary processor 501 to determine the relative error.


In accordance with various embodiments, the primary microcontroller 50 using multiplexers provide the respective values of the relative error to be calculated for voltage, current and power and comparisons are performed between the calculated errors to output the greatest or largest positive error to determine the regulation mode for the generator.


Using the selected regulation mode and its corresponding voltage value, the primary microcontroller 50 calculates the voltage output needed for optimal operation of the generator 10. In various embodiments, as the control system 100 adjusts the output voltage, current and power output targets are translated into their respective voltages at calculated loads. The regulation mode then decides which calculated output will be used in the control system 100.


In various embodiments, the control system 100 operates as a variable integral control loop. Variables are the voltage, current and power measurements, setpoints, and load calculations and the system operates at a predefined frequency, e.g., 350 KHz frequency, with the ability to switch between integral control loops. The electrosurgical generator 10 as such provides a control system for voltage, current and power driving sources and thus provides a generator integral control loops for current, voltage and power. Additionally, since switching between the integral control loops occurs when regulation modes are changed, the control system 100 implants the preload function for each mode, i.e., voltage, current and power, to ensure a smooth transition between the regulation modes.


In accordance with various embodiments, the feedback system 60 may include three channels: the main channel 601, the redundant channel 602 and verification channel 603. The main and redundant channels 601 and 602 are largely identical while the verification channel 603 has similar functionalities to the main and redundant channels 601 and 602, but has higher resolution, lower tolerance, and lower drift components.


In accordance with various embodiments, each of the channels 601, 602 and 603 of the feedback system 60 may include an analog portion that attenuates and amplifies the RF voltage/current measurement signals. In various embodiments, RF voltage signals are attenuated by a network of resistor dividers before being differentially amplified to drive the ADCs (616, 626, 636). In various embodiments, all three channels 601, 602 and 603 have different sets of amplifier gain resistors to measure different voltage modes, i.e., a normal voltage mode and a high voltage mode. In various embodiments, the normal voltage mode includes voltages less than or equal to 166V and in high voltage mode, voltages less than or equal to 322V. In accordance with various embodiments, the main and redundant channels 601 and 602 have an alternative set of resistor configuration to more accurately measure lower voltages and in various embodiments voltages less than or equal to 10V. The verification channel's resistor dividers in various embodiments contain much lower tolerance and lower drift resistors than that of the main and redundant channels 601 and 602.


In accordance with various embodiments, the RF current measurement signal is taken across a shunt resistor (615, 625, 635) from each channel of the verification system 60. All shunt resistors 615, 625, and 635 in various embodiments are in series, so each channel measures the same current signal. The main and redundant channels 601 and 602 in various embodiments have an alternative set of shunt resistors to more accurately measure lower currents, e.g., currents less than or equal to 100 mA. The verification channel 603 has shunt resistors that are lower tolerance and lower drift than that of the main and redundant channels 601 and 602.


In accordance with various embodiments, the measured signals after the amplifiers (612, 613; 622, 623; 632, 633) are passed through filters for ADC input filtering. The verification channel 603 has filter components with much lower tolerance and lower drift than that of the main and redundant channels 601 and 602. In various embodiments, the filter of the verification channel has a steeper rolloff and thus has a steeper attenuation of higher frequencies.


In accordance with various embodiments, data conversion components are independent between each of the three channels 601, 602 and 603. The ADCs (616, 626, 636) convert the analog voltage and current measurement signals to discrete samples that are processed by the respective channel's FPGAs (617, 627, 637). The verification channel's ADC 636 has more resolution, e.g., more bits, and has lower drift than that of the main and redundant channels 601 and 602. In various embodiments, the verification channel's ADC 636 also has a local generated reference voltage to accurately set the input range of the ADC 636.


In various embodiments, the feedback system's FPGAs (617, 627, 637) performs I/Q demodulation on the discrete voltage and current measurement samples to obtain real and imaginary samples. The measured values are passed through a discrete Fourier transform to obtain the DC component of the real and imaginary values for the voltage and current measurements. In various embodiments, the verification channel 603 contains a locally generated digital voltage rail to accurately power its FPGA's I/O pins.


In accordance with various embodiments, each channel of the feedback system 60 independently communicates its data to the primary microcontroller 50 through independent communication connections. In various embodiments, the verification channel's data is only used by a self-verification system or process at predefined time or schedule, e.g., at the start-up of the generator 10. During the self-verification process, the verification channel's data is compared with the main and redundant channel's data to verify the accuracy and functionalities of the main and redundant channels 601 and 602. In various embodiments, throughout RF related operations, the main channel's data is the only set of data used by the control system 100 and the redundant channel's data is constantly compared with the main channel's data to ensure the main channel 601 is operating within predefined parameters and/or tolerances.


According to the embodiments of the present invention, the servo control system 100 of the electrosurgical generator 10 may include the RF amplifier 40, the feedback system 60 and the primary microcontroller 50. The feedback system 60 creates a path for a closed-loop system between the RF amplifier 40 and the primary microcontroller 50. The feedback system 60 in various embodiments measures the voltage and current of the supplied RF signals and calculates the real and imaginary components of the measurements within one or more channels 601, 602 and 603. In one embodiment, only one channel is provided for the feedback system 60, the main channel 601. In another embodiment, two channels are provided, the main and redundant channels 601 and 602. In yet another embodiment, three channels are provided, the main channel 601, the redundant channel 602 and the verification channel 603. The calculated components within the one or more channels are transmitted or communicated to the primary microcontroller 50.


In accordance with various embodiments, the main and redundant channels 601 and 602 are copies of one another and are used by the primary microcontroller 50 to monitor the voltage and current of the RF output during operation of the electrosurgical generator 10. The verification channel 603 is similar to the other two channels 601 and 602, but includes components, for example, that are more drift resistant and/or uses ADCs with higher resolutions. This channel, in various embodiments, is used on startup of the generator, where self-verification of the generator is performed. The feedback system 60 in various embodiments collects its voltage and current measurements simultaneously from the RF amplifier 40. In various embodiments, the generated RF signal produces a voltage across one or more internal loads, e.g., load 80 (best shown in FIG. 5), disposed inside the RF amplifier 40 or a tissue load, e.g., electrosurgical hand device 20, 20′. The feedback system 60 in various embodiments collects current being delivered by using its own shunt resistors (615, 625, 635) and measures the voltage across them. To measure voltage, the feedback system 60 provides three voltage dividers (614, 624, 634) which are parallel to the load 20, 80. All measurements in various embodiments are converted to their real and imaginary components by the FPGAs 617, 627, and 637. The real and imaginary components are sent to the primary microcontroller 50 causing the feedback system 60 to act as a feedback device between the primary microcontroller 50 and the RF amplifier 40.


