The present disclosure is generally directed to electrosurgical generator systems and methods and more particularly to electrosurgical control systems configured for regulating dynamically the generator's output to provide optimal radiofrequency (RF) energy for sealing, fusing and/or cutting tissues or vessels
Electrosurgical hand devices or instruments have become available that use radiofrequency (RF) energy to perform certain surgical tasks. Electrosurgical instruments may include one or more electrodes that are configured to be supplied with electrical energy from an electrosurgical generator. The electrical energy can be used to fuse, seal, or cut tissue to which it is applied. Examples of such electrosurgical or surgical instruments may include graspers, scissors, tweezers, blades or needles.
Electrosurgical instruments typically fall within two classifications: monopolar and bipolar. In monopolar instruments, electrical energy is supplied to one or more electrodes on the instrument with high current density while a separate return electrode is electrically coupled to a patient and is often designed to minimize current density. Monopolar electrosurgical instruments can be useful in certain procedures, but can include a risk of certain types of patient injuries such as electrical burns often at least partially attributable to functioning of the return electrode. In bipolar electrosurgical instruments, one or more electrodes is electrically coupled to a source of electrical energy of a first polarity and one or more other electrodes is electrically coupled to a source of electrical energy of a second polarity opposite the first polarity. Bipolar electrosurgical instruments, which operate without separate return electrodes, can deliver electrical signals to a focused tissue area with reduced risks.
Even with the relatively focused surgical effects of bipolar electrosurgical instruments, however, surgical outcomes are often highly dependent on surgeon skill. Enhanced generators have been made to reduce this dependency.
In accordance with various embodiments, an electrosurgical system for sealing, fusing and/or cutting tissue is provided. The electrosurgical system may include an electrosurgical generator and an electrosurgical instrument or device. The electrosurgical generator, according to the embodiments of the present invention, may include a digital closed-loop control system that regulates the delivery of electrosurgical or radiofrequency (RF) energy, adjusts the RF energy and in various embodiments measures and monitors electrical properties, e.g., phase, current, voltage and power, of the supplied RF energy to the connectable electrosurgical instrument. In various embodiments, the digital control system enhances accuracy while ensuring stability in the measurements and regulation of the voltage, current and power of the RF output. This provides the optimal RF output for sealing, fusing and/or cutting tissue/vessels under dynamic conditions, such as for example, variable loads, procedural or operational conditions.
In accordance with one aspect of the present invention, a digital closed-loop control system for use with an electrosurgical generator that supplies electrosurgical RF energy to a surgical site is provided. The digital closed-loop control system may include a feedback system monitoring continually electrical properties of the supplied RF energy and generating digital RF signals relating thereto and a microcontroller configured with a variable gain factor to regulate and control an RF amplifier that generates the supplied RF energy across a plurality of RF regulation modes to provide optimal RF output for surgical procedures under any surgical, operational or procedural conditions.
In accordance with a second aspect of the present invention, a method for dynamically controlling an electrosurgical generator that supplies electrosurgical RF energy to a surgical site through an electrosurgical instrument is provided. The method includes the steps of retrieving desired RF setpoints or target values for a plurality of RF regulation modes and generating RF energy at the desired RF setpoints; measuring electrical characteristics of RF output via at least one channel from a feedback system and communicating real and imaginary components of measured data to a microcontroller. The microcontroller, after receiving the transmitted data, performs power calculations to obtain magnitudes of measured data and tissue impedance load for each of the plurality of RF regulation modes.
The method further includes the steps of generating an error signal across the plurality of RF regulation modes and selecting one regulation mode based on the calculated error values; calculating a variable gain factor for each of the plurality of regulation modes using specific algorithms and selecting one variable gain factor based on calculated error values; determining output control signals for Buck and H-Bridge circuitry of an RF amplifier of the electrosurgical generator; and controlling an amount of RF output of the electrosurgical generator in response to the output control signals to maintain a desired output value of the generator.
In accordance with a third aspect of the present invention, there is provided an electrosurgical system for performing surgical procedures. The electrosurgical system may include an electrosurgical generator adapted to supply RF energy to a surgical site and an electrosurgical instrument connected to the electrosurgical generator. The electrosurgical instrument having at least one active electrode adapted to apply electrosurgical RF energy to tissue at the surgical site. The electrosurgical generator may include a primary FPGA (fully programmable gate array) which is configured to cause: generating error signals across a plurality of RF regulation modes and selecting one regulation mode; computing a variable gain factor for the plurality of regulation modes and selecting one variable gain factor; generating an integral signal by integrating the selected error signal and multiplying the generated integral signal by the selected variable gain factor; and driving duty cycles for Buck and H-Bridge circuitry of the RF amplifier using respectively a predicted output voltage and the generated integral signal.
In accordance with a fourth aspect of the present invention, an electrosurgical generator is provided. The electrosurgical generator may include an RF amplifier for supplying RF energy, a feedback system adapted to continually monitor electrical properties of supplied RF energy to generate digital RF signals relating thereto and a primary microcontroller programmed to compute a variable gain factor and a preload function that allows for dynamically controlling the supplied RF energy across a plurality of RF regulation modes and a plurality of RF resolution settings under any surgical, operational or procedural conditions.
In accordance with a fifth aspect of the present invention, a method for impedance evaluation of an electrosurgical instrument, connected to an electrosurgical generator, prior to performing surgical procedures is provided. The method includes the steps of initiating a low voltage mode or passive mode upon activation of the connected electrosurgical instrument; generating RF output limited to values defined by the low voltage mode; measuring electrical characteristics of the RF output and transmitting digitally the measured data to a microcontroller of the electrosurgical generator; calculating other electrical characteristics of the RF output based on the received measured data and transmitting the calculated results to a primary processor within the microcontroller; and determining whether the calculated results has met a certain criteria set by a device script of the connected electrosurgical instrument.
In accordance with a sixth aspect of the present invention, there is provided an electrosurgical generator that includes an RF amplifier for supplying RF energy and a microcontroller configured to dynamically control the supplied RF energy across at least one regulation mode from a plurality of RF regulation modes and a plurality of RF resolution settings.
In accordance with a seventh aspect of the present invention, there is provided an electrosurgical generator that includes an RF amplifier for supplying RF energy and a microcontroller configured to determine at least one of a variable gain factor and a preload function to dynamically control the supplied RF energy.
Many of the attendant features of the present inventions will be more readily appreciated as the same becomes better understood by reference to the foregoing and following description and considered in connection with the accompanying drawings.
The present disclosure is described in conjunction with the appended figures:
In the appended figures, similar components and/or features may have the same reference label. Where the reference label is used in the specification, the description is applicable to any one of the similar components having the same reference label.
The ensuing description provides preferred exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the preferred exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiments of the disclosure. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
This disclosure relates in general to electrosurgical systems. It specifically relates to a new generation of electrosurgical generators capable of regulating voltage, current and power of the RF output under dynamically changing impedance loads and control conditions.
Embodiments of the present invention are directed to systems and methods for enhancing surgical outcomes by providing generators having optimal RF output for sealing, fusing and/or cutting tissue or vessels under all dynamic conditions such as, for example, varying tissue impedance load due to electrosurgical operations or tissue affects and any operational conditions and commands determined by the surgeon, surgical procedure and/or device script. This is achieved by implementing a digital closed-loop control system to regulate voltage, current, and power of the RF output. The digital closed-loop control system may include an RF amplifier for generating RF energy, a feedback system for constantly measuring and monitoring the electrical characteristics, e.g., voltage, current, and power, of the supplied RF energy to a connectable electrosurgical instrument and a microcontroller for processing measurement data from the feedback system and adjusting the output of the RF amplifier to meet a desired regulation target under any varying conditions.
According to the embodiments of the present invention, the feedback system measures, via at least one channel, analog RF output and digitizes the measurements. The feedback system in various embodiments collects its voltage and current measurements simultaneously from the RF amplifier and digitizes the measurements through analog to digital converters (ADC). The feedback system is configured to process the digitized values, to derive real and imaginary components of the voltage and current RF output, and to supply the real and imaginary components to the primary microcontroller.
In accordance with the embodiments of the present invention, the primary microcontroller, calculates individual error values for voltage, current and power and based on the individual error values selects a regulation mode. The primary microcontroller in various embodiments calculates, using specific algorithms, a specific variable gain factor for each regulation mode that allows the electrosurgical system according to the embodiments of the present invention to have a critically damped step response under any variable conditions, e.g., surgical, operational or procedural.
In the following, the electrosurgical system and method according to the present invention is explained in detail with sections individually describing: the electrosurgical generator, the electrosurgical instrument and the digital closed-loop control system and method used according to the embodiments of the present invention for providing optimal RF output under any dynamically outside changing conditions.