In accordance with various embodiments, the feedback system 60 measures the analog RF output via front end circuitry 611, 621, 631. Front end circuitry may include shunts 615, 625, 635 coupled to respective pre-amplifiers 613, 623, 633 to measure the current of the RF output. In various embodiments, the front end circuitry may also include voltage dividers 614, 624, 634 coupled to respective pre-amplifiers 612, 622, 632 to measure the voltage of the RF output. Outputs of the pre-amplifiers are supplied to respective analog to digital converters (ADCs) 616, 626, 636 thereby digitizing the current and voltage measurements. The digitized values are processed to derive real and imaginary components of the voltage and current RF output. In various embodiments, the digitized values from respective analog to digital converters (ADC) are supplied to FPGAs 617, 627, 637.


In various embodiments, the electrosurgical generator 10 is configured to provide RF output in a low voltage mode during a passive impedance evaluation which is automatically set by the generator 10. According to the embodiments of the present invention, the electrosurgical generator 10 is automatically set to the low voltage mode prior to execution of any device script. The device script in various embodiments represents a procedural walkthrough of a surgical operation that may include the application and termination of RF energy to the tissue. During a medium or normal voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 150V or 8 A and is mainly used in tissue sealing. During a high voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 300V or 4 A and is mainly used in tissue cutting. During the low voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 10V and 100 mA and is mainly used in passive tissue impedance evaluations and measurements at a level that does not create a physiological response in tissue.


In accordance with various embodiments, specific device scripts are stored on specific electrosurgical hand devices 20, 20′ that are optimized for a specific surgical procedure to produce consistent electrosurgical sealing and/or cutting of tissue. In various embodiments, RF output parameters or settings are defined in the device scripts and used by the electrosurgical generator 10 to regulate or control the RF output for the specific surgical procedure and/or electrosurgical hand device 20, 20′. The device script and associated RF output parameters in various embodiments are retrieved or transferred to the generator 10 when the electrosurgical hand device 20, 20′ is connected to the generator 10. In one embodiment, the primary ARM processor 501 may retrieve the device script from a memory storage attached to or integrated into the device key 21 that connects the electrosurgical device 20, 20′ to the electrosurgical generator 10.


Referring next to FIG. 9, a block diagram of an embodiment a control system 100 of an electrosurgical generator 10 operating in a passive regulation mode is shown. In accordance with various embodiments of the present invention, the electrosurgical generator 10 is configured to provide a passive measurement regulation mode or low voltage mode to verify whether a connected electrosurgical hand device 20, 20′ can be used for specific surgical procedures such as, for example, sealing, fusing and/or cutting tissues or vessels. Thus, the passive regulation mode is triggered at a predetermined time, e.g., at each activation of the connected electrosurgical hand device 20, 20′. The passive mode is configured to detect open and/or short loads in the RF output path. In one embodiment, an open or short condition is predetermined and in various embodiments, is an acceptable impedance range or value defined by a device script included with the connected electrosurgical hand device 20, 20′ or otherwise associated with such electrosurgical hand devices 20, 20′. In various embodiments, the RF output for the passive mode has a lower static limit than other RF regulation modes and is used for a limited duration before normal RF regulation or operations of the electrosurgical generator 10 start. The low level RF output in various embodiments does not create a physiological response in tissue.


In various embodiments, when the electrosurgical generator 10 is operating in the passive mode, the RF amplifier 40 supplies a 350 KHz RF output via relays to the connected electrosurgical instrument 20, 20′. As described further above, the RF output in the low voltage mode or passive mode is limited to not more than 10V rms and/or not more than 100 mA rms. The control system 100 regulates and measures voltage and current via the feedback system 60. The primary microcontroller 50 determines if a short and/or open condition is encountered based on the device script and the measured voltage and current data from the control system 100. In various embodiments, one or more electrodes (best shown in FIG. 9) are used in passive mode and position or selection of the electrodes, e.g., top, center or bottom, may vary based on the connected electrosurgical device, e.g., device 20, 20′ and/or the position of the electrodes relative to the subject tissue or vessel.


In accordance with various embodiments, when a surgeon asserts a fuse or cut switch, the electrosurgical control system 100 initiates a passive impedance evaluation. The passive impedance evaluation triggers or identifies a fault, if a short or open condition is detected at the jaws 22 or distal working end of the electrosurgical hand device 20, 20′. If the passive impedance check is successful, the primary ARM processor 501 executes the full device script. In various embodiments, the primary ARM processor 501 instructs other circuitry of the electrosurgical generator 10 to output RF energy based on specific conditions, triggers, events and timing and according to specific settings. In various embodiments, the primary ARM processor 501 ensures the electrosurgical device is supplied specific RF energy according to specific output settings (voltage, current and power set points) and varies the RF output through the course of the procedure or surgical operation depending on various triggers defined by the device script.



FIG. 10 illustrates a flow diagram of an embodiment of a passive regulation mode operations or process according to the embodiment of the present invention. The depicted portion of the process 700 begins in step 702 where the algorithm initiates the passive mode as a starting point. In accordance with various embodiments, the passive mode is initiated or triggered at each activation of the connected electrosurgical hand device 20, 20′ by a surgeon or other users. After initiating the passive mode, the processing goes to block 704 for generating RF output in the low voltage mode or passive mode and supplying RF energy to the connected electrosurgical hand device 20, 20′. In various embodiments, when the electrosurgical generator 10 operates in the passive mode or low voltage mode, the RF signal outputted from the RF amplifier 40 is limited to a specified voltage range (≤10V) and a specified current range (≤10 mA) for a range of 5-500 ohms resistance.


Once the RF output for the passive mode is generated, processing flows to block 706 where the feedback system 60 measures the electrical characteristics of the RF output. The control system 100, in accordance with various embodiments of the present invention, regulates the RF output to a set value as directed by the passive or low voltage mode and the feedback system 60 measures voltage, current, and/or phase from the main channel 601 and digitally feeds some or all of the measured values to the primary microcontroller 50. After completion of measurements and transmission of measured data, processing flows to block 708 where the primary FPGA 510 calculates or determines other electrical characteristics of the RF output based on the received data or readings and transmits some or all of the calculated results to the ARM processor 501 of the primary microcontroller 50. Other electrical characteristics of the RF output according to the embodiments of the present invention may include tissue impedance load and/or power. Once the calculated results are received by the primary ARM processor 510, the processing flows to block 710 where the primary ARM processor 501 retrieves the device script and compares the calculated results, e.g., calculated impedance load or tissue load, to a preset range set by the device script. In one embodiment, the device script is stored into a memory attached to or integrated into the device key or connector 21 that connects the electrosurgical hand device 20, 20′ to the electrosurgical generator 10.


A determination of whether the comparison results has met certain criteria set by the device script is made in step 712. Examples of the certain criteria may include, but not limited to, whether the comparison results or readings are within maximum and/or minimum values set by the device script. If the comparison results or readings are not between maximum and/or minimum values set by the device script, processing flows from block 712 to block 714 where an error is generated to notify the user or surgeon of an error and/or to check the electrosurgical device and/or its position relative to the tissue or vessel. In accordance with various embodiments, to supply RF energy after such a notification, the electrosurgical device 20, 20′ must be reactivated and the passive tissue impedance evaluation, e.g., passive mode or low voltage mode, be reinitiated.