In accordance with various embodiments, an electrosurgical generator is provided that controls the delivery of electrosurgical or radiofrequency (RF) energy, adjusts the RF energy and in various embodiments measures and monitors electrical properties, e.g., phase, current, voltage and power, of the supplied RF energy to a connectable electrosurgical instrument to ensure optimal sealing, fusing and/or cutting of tissues or vessels. In various embodiments, the generator may include a feedback system that determines such electrical properties and through a microcontroller regulates and/or controls an RF amplifier that generates the required RF energy to provide the optimal RF output for sealing, fusing and/or cutting tissue or vessels under dynamic conditions, such as for example, varying loads, procedural or operational conditions.
Referring first to
In accordance with various embodiments, the electrosurgical generator 10 includes a display 14 that may indicate the status of the electrosurgical system including, among other information, the status of the one or more electrosurgical instruments and/or accessories, connectors or connections thereto, the state or operations of the generator and error indicators. The electrosurgical generator 10 in accordance with various embodiments of the present invention may include a user interface such as, for example, a plurality of buttons 16. The plurality of buttons 16 allows for user interaction with the electrosurgical generator 10. This user interaction may include, for example, requesting an increase or decrease in the electrical energy supplied to one or more instruments 20 that are coupled to the electrosurgical generator 10. In various embodiments, the generator 10 further includes a user-accessible power-on switch or button 18 that when activated powers the generator 10 and activates or initiates a self-verification system test of the generator. In other embodiments, the display 14 can be a touch screen display thus integrating data display and user interface functionalities.
In various embodiments, the electrosurgical generator 10 of the present invention is configured to output radiofrequency (RF) energy through the connectable electrosurgical instrument or hand device 20 to seal, fuse and/or cut tissue or vessels via one or more electrodes. The electrosurgical generator 10, according to the embodiments of the present invention, is configured to generate up to 300V, 8 A, and 375 VA of RF energy and it is also configured to determine a phase angle or difference between RF output voltage and RF output current of the generator during activation or supply of RF energy. In this way, the electrosurgical generator 10 regulates voltage, current and/or power and monitors RF energy output (e.g., voltage, current, power and/or phase). In one embodiment, the generator 10 may stop, terminate or otherwise disrupt RF energy output under predetermined conditions. By way of example, these predetermined conditions may be any of the following conditions: when a device switch is de-asserted (e.g., fuse button released), a time value is met, and/or active phase angle and/or change of phase is greater than or equal to a phase and/or change of phase stop value indicating end of an operation such as fusion or cutting of tissue.
The electrosurgical instrument 20, according to the embodiments of the present invention, may include an elongate shaft 26 having a proximal end coupled to or from which an actuator 24 extends and a distal end coupled to or from which jaws 22 extend. A longitudinal axis extending from the proximal end to the distal end of the elongate shaft 26. In one embodiment, the actuator 24 may include a movable handle 23 which is pivotably coupled to a stationary handle or housing 28. The movable handle 23 is coupled to the stationary handle or housing 28 through a central or main floating pivot. In operation, the movable handle 23 is manipulated by a user, e.g., a surgeon, to actuate the jaws 22 at the distal end of the elongate shaft 26, and thereby, selectively opening and closing the jaws 22. When tissue or vessels are grasped between the jaws 22, a switch or button 29 is activated by the surgeon to seal, fuse and/or cut the tissue/vessels between the jaws 22. Once the button 29 is activated, associated circuitry or contacts are connected to connect appropriate electrodes of the jaws with associated connections of the generator 10 to supply RF energy to tissue grasped between the jaws 22 or otherwise in contact with the one or more electrodes of the jaws.
In various embodiments, the electrosurgical instrument 20 further includes a mechanical or electrical cutting blade that can be coupled to a blade actuator such as a blade lever or trigger 25 of the stationary handle or housing 28. The cutting blade is actuated by the blade trigger 25 to divide or cut the tissue between the jaws 22. In various embodiments, a blade slider is connected to the blade trigger 25 and a protrusion extends from a proximal portion of the blade slider into an opening in one end of the blade trigger connecting the components together. The other end of the blade trigger is exposed and accessible by the user with the blade trigger 25 being pivotable about a trigger pivot at or near the mid-point of the blade trigger. As such, as the blade trigger 25 is pulled or rotated by the user proximally, the end of the blade trigger connected to the blade slider slides or moves the blade slider distally. Integrated with or attached to a distal end of the blade slider is a cutting blade, knife or cutting edge or surface. As such, as the blade slider translates longitudinally through a blade channel in the jaws, tissue grasped between the jaws 22 is cut. In one embodiment, the cutting edge or surface is angled to facilitate cutting of the tissue between the jaws 22. In various embodiments, the cutting blade is a curved blade, a hook, a knife, or other cutting element that is sized and configured to cut tissue between the jaws 22.
In accordance with various embodiments, the elongate shaft 26 comprises an actuation tube or rod coupling the jaws 22 with the actuator. In one embodiment, the actuator includes a rotation shaft assembly including a rotation knob 27 which is disposed on an outer cover tube of the elongate shaft 26. The rotation knob 27 allows a surgeon to rotate the shaft of the device while gripping the actuator. In various embodiments, the elongate shaft 26 is rotatable 360 degrees and in other embodiments, rotation of the elongate shaft 26 is limited to 180 degrees, i.e., ninety degrees clockwise and ninety degrees counter clockwise.
Referring next to
According to the embodiments of the present invention, the electrosurgical generator 10 further includes a control system or a digital integral servo control system 100 to regulate and control the RF output. As shown in
In various embodiments, the electrosurgical generator 10 logs all RF output data onto an internal memory device, e.g., a secure digital (SD) or non-volatile memory card. The memory device is configured to be read through an interface port 35, e.g., a universal serial bus (USB) port, on the electrosurgical generator 10. In various embodiments, the generator 10 is configured to copy the data from the internal memory device to a connectable portable storage device, e.g., a USB flash drive, through the interface port of the generator.
In accordance with various embodiments of the present invention, the electrosurgical generator 10 is further configured to provide RF output in three resolution settings or modes: low voltage, normal or medium voltage and high voltage ranges. In various embodiments, device scripts stored and located on connectable electrosurgical hand devices, e.g., instrument 20, and/or connectors coupled thereto, e.g., device key 21, are used to determine or set the RF output or voltage mode.
Referring back to
Similarly, components of the verification channel 603 are separate from the main and redundant channels 601 and 602 but are similar. In one embodiment, the verification channel 603 may include the same components as the main and redundant channels 601 and 602, but the components in the verification channel 603 have higher ratings, e.g., higher resolution and/or lower drift, and are often more costly. In another embodiment, the verification channel 603 may include the same components as the main and redundant channels 601 and 602. The verification channel 603 also follows a separate but identical electrical path as the main and redundant channels 601 and 602 and in one embodiment is connected to the RF amplifier 40 and the RF output. In various embodiments, the feedback system 60 measures analog RF output and digitizes the measurements. The feedback system 60 is configured to measure and digitize the RF output via at least one channel, e.g., main channel 601. In this embodiment, the feedback system 60 through the main channel 601 measures the analog RF output via a front end circuitry 611.
As shown in
With reference to
The error processor 512 calculates the relative error between the main channel measurements and the setpoints values 502, and based on the error values determines or selects a regulation mode. Accordingly, the error processor 512 determines which of the three regulation modes, e.g., voltage, current and power, should be reinforced or activated by the electrosurgical generator 10. In various embodiments, the calculated error values for the selected mode is integrated by an integrator 513 to generate an error signal that is directly proportional to and is used to correct the output of the RF amplifier 40.
According to the embodiments of the present invention, the calculated error values may also be used to determine a variable gain factor for each regulation modes, e.g., voltage, current and power, of the generator 10. The variable gain is configured to use a different predefined set of calculations or algorithm based on the selected regulation mode. As shown in
In accordance with various embodiments and with further reference to
The control system 100, according to the embodiments of the present invention, provides regulation of RF output under dynamically changing impedance loads, e.g., due to electrosurgical operations or electrosurgical tissues affects, and control conditions, e.g., device scripts or user operations. The control system 100 being configured with a variable gain rather than a fixed gain allows the control system 100 to adjust for different load impedances and output voltages and thus not be limited to be optimized, e.g., for the lowest load impedance and/or highest output voltage. The control system 100 is also configured to account for the system becoming over damped as impedance increases that can result in non-optimal phase margin and dynamic or unpredictable behavior and thus affect the ability of the control system 100 to track or follow dynamic commands, e.g., device script operations. The control system 100 of the generator ensures that tissue electrosurgical effects, such as for example, sealing, fusing or cutting, are optimized through critical responses of the control system to dynamically changing tissue impedance conditions and operational conditions and commands determined by the surgeon, surgical procedure and/or device script.
As described further above, the feedback system 60 according to the embodiments of the present invention may include a second channel, e.g., the redundant channel 602, which is nearly identical to the main channel 601. The measurements from the redundant channel 602 and the resulting calculations are being constantly compared to the measurements and calculations of the main channel 601 to verify the operation of the main channel 601. As such, if the main and redundant channels 601 and 602 have differing measurements or calculations, then a generator error is recognized and the supply of RF energy halted.