If the comparison results or readings are between maximum and/or minimum values set by the device script, processing goes from block 712 to block 716 where the primary ARM processor 501 initiate the full device script to provide optimized RF energy for sealing, fusing and/or cutting tissue or vessel.


As described further above and in accordance with various embodiments, the control system 100 of the electrosurgical generator 10 may include one or more resolution settings and in various embodiments it includes three settings: low, normal or medium and high voltage setting. These resolution settings are different from the regulation modes and in some embodiments they require some adjustments to the circuitry that measures the RF output. Each setting is configured to require different hardware configurations for the feedback system 60 and/or different normalization algorithms in the calculations performed by the primary microcontroller 50. In various embodiments, the voltage measurement circuit of the feedback system 60 uses a different resistor selection or configuration for each of the three settings. In various embodiments, the current measurement circuit of the feedback system 60 uses the same resistor configuration for two of the settings, e.g., normal and high voltage settings, and a different resistor configuration for the low voltage setting.


In one embodiment, while the electrosurgical generator 10 is operating in the passive mode, the operations or process assigned to the primary ARM processor 501 may be performed via an FPGA. In other embodiments, other control systems may be incorporated therein. In yet another embodiment, a proportional, e.g., adjusting the system to reach setpoints, integral, e.g., measuring an area between error values and a time axis, prediction, e.g., predicting future errors based on a current error slope, architecture or any combination thereof may be included to supplement or replace the control system measurements, calculations and/or regulation.


In various embodiments, the electrosurgical generator 10 may supply an RF output having different waveform characteristics, e.g., square, providing non-sinusoidal periodic waveforms alternating between a minimum and maximum value; triangle, providing non-sinusoidal periodic waveforms with asymmetric ramps upward to a maximum value and downward to a minimum value; and/or sawtooth, providing non-sinusoidal waveforms with ramps upward to a maximum value and dropping sharply to a minimum value. In accordance with various embodiments of the present invention, the electrosurgical generator 10 may supply an RF output having different crest factor characteristics such as providing a ratio of peak value to effective value of a waveform, a peak amplitude divided by RMS value, and/or an ideal or perfect sine wave having a crest factor of 1.414.


The above description is provided to enable any person skilled in the art to make and use the electrosurgical devices or systems and perform the methods described herein and sets forth the best modes contemplated by the inventors of carrying out their inventions. Various modifications, however, will remain apparent to those skilled in the art. It is contemplated that these modifications are within the scope of the present disclosure. Different embodiments or aspects of such embodiments may be shown in various figures and described throughout the specification. However, it should be noted that although shown or described separately each embodiment and aspects thereof may be combined with one or more of the other embodiments and aspects thereof unless expressly stated otherwise. It is merely for easing readability of the specification that each combination is not expressly set forth.


Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A digital closed-loop control system for use with an electrosurgical generator that supplies electrosurgical RF energy to a surgical site, the digital closed-loop control system comprising: a feedback system for continually monitoring electrical properties of the supplied RF energy to the surgical site as a concurrent surgical condition and generating digital RF signals relating thereto; anda microcontroller, responsive to the generated digital RF signals from the feedback system, is configured with a variable gain factor to regulate and control an RF amplifier that generates the supplied RF energy across a plurality of RF resolution settings and a plurality of RF regulation modes,wherein the microcontroller is further configured to compute the variable gain factor for each of the plurality of RF regulation modes and select one of the computed variable gain factors based on individual error values calculated for each of the plurality of RF regulation modes; the variable gain factor being selected based on a most positive error value.
  • 2. The digital closed-loop control system of claim 1 wherein the plurality of RF resolution settings comprise at least one of a low voltage setting, a medium voltage setting, and a high voltage setting.
  • 3. The digital closed-loop control system of claim 2 wherein for each RF resolution setting, the plurality of RF regulation modes comprise at least one of a voltage regulation mode, a current regulation mode, and a power regulation mode.
  • 4. The digital closed-loop control system of claim 1 wherein the selected variable gain factor allows the electrosurgical generator to have a critically damped step response under any varying surgical, operational or procedural conditions.
  • 5. The digital closed-loop control system of claim 1 wherein the feedback system comprises of analog input, digital processing and digital output.
  • 6. The digital closed-loop control system of claim 1 wherein the feedback system comprises a plurality of channels; the feedback system is configured to measure the electrical properties of the supplied RF energy via at least one of the plurality of channels, to generate data representative of the measured electrical properties, and to digitally transmit the data to the microcontroller.
  • 7. The digital closed-loop control system of claim 6 wherein the microcontroller is configured to receive the data, perform calculations related thereto to obtain measured magnitudes of voltage, current, and power of the supplied RF energy.
  • 8. The digital closed-loop control system of claim 1 wherein the individual error values are calculated by subtracting desired voltage, current and power setpoints from measured magnitudes of voltage, current, and power of the supplied RF energy.
  • 9. The digital closed-loop control system of claim 1 wherein the microcontroller is further configured to select one of the plurality of RF regulation modes based on the calculated individual error values; the RF regulation mode being selected based on the most positive error value.
  • 10. The digital closed-loop control system of claim 1 wherein the microcontroller is further configured with a preload function allowing a seamless transition of the electrosurgical generator between each of the plurality of RF regulation modes.
  • 11. The digital closed-loop control system of claim 1 wherein the microcontroller comprises a primary fully programmable gate array (FPGA) and a primary processor, wherein the primary FPGA is configured to receive and further process the generated digital RF signals from the feedback system and the primary processor is configured to establish desired RF output values for each of the plurality of RF resolution settings and the plurality of RF regulation modes.
  • 12. The digital closed-loop control system of claim 11 wherein the desired RF output values are provided by a device script; the desired RF output values comprising desired voltage, current, and power setpoints.
  • 13. The digital closed-loop control system of claim 2 wherein the low voltage setting comprises an output RF energy up to 10V or 100 mA, the medium voltage setting comprises an RF output energy up to 150V or 8 A, and the high voltage setting comprises an output RF energy up to 300V or 4 A.
  • 14. The digital closed-loop control system of claim 6 wherein each of the plurality of channels of the feedback system comprises: a front-end circuitry for measuring the electrical properties of the supplied RF energy; an analog to digital converter (ADC) for digitizing the measured electrical properties of the supplied RF energy; and a fully programmable gate array FPGA) for deriving the digital RF signals related to the measured electrical properties of the supplied RF energy.
  • 15. A digital closed-loop control system for use with an electrosurgical generator that supplies electrosurgical RF energy to a surgical site, the digital closed-loop control system comprising: a feedback system for continually monitoring electrical properties of the supplied RF energy to the surgical site as a concurrent surgical condition and generating digital RF signals relating thereto; anda microcontroller, responsive to the generated digital RF signals from the feedback system, is configured with a variable gain factor to regulate and control an RF amplifier that generates the supplied RF energy across a plurality of RF resolution settings and a plurality of RF regulation modes, wherein the microcontroller is further configured to:select one of the plurality of RF regulation modes based on individual error values calculated for each of the plurality of RF regulation modes; the RF regulation mode being selected based on a most positive error value, andgenerate an accumulated error value over time, for the selected RF regulation mode, using an integrator module that includes a variable gain calculator.
  • 16. The digital closed-loop control system of claim 15 wherein the accumulated error value over time is calculated by integrating the calculated individual error values for the selected RF regulation mode.
  • 17. The digital closed-loop control system of claim 15 wherein the variable gain calculator is configured to generate the variable gain factor as a function of desired voltage, current and power setpoints, a measured tissue impedance load, measured magnitudes of voltage, current, and power of the supplied RF energy, and the accumulated error value.
  • 18. The digital closed-loop control system of claim 17 wherein the variable gain calculator is configured with a different algorithm to generate the variable gain factor for each of the plurality of RF regulation modes.
  • 19. The digital closed-loop control system of claim 17 wherein the microcontroller is further configured to provide a variable integral control system for dictating RF output of a Buck and H-Bridge circuitry of the RF amplifier.
  • 20. The digital closed-loop control system of claim 19 wherein the microcontroller is further configured to drive a duty cycle value for the Buck circuitry of the RF amplifier using the desired voltage, current and power setpoints and the measured tissue impedance load.
  • 21. The digital closed-loop control system of claim 19 wherein the microcontroller is further configured to drive a duty cycle value for the H-Bridge circuitry of the RF amplifier using the accumulated error value and the variable gain factor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and is a non-provisional of U.S. Provisional Application Ser. No. 62/727,195 filed on Sep. 5, 2018, which is hereby expressly incorporated by reference in its entirety for all purposes.