In accordance with various embodiments, the feedback system 60 may include various other systems and circuitry, e.g., a sampler or other calculator (not shown in the figures), to provide sampling and/or other calculations as required by the electrosurgical control system 100 of the present invention. In various embodiments, the feedback system 60 measures analog voltage and current of the RF output of the RF amplifier 40 and in various embodiments the feedback system 60 takes a predetermined number of samples per each RF output cycle operating at 350 KHz for each measurement of voltage and current. In some embodiments, the feedback system 60 may utilize demodulations and transforms to obtain zero frequency components or filtering out unwanted higher order frequency harmonics out of the measured voltage and current values. As described further above, the feedback system 60 communicates or transmits, e.g., serially, the measured real and imaginary voltage and current values to the primary microcontroller 50.
In what follows, operational modes and functional blocks of various circuitry and systems within the primary FPGA 510 will be explained in detail with sections individually describing: the VCW calculator 511, the error processor 512, the integrator 513, the Buck Duty Cycle calculator 514 and the VG module 515.
The primary FPGA 510 is further configured to perform error processing using the error processor 512. As shown in
The integrator 513 is constantly integrating the error with the most positive value, e.g., selected regulation mode. In operation, since the RF amplifier 40 may be switching between different RF regulation modes, e.g., voltage, current and power regulation modes, the integrator 513 needs to be preloaded with another value that allows the RF output to stay constant while transitioning between various regulation modes. For this purpose, a preload function or preload calculator 532 is implemented within the primary FPGA 510 (best shown in
The primary FPGA 510 provides a variable integral control system to dictate the output for the Buck and H-Bridge (best shown in
According to the embodiments of the present invention, using the prediction set forth by the variable integral control system, the primary FPGA 510 sets counts for the Buck PWM circuit of the RF amplifier 40 and in various embodiments responds quickly to reach roughly close to the desired output value, e.g., the predicted voltage value. In various embodiments, the primary FPGA 510 drives PWM signals to the Buck and H-Bridge (best shown in
In various embodiments, the primary ARM processor 501 verifies the validity of the setpoints and ensures the setpoints for voltage, current, and power meet the threshold for the mode the electrosurgical generator 10 is operating in. In accordance with various embodiments, calibration values are stored in an EEPROM of the feedback system 60. These values are specific predefined coefficients used to eliminate discrepancies or tolerances on the feedback system 60. In various embodiments, all three channels 601, 602 and 603 have calibration values for voltage, current, and power for normal or medium, high, and low voltage modes with the exception of the verification channel 603 not having a low voltage mode. The modes as such dictates the correct calibration coefficients for voltage, current, and power being used in the servo calculations. This also is based on the regulation mode the generator is operating in.
In various embodiments, the error processor 512 further includes one or more constants, such as a normalization factor, error coefficient and/or point positions (useful for floating point conversions). In various embodiment, the primary microcontroller 50 calculates the error between the main channel measurements and the setpoint values to determine which regulation mode to be used for the correction of the servo, e.g., the output of the RF energy. In various embodiments, the primary microcontroller 50 uses the calculated measurements and the error processor coefficient to obtain an absolute measurement. With this absolute measurement, the primary microcontroller 50 uses the calibration coefficient to obtain a calibrated absolute measurement and with the normalization factor obtains a relative measurement. The primary microcontroller compares the difference between the relative measurement and the setpoint established by the primary processor 501 to determine the relative error.
In accordance with various embodiments, the primary microcontroller 50 using multiplexers provide the respective values of the relative error to be calculated for voltage, current and power and comparisons are performed between the calculated errors to output the greatest or largest positive error to determine the regulation mode for the generator.
Using the selected regulation mode and its corresponding voltage value, the primary microcontroller 50 calculates the voltage output needed for optimal operation of the generator 10. In various embodiments, as the control system 100 adjusts the output voltage, current and power output targets are translated into their respective voltages at calculated loads. The regulation mode then decides which calculated output will be used in the control system 100.
In various embodiments, the control system 100 operates as a variable integral control loop. Variables are the voltage, current and power measurements, setpoints, and load calculations and the system operates at a predefined frequency, e.g., 350 KHz frequency, with the ability to switch between integral control loops. The electrosurgical generator 10 as such provides a control system for voltage, current and power driving sources and thus provides a generator integral control loops for current, voltage and power. Additionally, since switching between the integral control loops occurs when regulation modes are changed, the control system 100 implants the preload function for each mode, i.e., voltage, current and power, to ensure a smooth transition between the regulation modes.
In accordance with various embodiments, the feedback system 60 may include three channels: the main channel 601, the redundant channel 602 and verification channel 603. The main and redundant channels 601 and 602 are largely identical while the verification channel 603 has similar functionalities to the main and redundant channels 601 and 602, but has higher resolution, lower tolerance, and lower drift components.
In accordance with various embodiments, each of the channels 601, 602 and 603 of the feedback system 60 may include an analog portion that attenuates and amplifies the RF voltage/current measurement signals. In various embodiments, RF voltage signals are attenuated by a network of resistor dividers before being differentially amplified to drive the ADCs (616, 626, 636). In various embodiments, all three channels 601, 602 and 603 have different sets of amplifier gain resistors to measure different voltage modes, i.e., a normal voltage mode and a high voltage mode. In various embodiments, the normal voltage mode includes voltages less than or equal to 166V and in high voltage mode, voltages less than or equal to 322V. In accordance with various embodiments, the main and redundant channels 601 and 602 have an alternative set of resistor configuration to more accurately measure lower voltages and in various embodiments voltages less than or equal to 10V. The verification channel's resistor dividers in various embodiments contain much lower tolerance and lower drift resistors than that of the main and redundant channels 601 and 602.
In accordance with various embodiments, the RF current measurement signal is taken across a shunt resistor (615, 625, 635) from each channel of the verification system 60. All shunt resistors 615, 625, and 635 in various embodiments are in series, so each channel measures the same current signal. The main and redundant channels 601 and 602 in various embodiments have an alternative set of shunt resistors to more accurately measure lower currents, e.g., currents less than or equal to 100 mA. The verification channel 603 has shunt resistors that are lower tolerance and lower drift than that of the main and redundant channels 601 and 602.
In accordance with various embodiments, the measured signals after the amplifiers (612, 613; 622, 623; 632, 633) are passed through filters for ADC input filtering. The verification channel 603 has filter components with much lower tolerance and lower drift than that of the main and redundant channels 601 and 602. In various embodiments, the filter of the verification channel has a steeper rolloff and thus has a steeper attenuation of higher frequencies.
In accordance with various embodiments, data conversion components are independent between each of the three channels 601, 602 and 603. The ADCs (616, 626, 636) convert the analog voltage and current measurement signals to discrete samples that are processed by the respective channel's FPGAs (617, 627, 637). The verification channel's ADC 636 has more resolution, e.g., more bits, and has lower drift than that of the main and redundant channels 601 and 602. In various embodiments, the verification channel's ADC 636 also has a local generated reference voltage to accurately set the input range of the ADC 636.
In various embodiments, the feedback system's FPGAs (617, 627, 637) performs I/Q demodulation on the discrete voltage and current measurement samples to obtain real and imaginary samples. The measured values are passed through a discrete Fourier transform to obtain the DC component of the real and imaginary values for the voltage and current measurements. In various embodiments, the verification channel 603 contains a locally generated digital voltage rail to accurately power its FPGA's I/O pins.
In accordance with various embodiments, each channel of the feedback system 60 independently communicates its data to the primary microcontroller 50 through independent communication connections. In various embodiments, the verification channel's data is only used by a self-verification system or process at predefined time or schedule, e.g., at the start-up of the generator 10. During the self-verification process, the verification channel's data is compared with the main and redundant channel's data to verify the accuracy and functionalities of the main and redundant channels 601 and 602. In various embodiments, throughout RF related operations, the main channel's data is the only set of data used by the control system 100 and the redundant channel's data is constantly compared with the main channel's data to ensure the main channel 601 is operating within predefined parameters and/or tolerances.
According to the embodiments of the present invention, the servo control system 100 of the electrosurgical generator 10 may include the RF amplifier 40, the feedback system 60 and the primary microcontroller 50. The feedback system 60 creates a path for a closed-loop system between the RF amplifier 40 and the primary microcontroller 50. The feedback system 60 in various embodiments measures the voltage and current of the supplied RF signals and calculates the real and imaginary components of the measurements within one or more channels 601, 602 and 603. In one embodiment, only one channel is provided for the feedback system 60, the main channel 601. In another embodiment, two channels are provided, the main and redundant channels 601 and 602. In yet another embodiment, three channels are provided, the main channel 601, the redundant channel 602 and the verification channel 603. The calculated components within the one or more channels are transmitted or communicated to the primary microcontroller 50.