US Referenced Citations (1169)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1935289 Evans Nov 1933 A
2002594 Wappler et al. May 1935 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2176479 Willis Oct 1939 A
2305156 Grubel Dec 1942 A
2632661 Cristofv Mar 1953 A
2827056 Degelman Mar 1958 A
3085566 Tolles Apr 1963 A
3459187 Pallotta Aug 1969 A
3494363 Jackson Feb 1970 A
3588710 Masters Jun 1971 A
3651811 Hildebrandt et al. Mar 1972 A
3685518 Beuerle et al. Aug 1972 A
3780416 Rider Dec 1973 A
3826263 Cage et al. Jul 1974 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3963030 Newton Jun 1976 A
3970088 Morrison Jul 1976 A
3980085 Ikuno Sep 1976 A
3987795 Morrison Oct 1976 A
4030501 Archibald Jun 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4060088 Morrison, Jr. et al. Nov 1977 A
4074718 Morrison, Jr. Feb 1978 A
4089336 Cage et al. May 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4114623 Meinke et al. Sep 1978 A
4126137 Archibald Nov 1978 A
4154240 Ikuno et al. May 1979 A
4171700 Farin Oct 1979 A
4181131 Ogui Jan 1980 A
4188927 Harris Feb 1980 A
4196734 Harris Apr 1980 A
4198957 Cage et al. Apr 1980 A
4198960 Utsugi Apr 1980 A
4200104 Harris Apr 1980 A
4231372 Newton Nov 1980 A
4237887 Gonser Dec 1980 A
4244371 Farin Jan 1981 A
4325374 Komiya Apr 1982 A
4331149 Gonser May 1982 A
4338940 Ikuno Jul 1982 A
4352156 Gyugyi Sep 1982 A
4370980 Lottick Feb 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4427014 Bel et al. Jan 1984 A
4429694 McGreevy Feb 1984 A
4463759 Garito et al. Aug 1984 A
4487489 Takamatsu Dec 1984 A
4514619 Kugelman Apr 1985 A
4522206 Whipple et al. Jun 1985 A
4552143 Lottick Nov 1985 A
4569131 Faulk et al. Feb 1986 A
4569345 Manes Feb 1986 A
4590934 Malis et al. May 1986 A
4599553 Brennen et al. Jul 1986 A
4630218 Hurley Dec 1986 A
4632109 Paterson Dec 1986 A
4644950 Valli Feb 1987 A
4651280 Chang et al. Mar 1987 A
4655216 Tischer Apr 1987 A
4657018 Hakky Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4674498 Stasz Jun 1987 A
4685459 Koch et al. Aug 1987 A
4699146 Sieverding Oct 1987 A
4712545 Honkanen Dec 1987 A
4716897 Noguchi et al. Jan 1988 A
4727874 Bowers et al. Mar 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4752864 Clappier Jun 1988 A
4754757 Feucht Jul 1988 A
4788977 Farin et al. Dec 1988 A
4802476 Noerenberg et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827927 Newton May 1989 A
4848335 Manes Jul 1989 A
4850353 Stasz et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4862890 Stasz et al. Sep 1989 A
4872456 Hasson Oct 1989 A
4887612 Esser et al. Dec 1989 A
4889722 Sheffield et al. Dec 1989 A
4903696 Stasz et al. Feb 1990 A
4905691 Rydell Mar 1990 A
4922903 Welch et al. May 1990 A
4936281 Stasz Jun 1990 A
4937254 Sheffield et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4958539 Stasz et al. Sep 1990 A
4969885 Farin Nov 1990 A
4976711 Parins et al. Dec 1990 A
5007908 Rydell Apr 1991 A
5013312 Parins et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5016521 Haka May 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035696 Rydell Jul 1991 A
5038109 Goble et al. Aug 1991 A
5047026 Rydell Sep 1991 A
5047027 Rydell Sep 1991 A
5052402 Bencini et al. Oct 1991 A
5057107 Parins et al. Oct 1991 A
5061269 Muller Oct 1991 A
5062031 Flachenecker et al. Oct 1991 A
5071419 Rydell et al. Dec 1991 A
5078717 Parins et al. Jan 1992 A
5083565 Parins Jan 1992 A
5085659 Rydell Feb 1992 A
5087257 Farin et al. Feb 1992 A
5098431 Rydell Mar 1992 A
5116332 Lottick May 1992 A
5122137 Lennox Jun 1992 A
5125928 Parins et al. Jun 1992 A
5127412 Cosmetto et al. Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5158561 Rydell et al. Oct 1992 A
5160343 Brancel et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5171255 Rydell Dec 1992 A
5171311 Rydell Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5190541 Abele et al. Mar 1993 A
5192280 Parins Mar 1993 A
5197963 Parins Mar 1993 A
5197964 Parins Mar 1993 A
5201732 Parins et al. Apr 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5234427 Ohtomo et al. Aug 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246440 Van Noord Sep 1993 A
5250047 Rydell Oct 1993 A
5250056 Hasson Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5256149 Banik et al. Oct 1993 A
5258006 Rydell et al. Nov 1993 A
5267997 Farin et al. Dec 1993 A
5269780 Roos Dec 1993 A
5273524 Fox et al. Dec 1993 A
5281216 Klicek Jan 1994 A
5282799 Rydell Feb 1994 A
5286255 Weber Feb 1994 A
5290286 Parins Mar 1994 A
5300070 Gentelia et al. Apr 1994 A
5304190 Reckelhoff et al. Apr 1994 A
5312329 Beaty et al. May 1994 A
5314424 Nicholas May 1994 A
5318563 Malis et al. Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324289 Eggers Jun 1994 A
5330471 Eggers Jul 1994 A
5334183 Wuchinich Aug 1994 A
5338317 Hasson et al. Aug 1994 A
5341807 Nardella Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5352222 Rydell Oct 1994 A
5352223 McBrayer et al. Oct 1994 A
5354313 Boebel Oct 1994 A
5356408 Rydell Oct 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5382247 Cimino et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383922 Zipes et al. Jan 1995 A
5387196 Green et al. Feb 1995 A
5387197 Smith et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5389849 Asano et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5392917 Alpern et al. Feb 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Willaimson et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423810 Goble et al. Jun 1995 A
5431638 Hennig et al. Jul 1995 A
5431649 Mulier et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5432459 Thompson et al. Jul 1995 A
5436566 Thompson et al. Jul 1995 A
5437664 Cohen et al. Aug 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445142 Hassler, Jr. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460182 Goodman et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5464144 Guy et al. Nov 1995 A
5472439 Hurd Dec 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5472451 Freitas et al. Dec 1995 A
5474057 Makower et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5499998 Meade et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5514129 Smith May 1996 A
5514134 Rydell et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5527313 Scott et al. Jun 1996 A
5527330 Tovey Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5551945 Yabe et al. Sep 1996 A
5558429 Cain Sep 1996 A
5558671 Yates Sep 1996 A
5562699 Heimberger et al. Oct 1996 A
5562700 Huitema et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575805 Li Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5603711 Parins et al. Feb 1997 A
D378611 Croley Mar 1997 S
5607391 Klinger et al. Mar 1997 A
5609151 Mulier et al. Mar 1997 A
5609560 Ichikawa et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611709 McAnulty Mar 1997 A
5613966 Makower et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626575 Crenner May 1997 A
5626607 Malecki et al. May 1997 A
5626608 Cuny et al. May 1997 A
5627584 Nishikori et al. May 1997 A
5633578 Eggers et al. May 1997 A
5645540 Henniges et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658279 Nardella et al. Aug 1997 A