In accordance with various embodiments, the main and redundant channels 601 and 602 are copies of one another and are used by the primary microcontroller 50 to monitor the voltage and current of the RF output during operation of the electrosurgical generator 10. The verification channel 603 is similar to the other two channels 601 and 602, but includes components, for example, that are more drift resistant and/or uses ADCs with higher resolutions. This channel, in various embodiments, is used on startup of the generator, where self-verification of the generator is performed. The feedback system 60 in various embodiments collects its voltage and current measurements simultaneously from the RF amplifier 40. In various embodiments, the generated RF signal produces a voltage across one or more internal loads, e.g., load 80 (best shown in
In accordance with various embodiments, the feedback system 60 measures the analog RF output via front end circuitry 611, 621, 631. Front end circuitry may include shunts 615, 625, 635 coupled to respective pre-amplifiers 613, 623, 633 to measure the current of the RF output. In various embodiments, the front end circuitry may also include voltage dividers 614, 624, 634 coupled to respective pre-amplifiers 612, 622, 632 to measure the voltage of the RF output. Outputs of the pre-amplifiers are supplied to respective analog to digital converters (ADCs) 616, 626, 636 thereby digitizing the current and voltage measurements. The digitized values are processed to derive real and imaginary components of the voltage and current RF output. In various embodiments, the digitized values from respective analog to digital converters (ADC) are supplied to FPGAs 617, 627, 637.
In various embodiments, the electrosurgical generator 10 is configured to provide RF output in a low voltage mode during a passive impedance evaluation which is automatically set by the generator 10. According to the embodiments of the present invention, the electrosurgical generator 10 is automatically set to the low voltage mode prior to execution of any device script. The device script in various embodiments represents a procedural walkthrough of a surgical operation that may include the application and termination of RF energy to the tissue. During a medium or normal voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 150V or 8 A and is mainly used in tissue sealing. During a high voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 300V or 4 A and is mainly used in tissue cutting. During the low voltage mode, the electrosurgical generator 10 according to the embodiments of the present invention is configured for having an output RF energy up to 10V and 100 mA and is mainly used in passive tissue impedance evaluations and measurements at a level that does not create a physiological response in tissue.
In accordance with various embodiments, specific device scripts are stored on specific electrosurgical hand devices 20, 20′ that are optimized for a specific surgical procedure to produce consistent electrosurgical sealing and/or cutting of tissue. In various embodiments, RF output parameters or settings are defined in the device scripts and used by the electrosurgical generator 10 to regulate or control the RF output for the specific surgical procedure and/or electrosurgical hand device 20, 20′. The device script and associated RF output parameters in various embodiments are retrieved or transferred to the generator 10 when the electrosurgical hand device 20, 20′ is connected to the generator 10. In one embodiment, the primary ARM processor 501 may retrieve the device script from a memory storage attached to or integrated into the device key 21 that connects the electrosurgical device 20, 20′ to the electrosurgical generator 10.
Referring next to
In various embodiments, when the electrosurgical generator 10 is operating in the passive mode, the RF amplifier 40 supplies a 350 KHz RF output via relays to the connected electrosurgical instrument 20, 20′. As described further above, the RF output in the low voltage mode or passive mode is limited to not more than 10V rms and/or not more than 100 mA rms. The control system 100 regulates and measures voltage and current via the feedback system 60. The primary microcontroller 50 determines if a short and/or open condition is encountered based on the device script and the measured voltage and current data from the control system 100. In various embodiments, one or more electrodes (best shown in
In accordance with various embodiments, when a surgeon asserts a fuse or cut switch, the electrosurgical control system 100 initiates a passive impedance evaluation. The passive impedance evaluation triggers or identifies a fault, if a short or open condition is detected at the jaws 22 or distal working end of the electrosurgical hand device 20, 20′. If the passive impedance check is successful, the primary ARM processor 501 executes the full device script. In various embodiments, the primary ARM processor 501 instructs other circuitry of the electrosurgical generator 10 to output RF energy based on specific conditions, triggers, events and timing and according to specific settings. In various embodiments, the primary ARM processor 501 ensures the electrosurgical device is supplied specific RF energy according to specific output settings (voltage, current and power set points) and varies the RF output through the course of the procedure or surgical operation depending on various triggers defined by the device script.
Once the RF output for the passive mode is generated, processing flows to block 706 where the feedback system 60 measures the electrical characteristics of the RF output. The control system 100, in accordance with various embodiments of the present invention, regulates the RF output to a set value as directed by the passive or low voltage mode and the feedback system 60 measures voltage, current, and/or phase from the main channel 601 and digitally feeds some or all of the measured values to the primary microcontroller 50. After completion of measurements and transmission of measured data, processing flows to block 708 where the primary FPGA 510 calculates or determines other electrical characteristics of the RF output based on the received data or readings and transmits some or all of the calculated results to the ARM processor 501 of the primary microcontroller 50. Other electrical characteristics of the RF output according to the embodiments of the present invention may include tissue impedance load and/or power. Once the calculated results are received by the primary ARM processor 510, the processing flows to block 710 where the primary ARM processor 501 retrieves the device script and compares the calculated results, e.g., calculated impedance load or tissue load, to a preset range set by the device script. In one embodiment, the device script is stored into a memory attached to or integrated into the device key or connector 21 that connects the electrosurgical hand device 20, 20′ to the electrosurgical generator 10.
A determination of whether the comparison results has met certain criteria set by the device script is made in step 712. Examples of the certain criteria may include, but not limited to, whether the comparison results or readings are within maximum and/or minimum values set by the device script. If the comparison results or readings are not between maximum and/or minimum values set by the device script, processing flows from block 712 to block 714 where an error is generated to notify the user or surgeon of an error and/or to check the electrosurgical device and/or its position relative to the tissue or vessel. In accordance with various embodiments, to supply RF energy after such a notification, the electrosurgical device 20, 20′ must be reactivated and the passive tissue impedance evaluation, e.g., passive mode or low voltage mode, be reinitiated.
If the comparison results or readings are between maximum and/or minimum values set by the device script, processing goes from block 712 to block 716 where the primary ARM processor 501 initiate the full device script to provide optimized RF energy for sealing, fusing and/or cutting tissue or vessel.
As described further above and in accordance with various embodiments, the control system 100 of the electrosurgical generator 10 may include one or more resolution settings and in various embodiments it includes three settings: low, normal or medium and high voltage setting. These resolution settings are different from the regulation modes and in some embodiments they require some adjustments to the circuitry that measures the RF output. Each setting is configured to require different hardware configurations for the feedback system 60 and/or different normalization algorithms in the calculations performed by the primary microcontroller 50. In various embodiments, the voltage measurement circuit of the feedback system 60 uses a different resistor selection or configuration for each of the three settings. In various embodiments, the current measurement circuit of the feedback system 60 uses the same resistor configuration for two of the settings, e.g., normal and high voltage settings, and a different resistor configuration for the low voltage setting.
In one embodiment, while the electrosurgical generator 10 is operating in the passive mode, the operations or process assigned to the primary ARM processor 501 may be performed via an FPGA. In other embodiments, other control systems may be incorporated therein. In yet another embodiment, a proportional, e.g., adjusting the system to reach setpoints, integral, e.g., measuring an area between error values and a time axis, prediction, e.g., predicting future errors based on a current error slope, architecture or any combination thereof may be included to supplement or replace the control system measurements, calculations and/or regulation.
In various embodiments, the electrosurgical generator 10 may supply an RF output having different waveform characteristics, e.g., square, providing non-sinusoidal periodic waveforms alternating between a minimum and maximum value; triangle, providing non-sinusoidal periodic waveforms with asymmetric ramps upward to a maximum value and downward to a minimum value; and/or sawtooth, providing non-sinusoidal waveforms with ramps upward to a maximum value and dropping sharply to a minimum value. In accordance with various embodiments of the present invention, the electrosurgical generator 10 may supply an RF output having different crest factor characteristics such as providing a ratio of peak value to effective value of a waveform, a peak amplitude divided by RMS value, and/or an ideal or perfect sine wave having a crest factor of 1.414.
The above description is provided to enable any person skilled in the art to make and use the electrosurgical devices or systems and perform the methods described herein and sets forth the best modes contemplated by the inventors of carrying out their inventions. Various modifications, however, will remain apparent to those skilled in the art. It is contemplated that these modifications are within the scope of the present disclosure. Different embodiments or aspects of such embodiments may be shown in various figures and described throughout the specification. However, it should be noted that although shown or described separately each embodiment and aspects thereof may be combined with one or more of the other embodiments and aspects thereof unless expressly stated otherwise. It is merely for easing readability of the specification that each combination is not expressly set forth.
Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
This application claims the benefit of and is a non-provisional of U.S. Provisional Application Ser. No. 62/727,195 filed on Sep. 5, 2018, which is hereby expressly incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1935289 | Evans | Nov 1933 | A |
2002594 | Wappler et al. | May 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2113246 | Wappler | Apr 1938 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Dec 1942 | A |
2632661 | Cristofv | Mar 1953 | A |
2827056 | Degelman | Mar 1958 | A |
3085566 | Tolles | Apr 1963 | A |
3459187 | Pallotta | Aug 1969 | A |
3494363 | Jackson | Feb 1970 | A |
3588710 | Masters | Jun 1971 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3685518 | Beuerle et al. | Aug 1972 | A |
3780416 | Rider | Dec 1973 | A |
3826263 | Cage et al. | Jul 1974 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3963030 | Newton | Jun 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3980085 | Ikuno | Sep 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4030501 | Archibald | Jun 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4060088 | Morrison, Jr. et al. | Nov 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4089336 | Cage et al. | May 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
4094320 | Newton et al. | Jun 1978 | A |
4114623 | Meinke et al. | Sep 1978 | A |
4126137 | Archibald | Nov 1978 | A |
4154240 | Ikuno et al. | May 1979 | A |
4171700 | Farin | Oct 1979 | A |
4181131 | Ogui | Jan 1980 | A |
4188927 | Harris | Feb 1980 | A |
4196734 | Harris | Apr 1980 | A |
4198957 | Cage et al. | Apr 1980 | A |
4198960 | Utsugi | Apr 1980 | A |
4200104 | Harris | Apr 1980 | A |
4231372 | Newton | Nov 1980 | A |
4237887 | Gonser | Dec 1980 | A |
4244371 | Farin | Jan 1981 | A |
4325374 | Komiya | Apr 1982 | A |
4331149 | Gonser | May 1982 | A |
4338940 | Ikuno | Jul 1982 | A |
4352156 | Gyugyi | Sep 1982 | A |
4370980 | Lottick | Feb 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4416277 | Newton et al. | Nov 1983 | A |
4427014 | Bel et al. | Jan 1984 | A |
4429694 | McGreevy | Feb 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4487489 | Takamatsu | Dec 1984 | A |
4514619 | Kugelman | Apr 1985 | A |
4522206 | Whipple et al. | Jun 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4569131 | Faulk et al. | Feb 1986 | A |
4569345 | Manes | Feb 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4599553 | Brennen et al. | Jul 1986 | A |
4630218 | Hurley | Dec 1986 | A |
4632109 | Paterson | Dec 1986 | A |
4644950 | Valli | Feb 1987 | A |
4651280 | Chang et al. | Mar 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657018 | Hakky | Apr 1987 | A |
4658815 | Farin et al. | Apr 1987 | A |
4658819 | Harris et al. | Apr 1987 | A |
4658820 | Klicek | Apr 1987 | A |
4674498 | Stasz | Jun 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
4699146 | Sieverding | Oct 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4716897 | Noguchi et al. | Jan 1988 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
4741334 | Irnich | May 1988 | A |
4752864 | Clappier | Jun 1988 | A |
4754757 | Feucht | Jul 1988 | A |
4788977 | Farin et al. | Dec 1988 | A |
4802476 | Noerenberg et al. | Feb 1989 | A |
4818954 | Flachenecker et al. | Apr 1989 | A |
4827927 | Newton | May 1989 | A |
4848335 | Manes | Jul 1989 | A |
4850353 | Stasz et al. | Jul 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862889 | Feucht | Sep 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4872456 | Hasson | Oct 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4889722 | Sheffield et al. | Dec 1989 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4905691 | Rydell | Mar 1990 | A |
4922903 | Welch et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4937254 | Sheffield et al. | Jun 1990 | A |
4938761 | Ensslin | Jul 1990 | A |
4942313 | Kinzel | Jul 1990 | A |
4958539 | Stasz et al. | Sep 1990 | A |
4969885 | Farin | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
5007908 | Rydell | Apr 1991 | A |
5013312 | Parins et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5016521 | Haka | May 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026371 | Rydell et al. | Jun 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5047027 | Rydell | Sep 1991 | A |
5052402 | Bencini et al. | Oct 1991 | A |
5057107 | Parins et al. | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062031 | Flachenecker et al. | Oct 1991 | A |
5071419 | Rydell et al. | Dec 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5083565 | Parins | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5087257 | Farin et al. | Feb 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5116332 | Lottick | May 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5127412 | Cosmetto et al. | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5158561 | Rydell et al. | Oct 1992 | A |
5160343 | Brancel et al. | Nov 1992 | A |
5167658 | Ensslin | Dec 1992 | A |
5171255 | Rydell | Dec 1992 | A |
5171311 | Rydell | Dec 1992 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5192280 | Parins | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5201732 | Parins et al. | Apr 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5234427 | Ohtomo et al. | Aug 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246440 | Van Noord | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250056 | Hasson | Oct 1993 | A |
5254126 | Filipi et al. | Oct 1993 | A |
5256149 | Banik et al. | Oct 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5269780 | Roos | Dec 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5286255 | Weber | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5300070 | Gentelia et al. | Apr 1994 | A |
5304190 | Reckelhoff et al. | Apr 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5338317 | Hasson et al. | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5341815 | Cofone et al. | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5352223 | McBrayer et al. | Oct 1994 | A |
5354313 | Boebel | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383922 | Zipes et al. | Jan 1995 | A |
5387196 | Green et al. | Feb 1995 | A |
5387197 | Smith et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5389849 | Asano et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5392917 | Alpern et al. | Feb 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5405344 | Willaimson et al. | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423808 | Edwards et al. | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5431638 | Hennig et al. | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5432459 | Thompson et al. | Jul 1995 | A |
5436566 | Thompson et al. | Jul 1995 | A |
5437664 | Cohen et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445142 | Hassler, Jr. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460182 | Goodman et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5472439 | Hurd | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5472451 | Freitas et al. | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5486185 | Freitas et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5499998 | Meade et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507773 | Huitema et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527330 | Tovey | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5551945 | Yabe et al. | Sep 1996 | A |
5558429 | Cain | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5562700 | Huitema et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
D378611 | Croley | Mar 1997 | S |
5607391 | Klinger et al. | Mar 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626575 | Crenner | May 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626608 | Cuny et al. | May 1997 | A |
5627584 | Nishikori et al. | May 1997 | A |
5633578 | Eggers et al. | May 1997 | A |
5645540 | Henniges et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5658279 | Nardella et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5665105 | Furnish et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5674184 | Hassler, Jr. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693045 | Eggers | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5720742 | Quinn et al. | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5720745 | Farin et al. | Feb 1998 | A |
5722975 | Edwards et al. | Mar 1998 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5746210 | Benaron et al. | May 1998 | A |
5746740 | Nicholas | May 1998 | A |
5746759 | Meade et al. | May 1998 | A |
5752519 | Benaron et al. | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759185 | Grinberg | Jun 1998 | A |
5762609 | Benaron et al. | Jun 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5769841 | Odell et al. | Jun 1998 | A |
5772597 | Goldberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5772660 | Young et al. | Jun 1998 | A |
5776092 | Farin et al. | Jul 1998 | A |
5776129 | Mersch | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785658 | Benaron et al. | Jul 1998 | A |
5792139 | Chambers et al. | Aug 1998 | A |
5792178 | Welch et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810806 | Ritchart et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827299 | Thomason et al. | Oct 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5836942 | Netherly et al. | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5846194 | Wasson et al. | Dec 1998 | A |
5849020 | Long et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5860975 | Goble et al. | Jan 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5876398 | Mulier et al. | Mar 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5885277 | Korth | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893873 | Rader et al. | Apr 1999 | A |
5897490 | Fox et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897553 | Mulier et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5902264 | Toso et al. | May 1999 | A |
5902301 | Olig | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5906613 | Mulier et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5910152 | Bays | Jun 1999 | A |