5658281 Heard Aug 1997 A
5665100 Yoon Sep 1997 A
5665105 Furnish et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5674184 Hassler, Jr. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5693045 Eggers Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5720742 Quinn et al. Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5720745 Farin et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5725524 Mulier et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5735849 Baden et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5746210 Benaron et al. May 1998 A
5746740 Nicholas May 1998 A
5746759 Meade et al. May 1998 A
5752519 Benaron et al. May 1998 A
5755717 Yates et al. May 1998 A
5759185 Grinberg Jun 1998 A
5762609 Benaron et al. Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769841 Odell et al. Jun 1998 A
5772597 Goldberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5772660 Young et al. Jun 1998 A
5776092 Farin et al. Jul 1998 A
5776129 Mersch Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785658 Benaron et al. Jul 1998 A
5792139 Chambers et al. Aug 1998 A
5792178 Welch et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800449 Wales Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5836942 Netherly et al. Nov 1998 A
5836943 Miller, III Nov 1998 A
5846194 Wasson et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5860975 Goble et al. Jan 1999 A
5873873 Smith et al. Feb 1999 A
5876398 Mulier et al. Mar 1999 A
5876401 Schulze et al. Mar 1999 A
5885277 Korth Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893873 Rader et al. Apr 1999 A
5897490 Fox et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897553 Mulier et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5902264 Toso et al. May 1999 A
5902301 Olig May 1999 A
5904709 Arndt et al. May 1999 A
5906613 Mulier et al. May 1999 A
5908402 Blythe Jun 1999 A
5908420 Parins et al. Jun 1999 A
5910152 Bays Jun 1999 A
5928137 Green Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928256 Riza Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5935126 Riza Aug 1999 A
5938633 Beaupre Aug 1999 A
5944715 Goble et al. Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947284 Foster Sep 1999 A
5947984 Whipple Sep 1999 A
5951552 Long et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5961514 Long et al. Oct 1999 A
5968062 Thomas et al. Oct 1999 A
5968074 Prestel Oct 1999 A
5976077 Wittens et al. Nov 1999 A
5976128 Schilling et al. Nov 1999 A
5980510 Tsonton et al. Nov 1999 A
5980516 Mulier et al. Nov 1999 A
5984921 Long et al. Nov 1999 A
5987346 Benaron et al. Nov 1999 A
5993380 Yabe et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5995875 Blewett et al. Nov 1999 A
5997533 Kuhns Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010499 Cobb Jan 2000 A
6010516 Hulka Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6016809 Mulier et al. Jan 2000 A
D420741 Croley Feb 2000 S
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033399 Gines Mar 2000 A
6033404 Melzer et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6039736 Platt, Jr. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6056746 Goble et al. May 2000 A
6063050 Manna et al. May 2000 A
6063075 Mihori May 2000 A
6063081 Mulier et al. May 2000 A
6063086 Benecke et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068647 Witt et al. May 2000 A
6070444 Lontine et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083191 Rose Jul 2000 A
6086586 Hooven Jul 2000 A
6090106 Goble et al. Jul 2000 A
6090120 Wright et al. Jul 2000 A
6092722 Heinrichs et al. Jul 2000 A
6093186 Goble Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113591 Whayne et al. Sep 2000 A
6113594 Savage Sep 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
6120501 Long et al. Sep 2000 A
H1904 Yates Oct 2000 H
6132429 Baker Oct 2000 A
6135998 Palanker Oct 2000 A
6139519 Blythe Oct 2000 A
6139547 Lontine et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6159146 El Gazayerli Dec 2000 A
6162235 Vaitekunas Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171304 Netherly et al. Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wroblewski et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6186147 Cobb Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6187026 Devlin et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6190385 Tom et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6193653 Evans et al. Feb 2001 B1
6193713 Geistert et al. Feb 2001 B1
6197026 Farin et al. Mar 2001 B1
6203541 Keppel Mar 2001 B1
6206823 Kolata et al. Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206875 Long et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6210405 Goble et al. Apr 2001 B1
6214003 Morgan et al. Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228023 Zaslavsky et al. May 2001 B1
6228055 Foerster et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6238392 Long May 2001 B1
6238393 Mulier et al. May 2001 B1
6242741 Miller et al. Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258085 Eggleston Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283963 Regula Sep 2001 B1
6287344 Wampler Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296637 Thorne et al. Oct 2001 B1
6296640 Wampler et al. Oct 2001 B1
6298550 Kirwan, Jr. Oct 2001 B1
6302903 Mulier et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6312426 Goldberg et al. Nov 2001 B1
6315777 Comben Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328736 Mulier et al. Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6334068 Hacker Dec 2001 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6348051 Farin et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358267 Murakami Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364879 Chen et al. Apr 2002 B1
6371967 Long et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383183 Sekino et al. May 2002 B1
6387092 Burnside et al. May 2002 B1
6387109 Davison et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6391025 Weinstein et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6406475 Wenzler et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6423057 He et al. Jul 2002 B1
6423082 Houser et al. Jul 2002 B1
6432118 Messerly Aug 2002 B1
6436096 Hareyama Aug 2002 B1
6440130 Mulier et al. Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451013 Bays et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6454764 Fleenor et al. Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458078 Lüdtke et al. Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6475217 Platt Nov 2002 B1
6478030 Shapeton et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6488507 Stoloff et al. Dec 2002 B1
6488680 Francischelli et al. Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491708 Madan et al. Dec 2002 B2
6493589 Medhkour et al. Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6494902 Hoey et al. Dec 2002 B2
6497705 Comben Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6503263 Adams Jan 2003 B2
6506189 Rittman, III et al. Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6510854 Goble et al. Jan 2003 B2
6511476 Hareyama Jan 2003 B2
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517536 Hooven et al. Feb 2003 B2
6517538 Jacob et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6534770 Miller et al. Mar 2003 B2
6537248 Mulier et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6540695 Burbank et al. Apr 2003 B1
6543456 Freeman Apr 2003 B1
6547783 Vilendrer et al. Apr 2003 B1
6547786 Goble et al. Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558379 Batchelor et al. May 2003 B1
6558383 Cunningham et al. May 2003 B2
6561983 Cronin et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6565559 Eggleston May 2003 B2
6565560 Goble et al. May 2003 B1
6569105 Kortenbach et al. May 2003 B1
6569109 Sakurai et al. May 2003 B2
6572615 Schulze et al. Jun 2003 B2
6579289 Schnitzler Jun 2003 B2
6582424 Fleenor et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585732 Mulier et al. Jul 2003 B2
6585733 Wellman Jul 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6591719 Poole et al. Jul 2003 B1
6592582 Hess et al. Jul 2003 B2
6594518 Benaron et al. Jul 2003 B1
6602227 Cimino et al. Aug 2003 B1
6602249 Stoddard et al. Aug 2003 B1
6602252 Mollenauer Aug 2003 B2
6605036 Wild Aug 2003 B1
6607529 Jones et al. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613048 Mulier et al. Sep 2003 B2
6616656 Brommersma Sep 2003 B2
6616660 Platt Sep 2003 B1
6616661 Wellman et al. Sep 2003 B2
6620157 Dabney et al. Sep 2003 B1
6620161 Schulze et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623515 Mulier et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629974 Penny et al. Oct 2003 B2
6638274 Yamamoto Oct 2003 B2
6648883 Francischelli et al. Nov 2003 B2
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656110 Irion et al. Dec 2003 B1
6656175 Francischelli et al. Dec 2003 B2
6656176 Hess et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662050 Olson Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663622 Foley et al. Dec 2003 B1
6663627 Francischelli et al. Dec 2003 B2
6663628 Peters Dec 2003 B2
6666865 Platt Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6692450 Coleman Feb 2004 B1
6692489 Heim et al. Feb 2004 B1
6695837 Howell Feb 2004 B2
6695838 Wellman et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6699240 Francischelli Mar 2004 B2
6706038 Francischelli et al. Mar 2004 B2
6706039 Mulier et al. Mar 2004 B2
6709432 Ferek-Petric Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6726683 Shaw Apr 2004 B1
6726686 Buysse et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736810 Hoey et al. May 2004 B2
6740084 Ryan May 2004 B2
6740085 Hareyama et al. May 2004 B2
6740102 Hess et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6752804 Simpson et al. Jun 2004 B2
6755825 Schoenman et al. Jun 2004 B2
6755827 Mulier et al. Jun 2004 B2
6755841 Fraser et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6764487 Mulier et al. Jul 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6786906 Cobb Sep 2004 B1
6790217 Schulze et al. Sep 2004 B2
6796828 Ehr et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6807444 Tu et al. Oct 2004 B2
6807968 Francischelli et al. Oct 2004 B2
6808518 Wellman et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6814745 Prestel Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827715 Francischelli et al. Dec 2004 B2
6827717 Brommersma et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6830569 Thompson et al. Dec 2004 B2
6832111 Tu et al. Dec 2004 B2
6832985 Irion et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835195 Schulze et al. Dec 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852112 Platt Feb 2005 B2
6855142 Harano et al. Feb 2005 B2
6855145 Ciarrocca Feb 2005 B2
6858028 Mulier et al. Feb 2005 B2
6860881 Sturm et al. Mar 2005 B2
6860894 Pittman Mar 2005 B1
6887240 Lands et al. May 2005 B1
6889694 Hooven May 2005 B2
6893435 Goble May 2005 B2
6893441 Brommersma et al. May 2005 B2
6899710 Hooven May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911019 Mulier et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6916318 Francischelli et al. Jul 2005 B2
6918880 Brookner et al. Jul 2005 B2
6923803 Goble Aug 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932811 Hooven et al. Aug 2005 B2
6937033 Boronkay et al. Aug 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6945972 Frigg et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6949098 Mulier et al. Sep 2005 B2
6958063 Soil et al. Oct 2005 B1
6960209 Clague et al. Nov 2005 B2
6960210 Lands et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6962589 Mulier et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6974454 Hooven Dec 2005 B2
6976969 Messerly Dec 2005 B2
6979332 Adams Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6984233 Hooven Jan 2006 B2
6984826 Miller et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6994705 Nobis et al. Feb 2006 B2
6997735 Ehr et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001415 Hooven Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7025764 Paton et al. Apr 2006 B2
7029470 Francischelli et al. Apr 2006 B2
7033351 Howell Apr 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041096 Malis et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7044950 Yamamoto May 2006 B2
7048687 Reuss et al. May 2006 B1
7049599 Miller et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7060063 Marion et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7097644 Long Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7104989 Skarda Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7116157 Ross et al. Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126125 Miller et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7147635 Ciarrocca Dec 2006 B2
7147637 Goble Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156843 Skarda Jan 2007 B2
7156845 Mulier et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160293 Sturm et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7166105 Mulier et al. Jan 2007 B2
7169115 Nobis et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169145 Isaacson et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7179254 Pendkanti et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7182604 Ehr et al. Feb 2007 B2
7186252 Nobis et al. Mar 2007 B2
7186253 Truckai et al. Mar 2007 B2
7187790 Sabol et al. Mar 2007 B2
7189231 Clague et al. Mar 2007 B2
7189232 Scholl et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7195630 Ciarrocca Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7214224 Goble May 2007 B2
7216001 Hacker et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223239 Schulze et al. May 2007 B2
7223265 Keppel May 2007 B2
7226447 Uchida et al. Jun 2007 B2
7229307 Ehr et al. Jun 2007 B2
7232439 Ciarrocca Jun 2007 B2
7232440 Aid et al. Jun 2007 B2
7235048 Rein et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7241296 Buysse et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7250051 Francischelli Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255694 Keppel Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7259340 Blaha et al. Aug 2007 B2