5928137 | Green | Jul 1999 | A |
5928255 | Meade et al. | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931836 | Hatta et al. | Aug 1999 | A |
5935126 | Riza | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947284 | Foster | Sep 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5968062 | Thomas et al. | Oct 1999 | A |
5968074 | Prestel | Oct 1999 | A |
5976077 | Wittens et al. | Nov 1999 | A |
5976128 | Schilling et al. | Nov 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5984921 | Long et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5993380 | Yabe et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5995875 | Blewett et al. | Nov 1999 | A |
5997533 | Kuhns | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010499 | Cobb | Jan 2000 | A |
6010516 | Hulka | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6016809 | Mulier et al. | Jan 2000 | A |
D420741 | Croley | Feb 2000 | S |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6030402 | Thompson et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033404 | Melzer et al. | Mar 2000 | A |
6036657 | Milliman et al. | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6039736 | Platt, Jr. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6063075 | Mihori | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6063086 | Benecke et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6070444 | Lontine et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083191 | Rose | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6092722 | Heinrichs et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113591 | Whayne et al. | Sep 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
6120501 | Long et al. | Sep 2000 | A |
H1904 | Yates | Oct 2000 | H |
6132429 | Baker | Oct 2000 | A |
6135998 | Palanker | Oct 2000 | A |
6139519 | Blythe | Oct 2000 | A |
6139547 | Lontine et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162235 | Vaitekunas | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171304 | Netherly et al. | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wroblewski et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6186147 | Cobb | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6187026 | Devlin et al. | Feb 2001 | B1 |
6190383 | Schmaltz et al. | Feb 2001 | B1 |
6190385 | Tom et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6193653 | Evans et al. | Feb 2001 | B1 |
6193713 | Geistert et al. | Feb 2001 | B1 |
6197026 | Farin et al. | Mar 2001 | B1 |
6203541 | Keppel | Mar 2001 | B1 |
6206823 | Kolata et al. | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206875 | Long et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6210405 | Goble et al. | Apr 2001 | B1 |
6214003 | Morgan et al. | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6228023 | Zaslavsky et al. | May 2001 | B1 |
6228055 | Foerster et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6242741 | Miller et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6251106 | Becker et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258085 | Eggleston | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6273862 | Privitera et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280398 | Ritchart et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6287344 | Wampler | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6293945 | Parins et al. | Sep 2001 | B1 |
6296637 | Thorne et al. | Oct 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6298550 | Kirwan, Jr. | Oct 2001 | B1 |
6302903 | Mulier et al. | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6312426 | Goldberg et al. | Nov 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328736 | Mulier et al. | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6334068 | Hacker | Dec 2001 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6348051 | Farin et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358248 | Mulier et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358267 | Murakami | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6371967 | Long et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383183 | Sekino et al. | May 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6391024 | Sun et al. | May 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
6402741 | Keppel et al. | Jun 2002 | B1 |
6402742 | Blewett et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6406475 | Wenzler et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6423082 | Houser et al. | Jul 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436096 | Hareyama | Aug 2002 | B1 |
6440130 | Mulier et al. | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6454764 | Fleenor et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458078 | Lüdtke et al. | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6468286 | Mastri et al. | Oct 2002 | B2 |
6475217 | Platt | Nov 2002 | B1 |
6478030 | Shapeton et al. | Nov 2002 | B1 |
6482202 | Goble et al. | Nov 2002 | B1 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6488507 | Stoloff et al. | Dec 2002 | B1 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491708 | Madan et al. | Dec 2002 | B2 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6494877 | Odell et al. | Dec 2002 | B2 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6497705 | Comben | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6503263 | Adams | Jan 2003 | B2 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6510854 | Goble et al. | Jan 2003 | B2 |
6511476 | Hareyama | Jan 2003 | B2 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6517538 | Jacob et al. | Feb 2003 | B1 |
6526320 | Mitchell | Feb 2003 | B2 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6534770 | Miller et al. | Mar 2003 | B2 |
6537248 | Mulier et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6540695 | Burbank et al. | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6547783 | Vilendrer et al. | Apr 2003 | B1 |
6547786 | Goble et al. | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6558383 | Cunningham et al. | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6565559 | Eggleston | May 2003 | B2 |
6565560 | Goble et al. | May 2003 | B1 |
6569105 | Kortenbach et al. | May 2003 | B1 |
6569109 | Sakurai et al. | May 2003 | B2 |
6572615 | Schulze et al. | Jun 2003 | B2 |
6579289 | Schnitzler | Jun 2003 | B2 |
6582424 | Fleenor et al. | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
D477408 | Bromley | Jul 2003 | S |
6585732 | Mulier et al. | Jul 2003 | B2 |
6585733 | Wellman | Jul 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6591719 | Poole et al. | Jul 2003 | B1 |
6592582 | Hess et al. | Jul 2003 | B2 |
6594518 | Benaron et al. | Jul 2003 | B1 |
6602227 | Cimino et al. | Aug 2003 | B1 |
6602249 | Stoddard et al. | Aug 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6605036 | Wild | Aug 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6613048 | Mulier et al. | Sep 2003 | B2 |
6616656 | Brommersma | Sep 2003 | B2 |
6616660 | Platt | Sep 2003 | B1 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620157 | Dabney et al. | Sep 2003 | B1 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623515 | Mulier et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6629974 | Penny et al. | Oct 2003 | B2 |
6638274 | Yamamoto | Oct 2003 | B2 |
6648883 | Francischelli et al. | Nov 2003 | B2 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656110 | Irion et al. | Dec 2003 | B1 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6656176 | Hess et al. | Dec 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662050 | Olson | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663622 | Foley et al. | Dec 2003 | B1 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6663628 | Peters | Dec 2003 | B2 |
6666865 | Platt | Dec 2003 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6692489 | Heim et al. | Feb 2004 | B1 |
6695837 | Howell | Feb 2004 | B2 |
6695838 | Wellman et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6699240 | Francischelli | Mar 2004 | B2 |
6706038 | Francischelli et al. | Mar 2004 | B2 |
6706039 | Mulier et al. | Mar 2004 | B2 |
6709432 | Ferek-Petric | Mar 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6726683 | Shaw | Apr 2004 | B1 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6740084 | Ryan | May 2004 | B2 |
6740085 | Hareyama et al. | May 2004 | B2 |
6740102 | Hess et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6752804 | Simpson et al. | Jun 2004 | B2 |
6755825 | Schoenman et al. | Jun 2004 | B2 |
6755827 | Mulier et al. | Jun 2004 | B2 |
6755841 | Fraser et al. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6764487 | Mulier et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6786906 | Cobb | Sep 2004 | B1 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796828 | Ehr et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
6807444 | Tu et al. | Oct 2004 | B2 |
6807968 | Francischelli et al. | Oct 2004 | B2 |
6808518 | Wellman et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6814745 | Prestel | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6827715 | Francischelli et al. | Dec 2004 | B2 |
6827717 | Brommersma et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6830569 | Thompson et al. | Dec 2004 | B2 |
6832111 | Tu et al. | Dec 2004 | B2 |
6832985 | Irion et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6835195 | Schulze et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6852112 | Platt | Feb 2005 | B2 |
6855142 | Harano et al. | Feb 2005 | B2 |
6855145 | Ciarrocca | Feb 2005 | B2 |
6858028 | Mulier et al. | Feb 2005 | B2 |
6860881 | Sturm et al. | Mar 2005 | B2 |
6860894 | Pittman | Mar 2005 | B1 |
6887240 | Lands et al. | May 2005 | B1 |
6889694 | Hooven | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6893441 | Brommersma et al. | May 2005 | B2 |
6899710 | Hooven | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911019 | Mulier et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6916318 | Francischelli et al. | Jul 2005 | B2 |
6918880 | Brookner et al. | Jul 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932811 | Hooven et al. | Aug 2005 | B2 |
6937033 | Boronkay et al. | Aug 2005 | B2 |
6939347 | Thompson | Sep 2005 | B2 |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6945972 | Frigg et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6949098 | Mulier et al. | Sep 2005 | B2 |
6958063 | Soil et al. | Oct 2005 | B1 |
6960209 | Clague et al. | Nov 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6962589 | Mulier et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6974454 | Hooven | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6984233 | Hooven | Jan 2006 | B2 |
6984826 | Miller et al. | Jan 2006 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6994705 | Nobis et al. | Feb 2006 | B2 |
6997735 | Ehr et al. | Feb 2006 | B2 |
6997935 | Anderson et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001415 | Hooven | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7025764 | Paton et al. | Apr 2006 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7033351 | Howell | Apr 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041096 | Malis et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7044950 | Yamamoto | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7049599 | Miller et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7060063 | Marion et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066933 | Hagg | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7104989 | Skarda | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7116157 | Ross et al. | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7119516 | Denning | Oct 2006 | B2 |
7124932 | Isaacson | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126125 | Miller et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
D533942 | Kerr et al. | Dec 2006 | S |
7147635 | Ciarrocca | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7156843 | Skarda | Jan 2007 | B2 |
7156845 | Mulier et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160293 | Sturm et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7166105 | Mulier et al. | Jan 2007 | B2 |
7169115 | Nobis et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7172591 | Harano et al. | Feb 2007 | B2 |
7179254 | Pendkanti et al. | Feb 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7182604 | Ehr et al. | Feb 2007 | B2 |
7186252 | Nobis et al. | Mar 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7187790 | Sabol et al. | Mar 2007 | B2 |
7189231 | Clague et al. | Mar 2007 | B2 |
7189232 | Scholl et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7195630 | Ciarrocca | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207990 | Lands et al. | Apr 2007 | B2 |
D541938 | Kerr et al. | May 2007 | S |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7216001 | Hacker et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223239 | Schulze et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
7226447 | Uchida et al. | Jun 2007 | B2 |
7229307 | Ehr et al. | Jun 2007 | B2 |
7232439 | Ciarrocca | Jun 2007 | B2 |
7232440 | Aid et al. | Jun 2007 | B2 |
7235048 | Rein et al. | Jun 2007 | B2 |
7235072 | Sartor et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7247141 | Makin et al. | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
7250051 | Francischelli | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255694 | Keppel | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7259340 | Blaha et al. | Aug 2007 | B2 |
7261711 | Mulier et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7273483 | Weiner et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7282049 | Oraszulak et al. | Oct 2007 | B2 |
7291161 | Hooven | Nov 2007 | B2 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7309325 | Mulier et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311560 | Ehr et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311707 | Hagg et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7335997 | Weiner | Feb 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7347858 | Francischelli et al. | Mar 2008 | B2 |
RE40279 | Sluijter et al. | Apr 2008 | E |
D567943 | Moses et al. | Apr 2008 | S |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354435 | Farin et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7354443 | Moll et al. | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7364578 | Francischelli et al. | Apr 2008 | B2 |
7364579 | Mulier et al. | Apr 2008 | B2 |
7367972 | Francischelli et al. | May 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371246 | Viola | May 2008 | B2 |
7377902 | Burbank et al. | May 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377920 | Buysse et al. | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7384421 | Hushka | Jun 2008 | B2 |
7396336 | Orszulak et al. | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
7419487 | Johnson et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422588 | Mulier et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7425835 | Eisele | Sep 2008 | B2 |
7426415 | Kühner | Sep 2008 | B2 |
7431720 | Pendekanti et al. | Oct 2008 | B2 |
7431721 | Paton et al. | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7435250 | Francischelli et al. | Oct 2008 | B2 |
7442167 | Dunki-Jacobs et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7458972 | Keppel | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7470272 | Mulier et al. | Dec 2008 | B2 |
7473250 | Makin et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7476233 | Wiener et al. | Jan 2009 | B1 |
7481808 | Koyfman et al. | Jan 2009 | B2 |
7491199 | Goble | Feb 2009 | B2 |
7497858 | Chapelon et al. | Mar 2009 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7841765 | Keller | Nov 2010 | B2 |
8561615 | Pannell et al. | Oct 2013 | B2 |
8784417 | Hanna | Jul 2014 | B2 |
8808288 | Rescheke | Aug 2014 | B2 |
9161813 | Benamou | Oct 2015 | B2 |
20010037110 | Schmaltz et al. | Nov 2001 | A1 |
20010039417 | Harano et al. | Nov 2001 | A1 |
20020052599 | Goble | May 2002 | A1 |
20020115997 | Truckai et al. | Aug 2002 | A1 |
20020120262 | Bek et al. | Aug 2002 | A1 |
20020120266 | Truckai et al. | Aug 2002 | A1 |
20020128650 | McClurken | Sep 2002 | A1 |
20020151884 | Hoey et al. | Oct 2002 | A1 |
20020161363 | Fodor et al. | Oct 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030004510 | Wham et al. | Jan 2003 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030060818 | Kannenberg et al. | Mar 2003 | A1 |
20030065327 | Wellman et al. | Apr 2003 | A1 |
20030065358 | Frecker et al. | Apr 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030114845 | Paton et al. | Jun 2003 | A1 |
20030114848 | Cobb | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030125728 | Nezhat et al. | Jul 2003 | A1 |
20030125731 | Smith et al. | Jul 2003 | A1 |
20030125734 | Mollenauer | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20030199870 | Truckai et al. | Oct 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040068274 | Hooven | Apr 2004 | A1 |
20040068304 | Paton et al. | Apr 2004 | A1 |
20040073247 | Loshakove et al. | Apr 2004 | A1 |
20040082946 | Malis et al. | Apr 2004 | A1 |
20040092922 | Kadziauskas et al. | May 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040193148 | Wham et al. | Sep 2004 | A1 |
20040215127 | Kadziauskas et al. | Oct 2004 | A1 |
20040225288 | Buysse et al. | Nov 2004 | A1 |
20040250419 | Sremich et al. | Dec 2004 | A1 |
20050004563 | Racz et al. | Jan 2005 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050033282 | Hooven | Feb 2005 | A1 |
20050033352 | Zepf et al. | Feb 2005 | A1 |
20050080319 | Dinkler, II et al. | Apr 2005 | A1 |
20050090815 | Francischelli et al. | Apr 2005 | A1 |
20050096681 | Desinger et al. | May 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050107785 | Dycus et al. | May 2005 | A1 |
20050113817 | Isaacson et al. | May 2005 | A1 |
20050113819 | Wham et al. | May 2005 | A1 |
20050124915 | Eggers et al. | Jun 2005 | A1 |
20050124987 | Goble | Jun 2005 | A1 |
20050137592 | Nguyen et al. | Jun 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050159745 | Truckai et al. | Jul 2005 | A1 |
20050165444 | Hart et al. | Jul 2005 | A1 |
20050192568 | Truckai et al. | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050234447 | Paton et al. | Oct 2005 | A1 |
20050245918 | Sliwa, Jr. et al. | Nov 2005 | A1 |
20050245922 | Goble | Nov 2005 | A1 |
20060020265 | Ryan | Jan 2006 | A1 |
20060041254 | Francischelli et al. | Feb 2006 | A1 |
20060052777 | Dumbauld | Mar 2006 | A1 |
20060079788 | Anderson et al. | Apr 2006 | A1 |
20060079878 | Houser | Apr 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060161190 | Gadberry et al. | Jul 2006 | A1 |
20060167450 | Johnson et al. | Jul 2006 | A1 |
20060173453 | Gruhl et al. | Aug 2006 | A1 |
20060217697 | Lau et al. | Sep 2006 | A1 |
20060217706 | Lau et al. | Sep 2006 | A1 |
20060217707 | Daniel et al. | Sep 2006 | A1 |
20060224152 | Behnke et al. | Oct 2006 | A1 |
20060224158 | Odom et al. | Oct 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20070016185 | Tullis et al. | Jan 2007 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070093800 | Wham et al. | Apr 2007 | A1 |
20070123847 | Mihori | May 2007 | A1 |
20070135811 | Hooven | Jun 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070156139 | Schecter et al. | Jul 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070167941 | Hamel et al. | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070191827 | Lischinsky et al. | Aug 2007 | A1 |
20070191828 | Houser et al. | Aug 2007 | A1 |
20070203481 | Gregg et al. | Aug 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070276363 | Patton et al. | Nov 2007 | A1 |
20070282195 | Masini et al. | Dec 2007 | A1 |
20070282320 | Buysse et al. | Dec 2007 | A1 |
20070282332 | Witt et al. | Dec 2007 | A1 |
20070287997 | Tolmei | Dec 2007 | A1 |
20080009860 | Odom | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080015564 | Wham et al. | Jan 2008 | A1 |
20080015567 | Kimura | Jan 2008 | A1 |
20080030206 | Podhajsky et al. | Feb 2008 | A1 |