7261711 Mulier et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7273483 Weiner et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7282049 Oraszulak et al. Oct 2007 B2
7291161 Hooven Nov 2007 B2
7297145 Woloszko et al. Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7309325 Mulier et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311560 Ehr et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311707 Hagg et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7322975 Goble et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7335997 Weiner Feb 2008 B2
7344532 Goble et al. Mar 2008 B2
7347858 Francischelli et al. Mar 2008 B2
RE40279 Sluijter et al. Apr 2008 E
D567943 Moses et al. Apr 2008 S
7353068 Tanaka et al. Apr 2008 B2
7354435 Farin et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7354443 Moll et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7364578 Francischelli et al. Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
7367976 Lawes et al. May 2008 B2
7371246 Viola May 2008 B2
7377902 Burbank et al. May 2008 B2
7377918 Amoah May 2008 B2
7377920 Buysse et al. May 2008 B2
RE40388 Gines Jun 2008 E
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
7419487 Johnson et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422588 Mulier et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7426415 Kühner Sep 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7431721 Paton et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7435250 Francischelli et al. Oct 2008 B2
7442167 Dunki-Jacobs et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7470272 Mulier et al. Dec 2008 B2
7473250 Makin et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7476233 Wiener et al. Jan 2009 B1
7481808 Koyfman et al. Jan 2009 B2
7491199 Goble Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7811283 Moses et al. Oct 2010 B2
7841765 Keller Nov 2010 B2
8561615 Pannell et al. Oct 2013 B2
8784417 Hanna Jul 2014 B2
8808288 Rescheke Aug 2014 B2
9161813 Benamou Oct 2015 B2
20010037110 Schmaltz et al. Nov 2001 A1
20010039417 Harano et al. Nov 2001 A1
20020052599 Goble May 2002 A1
20020115997 Truckai et al. Aug 2002 A1
20020120262 Bek et al. Aug 2002 A1
20020120266 Truckai et al. Aug 2002 A1
20020128650 McClurken Sep 2002 A1
20020151884 Hoey et al. Oct 2002 A1
20020161363 Fodor et al. Oct 2002 A1
20020165541 Whitman Nov 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030014052 Buysse et al. Jan 2003 A1
20030060818 Kannenberg et al. Mar 2003 A1
20030065327 Wellman et al. Apr 2003 A1
20030065358 Frecker et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030109871 Johnson et al. Jun 2003 A1
20030114845 Paton et al. Jun 2003 A1
20030114848 Cobb Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030125728 Nezhat et al. Jul 2003 A1
20030125731 Smith et al. Jul 2003 A1
20030125734 Mollenauer Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030199870 Truckai et al. Oct 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040006340 Latterell et al. Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040068274 Hooven Apr 2004 A1
20040068304 Paton et al. Apr 2004 A1
20040073247 Loshakove et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040092922 Kadziauskas et al. May 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040215127 Kadziauskas et al. Oct 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040250419 Sremich et al. Dec 2004 A1
20050004563 Racz et al. Jan 2005 A1
20050004564 Wham et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033282 Hooven Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050080319 Dinkler, II et al. Apr 2005 A1
20050090815 Francischelli et al. Apr 2005 A1
20050096681 Desinger et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113817 Isaacson et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050124987 Goble Jun 2005 A1
20050137592 Nguyen et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050159745 Truckai et al. Jul 2005 A1
20050165444 Hart et al. Jul 2005 A1
20050192568 Truckai et al. Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050234447 Paton et al. Oct 2005 A1
20050245918 Sliwa, Jr. et al. Nov 2005 A1
20050245922 Goble Nov 2005 A1
20060020265 Ryan Jan 2006 A1
20060041254 Francischelli et al. Feb 2006 A1
20060052777 Dumbauld Mar 2006 A1
20060079788 Anderson et al. Apr 2006 A1
20060079878 Houser Apr 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060173453 Gruhl et al. Aug 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217706 Lau et al. Sep 2006 A1
20060217707 Daniel et al. Sep 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20070016185 Tullis et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070123847 Mihori May 2007 A1
20070135811 Hooven Jun 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schecter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070167941 Hamel et al. Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070191827 Lischinsky et al. Aug 2007 A1
20070191828 Houser et al. Aug 2007 A1
20070203481 Gregg et al. Aug 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070276363 Patton et al. Nov 2007 A1
20070282195 Masini et al. Dec 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20070282332 Witt et al. Dec 2007 A1
20070287997 Tolmei Dec 2007 A1
20080009860 Odom Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015564 Wham et al. Jan 2008 A1
20080015567 Kimura Jan 2008 A1
20080030206 Podhajsky et al. Feb 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082095 Shores Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132893 D' Amelio et al. Jun 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080188848 Deutmeyer et al. Aug 2008 A1
20080208246 Livneh Aug 2008 A1
20080215050 Bakos Sep 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080221565 Eder et al. Sep 2008 A1
20080228179 Eder et al. Sep 2008 A1
20080294222 Schecter Nov 2008 A1
20080300589 Paul et al. Dec 2008 A1
20080300590 Horne et al. Dec 2008 A1
20080300591 Darian et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090171352 Sutter Jul 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090275490 Milne et al. Nov 2009 A1
20090275940 Malackowski et al. Nov 2009 A1
20120010614 Couture Jan 2012 A1
20120059371 Anderson et al. Mar 2012 A1
20120083785 Roy et al. Apr 2012 A1
20120136347 Brustad et al. May 2012 A1
20120197243 Sherman et al. Aug 2012 A1
20120215220 Manzo et al. Aug 2012 A1
20130018411 Collings et al. Jan 2013 A1
20130138101 Kerr May 2013 A1
20130138102 Twomey et al. May 2013 A1
20130197874 Heckel Aug 2013 A1
20130267951 Twomey Oct 2013 A1
20130274743 Banfalvi Oct 2013 A1
20130296843 Boudrequx et al. Nov 2013 A1
20130345696 Behnke, II et al. Dec 2013 A1
20140005658 Rosenbegr Jan 2014 A1
20140088583 Singh Mar 2014 A1
20140214019 Baxter, III et al. Jul 2014 A1
20140254221 Johnson Sep 2014 A1
20160000495 Elliott Jan 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160151107 Wham Jun 2016 A1
20160310203 Gaspredes et al. Oct 2016 A1
20160310204 McHenry et al. Oct 2016 A1
20180256242 Bluvshtein Sep 2018 A1
Foreign Referenced Citations (68)
Number Date Country
40 24 636 Feb 1992 DE
40 24 636 Dec 1992 DE
10 2005 044 918 Feb 2007 DE
0 315 338 May 1989 EP
0 538 984 Apr 1993 EP
0 570 675 Nov 1993 EP
0 598 202 May 1994 EP
0 717 967 Jun 1996 EP
0 737 447 Oct 1996 EP
0 878 168 Nov 1998 EP
1 054 637 Nov 2000 EP
1 157 666 Nov 2001 EP
1 500 378 Jan 2005 EP
1 535 581 Jun 2005 EP
1 545 361 Jun 2005 EP
1 557 129 Jul 2005 EP
1 634 539 Mar 2006 EP
1 634 539 Mar 2006 EP
1 665 995 Jun 2006 EP
1 728 475 Dec 2006 EP
1 810 628 Jul 2007 EP
1 946 715 Jul 2008 EP
2 106 762 Oct 2009 EP
2 111 812 Oct 2009 EP
2 156 802 Feb 2010 EP
2 301 462 Mar 2011 EP
2 340 792 Jul 2011 EP
2 436 327 Apr 2012 EP
2 436 330 Apr 2012 EP
2 574 300 Apr 2013 EP
2 712 568 Apr 2014 EP
2 777 578 Sep 2014 EP
3 369 392 Sep 2018 EP
2 157 175 Oct 1985 GB
2 462 453 Aug 2008 GB
60-30946 Feb 1994 JP
83-17935 Dec 1996 JP
11-070123 Mar 1999 JP
11-070124 Mar 1999 JP
11-178833 Jul 1999 JP
2000-254135 Sep 2000 JP
2003-135481 May 2003 JP
2003-164463 Jun 2003 JP
2006-109945 Apr 2006 JP
2006-167403 Jun 2006 JP
2007-144201 Jun 2007 JP
2007-195980 Aug 2007 JP
2007-195985 Aug 2007 JP
2008-043789 Feb 2008 JP
2008-259864 Oct 2008 JP
WO 93015662 Aug 1993 WO
WO 97010764 Mar 1997 WO
WO 99040857 Aug 1999 WO
WO 01012090 Feb 2001 WO
WO 2004030553 Apr 2004 WO
WO 2004032776 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004082495 Sep 2004 WO
WO 2005004735 Jan 2005 WO
WO 05053785 Jun 2005 WO
WO 2006119245 Nov 2006 WO
WO 2006125558 Nov 2006 WO
WO 2007044849 Apr 2007 WO
WO 2007142601 Dec 2007 WO
WO 2008147773 Dec 2008 WO
WO 2009065140 May 2009 WO
WO 2012110996 Aug 2012 WO
WO 2013030349 Mar 2013 WO
Non-Patent Literature Citations (43)
Entry
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/059909, titled “Electro surgical System,” dated May 27, 2021, 15 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/059909 titled “Electrosurgical System,” dated Apr. 28, 2020, 23 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/049768 titled “Electrosurgical Generator Verification System.” dated Dec. 11, 2019, 19 pgs.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2019/049807, titled “Electrosurgical Generator Control System”, dated Dec. 19, 2019, 16 pgs.
European Patent Office, Extended European Search Report for European Patent No. 19198318.8, entitled, “Bipolar Electrosurgical Sealer and Divider,” dated Dec. 17, 2019, 10 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/049807 titled “Electrosurgical Generator Control System.” dated Feb. 12, 2020, 20 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/049768, titled “Electrosurgical Generator Verification System,” dated Mar. 18, 2021, 13 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/049807, titled “Electrosurgical Generator Control System,” dated Mar. 18, 2021, 13 pgs.
Bertil Vallfors and Bjorn Bergdahl, Automatically controlled bipolar electrocoagulation—“COA-COMP”, Neurosurg. Rev., 1984, pp. 187-190.
“New Products” Journal of Medical Engineering and Technology, vol. 19, No. 5 (Sep./Oct. 1995), pp. 189-190.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US09/39046 titled “Electrosurgical System,” dated Jul. 27, 2009, 31 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US09/39046, titled “Electrosurgical System,” dated Mar. 26, 2010, 18 pgs.
European Patent Office, European Search Report for European Application No. EP 10 19 2593, titled “Electrosurgical System,” dated Mar. 21, 2011, 8 pgs.
European Patent Office, European Search Report for European Application No. EP 10 19 2614, titled “Electrosurgical System,” dated Apr. 18, 2011, 7 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 10 19 2580, dated Jul. 21, 2011, 6 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US09/39046, titled “Electrosurgical System,” dated Jan. 17, 2012, 45 pgs.
European Patent Office, European Search Report for European Patenet Application No. 12151288, dated Feb. 10, 2012, 8 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/054661, dated Mar. 6, 2012, 23 pgs.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012, 3 pgs.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Jun. 6, 2012, 2 pgs.
European Patent Office, Partial European Search Report for European Patent Application No. 15151398.3, dated Jun. 22, 2015, 9 pgs.
U.S. Appl. No. 12/611,352, filed Nov. 3, 2009, titled Tissue Fusion/Welder Apparatus and Method, now U.S. Pat. No. 8,551,089 issued Oct. 8, 2013.
U.S. Appl. No. 12/183,970, filed Jul. 31, 2008, entitled Bipolar Electrosurgical Scissors, now U.S. Pat. No. 8,226,649 issued Jul. 24, 2012.
U.S. Appl. No. 12/416,128, filed Mar. 31, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,568,411 issued Oct. 29, 2013.
US Patent Application No. PCT/US09/39046 filed Mar. 31, 2009, entitled Electrosurgical System.
U.S. Appl. No. 12/416,668, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,562,598 issued Oct. 22, 2013.
U.S. Appl. No. 12/416,695, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,551,088 issued Oct. 8, 2013.
U.S. Appl. No. 12/416,765, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,915,910 issued Dec. 23, 2014.
U.S. Appl. No. 12/416,751, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,579,894 issued Nov. 12, 2013.
The International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2011/054661, entitled “Electrosurgical Instruments and Connections Thereto,” dated Apr. 2, 2013, 10 pgs.
European Patent Office, European Search Report for European Application No. EP 13 17 4814.7, titled “Electrosurgical System,” dated Sep. 30, 2013, 4 pgs.
European Patent Office, European Search Report for European Patent Application No. EP 14199708.0, entitled “Electrosurgical System,” dated Jul. 10, 2015, 14 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/031452 ,titled “Electrosurgical Fusion Device,” dated Dec. 3, 2015, 27 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/066473 titled “Bipolar Electrosurgical Sealer and Divider.” dated Mar. 31, 2016, 13 pgs.
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/033546 titled “Electrosurgical Seal and Dissection Systems.” dated Apr. 22, 2016, 31 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/031452, titled “Electrosurgical System,” dated Dec. 1, 2016, 21 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/033546, titled “Electrosurgical Laparoscopic Sealer and Dissector,” dated Dec. 15, 2016, 22 pgs.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/0066473, titled “Bipolar Electrosurgical Sealer and Divider,” dated Jul. 6, 2017, 10 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 17207793.5, dated May 16, 2018, 9 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18165110.0, dated Jun. 13, 2018, 6 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 21215386.0, dated May 24, 2022, 6 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2020/067540, dated May 3, 2021, entitled “Electrosurgical System with Tissue and Maximum Current Identification,” 12 pages.
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2020/067540, titled “Electrosurgical System with Tissue and Maximum Current Identification,” dated Jul. 14, 2022, 9 pgs.
Related Publications (1)
Number Date Country
20200069358 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62727195 Sep 2018 US