20080039831 | Odom et al. | Feb 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080082095 | Shores | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080091189 | Carlton | Apr 2008 | A1 |
20080114356 | Johnson et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132893 | D' Amelio et al. | Jun 2008 | A1 |
20080167651 | Tetzlaff et al. | Jul 2008 | A1 |
20080172048 | Martin et al. | Jul 2008 | A1 |
20080188848 | Deutmeyer et al. | Aug 2008 | A1 |
20080208246 | Livneh | Aug 2008 | A1 |
20080215050 | Bakos | Sep 2008 | A1 |
20080215051 | Buysse et al. | Sep 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080228179 | Eder et al. | Sep 2008 | A1 |
20080294222 | Schecter | Nov 2008 | A1 |
20080300589 | Paul et al. | Dec 2008 | A1 |
20080300590 | Horne et al. | Dec 2008 | A1 |
20080300591 | Darian et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090024126 | Artale et al. | Jan 2009 | A1 |
20090030477 | Jarrard | Jan 2009 | A1 |
20090171352 | Sutter | Jul 2009 | A1 |
20090248007 | Falkenstein et al. | Oct 2009 | A1 |
20090275490 | Milne et al. | Nov 2009 | A1 |
20090275940 | Malackowski et al. | Nov 2009 | A1 |
20120010614 | Couture | Jan 2012 | A1 |
20120059371 | Anderson et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120136347 | Brustad et al. | May 2012 | A1 |
20120197243 | Sherman et al. | Aug 2012 | A1 |
20120215220 | Manzo et al. | Aug 2012 | A1 |
20130018411 | Collings et al. | Jan 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20130138102 | Twomey et al. | May 2013 | A1 |
20130197874 | Heckel | Aug 2013 | A1 |
20130267951 | Twomey | Oct 2013 | A1 |
20130274743 | Banfalvi | Oct 2013 | A1 |
20130296843 | Boudrequx et al. | Nov 2013 | A1 |
20130345696 | Behnke, II et al. | Dec 2013 | A1 |
20140005658 | Rosenbegr | Jan 2014 | A1 |
20140088583 | Singh | Mar 2014 | A1 |
20140214019 | Baxter, III et al. | Jul 2014 | A1 |
20140254221 | Johnson | Sep 2014 | A1 |
20160000495 | Elliott | Jan 2016 | A1 |
20160058492 | Yates et al. | Mar 2016 | A1 |
20160151107 | Wham | Jun 2016 | A1 |
20160310203 | Gaspredes et al. | Oct 2016 | A1 |
20160310204 | McHenry et al. | Oct 2016 | A1 |
20180256242 | Bluvshtein | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
40 24 636 | Feb 1992 | DE |
40 24 636 | Dec 1992 | DE |
10 2005 044 918 | Feb 2007 | DE |
0 315 338 | May 1989 | EP |
0 538 984 | Apr 1993 | EP |
0 570 675 | Nov 1993 | EP |
0 598 202 | May 1994 | EP |
0 717 967 | Jun 1996 | EP |
0 737 447 | Oct 1996 | EP |
0 878 168 | Nov 1998 | EP |
1 054 637 | Nov 2000 | EP |
1 157 666 | Nov 2001 | EP |
1 500 378 | Jan 2005 | EP |
1 535 581 | Jun 2005 | EP |
1 545 361 | Jun 2005 | EP |
1 557 129 | Jul 2005 | EP |
1 634 539 | Mar 2006 | EP |
1 634 539 | Mar 2006 | EP |
1 665 995 | Jun 2006 | EP |
1 728 475 | Dec 2006 | EP |
1 810 628 | Jul 2007 | EP |
1 946 715 | Jul 2008 | EP |
2 106 762 | Oct 2009 | EP |
2 111 812 | Oct 2009 | EP |
2 156 802 | Feb 2010 | EP |
2 301 462 | Mar 2011 | EP |
2 340 792 | Jul 2011 | EP |
2 436 327 | Apr 2012 | EP |
2 436 330 | Apr 2012 | EP |
2 574 300 | Apr 2013 | EP |
2 712 568 | Apr 2014 | EP |
2 777 578 | Sep 2014 | EP |
3 369 392 | Sep 2018 | EP |
2 157 175 | Oct 1985 | GB |
2 462 453 | Aug 2008 | GB |
60-30946 | Feb 1994 | JP |
83-17935 | Dec 1996 | JP |
11-070123 | Mar 1999 | JP |
11-070124 | Mar 1999 | JP |
11-178833 | Jul 1999 | JP |
2000-254135 | Sep 2000 | JP |
2003-135481 | May 2003 | JP |
2003-164463 | Jun 2003 | JP |
2006-109945 | Apr 2006 | JP |
2006-167403 | Jun 2006 | JP |
2007-144201 | Jun 2007 | JP |
2007-195980 | Aug 2007 | JP |
2007-195985 | Aug 2007 | JP |
2008-043789 | Feb 2008 | JP |
2008-259864 | Oct 2008 | JP |
WO 93015662 | Aug 1993 | WO |
WO 97010764 | Mar 1997 | WO |
WO 99040857 | Aug 1999 | WO |
WO 01012090 | Feb 2001 | WO |
WO 2004030553 | Apr 2004 | WO |
WO 2004032776 | Apr 2004 | WO |
WO 2004032777 | Apr 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2005004735 | Jan 2005 | WO |
WO 05053785 | Jun 2005 | WO |
WO 2006119245 | Nov 2006 | WO |
WO 2006125558 | Nov 2006 | WO |
WO 2007044849 | Apr 2007 | WO |
WO 2007142601 | Dec 2007 | WO |
WO 2008147773 | Dec 2008 | WO |
WO 2009065140 | May 2009 | WO |
WO 2012110996 | Aug 2012 | WO |
WO 2013030349 | Mar 2013 | WO |
Entry |
---|
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/059909, titled “Electro surgical System,” dated May 27, 2021, 15 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/059909 titled “Electrosurgical System,” dated Apr. 28, 2020, 23 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/049768 titled “Electrosurgical Generator Verification System.” dated Dec. 11, 2019, 19 pgs. |
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2019/049807, titled “Electrosurgical Generator Control System”, dated Dec. 19, 2019, 16 pgs. |
European Patent Office, Extended European Search Report for European Patent No. 19198318.8, entitled, “Bipolar Electrosurgical Sealer and Divider,” dated Dec. 17, 2019, 10 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2019/049807 titled “Electrosurgical Generator Control System.” dated Feb. 12, 2020, 20 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/049768, titled “Electrosurgical Generator Verification System,” dated Mar. 18, 2021, 13 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2019/049807, titled “Electrosurgical Generator Control System,” dated Mar. 18, 2021, 13 pgs. |
Bertil Vallfors and Bjorn Bergdahl, Automatically controlled bipolar electrocoagulation—“COA-COMP”, Neurosurg. Rev., 1984, pp. 187-190. |
“New Products” Journal of Medical Engineering and Technology, vol. 19, No. 5 (Sep./Oct. 1995), pp. 189-190. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US09/39046 titled “Electrosurgical System,” dated Jul. 27, 2009, 31 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US09/39046, titled “Electrosurgical System,” dated Mar. 26, 2010, 18 pgs. |
European Patent Office, European Search Report for European Application No. EP 10 19 2593, titled “Electrosurgical System,” dated Mar. 21, 2011, 8 pgs. |
European Patent Office, European Search Report for European Application No. EP 10 19 2614, titled “Electrosurgical System,” dated Apr. 18, 2011, 7 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 10 19 2580, dated Jul. 21, 2011, 6 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US09/39046, titled “Electrosurgical System,” dated Jan. 17, 2012, 45 pgs. |
European Patent Office, European Search Report for European Patenet Application No. 12151288, dated Feb. 10, 2012, 8 pgs. |
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/054661, dated Mar. 6, 2012, 23 pgs. |
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012, 3 pgs. |
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Jun. 6, 2012, 2 pgs. |
European Patent Office, Partial European Search Report for European Patent Application No. 15151398.3, dated Jun. 22, 2015, 9 pgs. |
U.S. Appl. No. 12/611,352, filed Nov. 3, 2009, titled Tissue Fusion/Welder Apparatus and Method, now U.S. Pat. No. 8,551,089 issued Oct. 8, 2013. |
U.S. Appl. No. 12/183,970, filed Jul. 31, 2008, entitled Bipolar Electrosurgical Scissors, now U.S. Pat. No. 8,226,649 issued Jul. 24, 2012. |
U.S. Appl. No. 12/416,128, filed Mar. 31, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,568,411 issued Oct. 29, 2013. |
US Patent Application No. PCT/US09/39046 filed Mar. 31, 2009, entitled Electrosurgical System. |
U.S. Appl. No. 12/416,668, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,562,598 issued Oct. 22, 2013. |
U.S. Appl. No. 12/416,695, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,551,088 issued Oct. 8, 2013. |
U.S. Appl. No. 12/416,765, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,915,910 issued Dec. 23, 2014. |
U.S. Appl. No. 12/416,751, filed Apr. 1, 2009, entitled Electrosurgical System, now U.S. Pat. No. 8,579,894 issued Nov. 12, 2013. |
The International Bureau of WIPO, The International Preliminary Report on Patentability for International Application No. PCT/US2011/054661, entitled “Electrosurgical Instruments and Connections Thereto,” dated Apr. 2, 2013, 10 pgs. |
European Patent Office, European Search Report for European Application No. EP 13 17 4814.7, titled “Electrosurgical System,” dated Sep. 30, 2013, 4 pgs. |
European Patent Office, European Search Report for European Patent Application No. EP 14199708.0, entitled “Electrosurgical System,” dated Jul. 10, 2015, 14 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/031452 ,titled “Electrosurgical Fusion Device,” dated Dec. 3, 2015, 27 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/066473 titled “Bipolar Electrosurgical Sealer and Divider.” dated Mar. 31, 2016, 13 pgs. |
International Searching Authority/US, The International Search Report and the Written Opinion for International Application No. PCT/US2015/033546 titled “Electrosurgical Seal and Dissection Systems.” dated Apr. 22, 2016, 31 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/031452, titled “Electrosurgical System,” dated Dec. 1, 2016, 21 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/033546, titled “Electrosurgical Laparoscopic Sealer and Dissector,” dated Dec. 15, 2016, 22 pgs. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2015/0066473, titled “Bipolar Electrosurgical Sealer and Divider,” dated Jul. 6, 2017, 10 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 17207793.5, dated May 16, 2018, 9 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 18165110.0, dated Jun. 13, 2018, 6 pgs. |
European Patent Office, Extended European Search Report for European Application No. EP 21215386.0, dated May 24, 2022, 6 pgs. |
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2020/067540, dated May 3, 2021, entitled “Electrosurgical System with Tissue and Maximum Current Identification,” 12 pages. |
International Preliminary Examining Authority/US, International Preliminary Report on Patentability for International Application No. PCT/US2020/067540, titled “Electrosurgical System with Tissue and Maximum Current Identification,” dated Jul. 14, 2022, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20200069358 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62727195 | Sep 2018 | US |