This invention relates to an electrosurgical system comprising a generator and an electrosurgical instrument including electrosurgical electrodes for receiving radio frequency (RF) power from the generator. Such systems are commonly used for the cutting and/or coagulation of tissue in surgical intervention, most commonly in “keyhole” or minimally invasive surgery, but also in laparoscopic and “open” surgery.
Electrosurgical instruments commonly known as a bipolar scissors instruments are disclosed in U.S. Pat. No. 6,179,837 and U.S. Reissue Pat. No. Re 36,795, although many other examples are available. Such devices use a radio frequency (RF) electrosurgical voltage to coagulate tissue, and the mechanical shearing action of the scissor blades to cut the tissue. The present invention attempts to provide an improvement to this type of instrument.
According to the invention, an electrosurgical system for cutting and coagulating tissue includes a generator for generating radio frequency (RF) power, and an electrosurgical instrument including a pair of blades pivotally joined for relative movement in a scissors-like action between open and closed positions. Each of the blades includes a conductive blade member and a conductive electrode electrically isolated from the blade member by means of an insulation member, a first one of either the conductive blade member or the conductive electrode constituting an inner electrode on each blade. The inner electrodes are disposed in face-to-face relationship. A second one of either the conductive blade member or the conductive electrode constitutes an outer electrode on each blade spaced from the inner electrode. The instrument further includes an actuation mechanism for effecting relative movement of the blades in the scissors-like action. The generator includes at least one source of RF power and a controller such that the generator is capable of delivering a first cutting RF waveform to the electrosurgical instrument or a second coagulating RF waveform to the electrosurgical instrument, the system further including circuitry arranged to cause the first cutting RF waveform to be delivered between the inner and outer electrodes on each blade, and the coagulating RF waveform to be delivered between the outer electrodes of the respective blade.
There are examples of instruments in which an electrosurgical cutting signal is used to cut as well as coagulate tissue, but such instruments are generally forceps instruments. As stated previously, in scissors instruments the scissor blades are used to cut the tissue. U.S. Pat. No. 6,174,309 and U.S. Pat. No. 7,204,835 are examples of forceps instruments with an electrosurgical cut.
In contrast, disclosed herein is an electrosurgical scissors instrument, which, unlike a forceps instrument, does provide the option for a mechanical cut using the scissor blades. In addition, the system provides a bipolar electrosurgical cutting option, which has safety and control advantages when compared with a monopolar electrosurgical action.
In one embodiment of the present invention, the instrument relies solely on the electrosurgical cutting of tissue, and the shearing edge of one or both blades is preferably rounded so as to discourage the mechanical cutting of tissue. In this way, the user of the instrument can use the instrument with confidence, knowing that tissue will only be severed when the electrosurgical cut voltage is supplied, not by any movement of the instrument.
The electrosurgical instrument is configured differently in order to be able to produce an electrosurgical cut. The insulation member separating the inner and outer electrodes of each blade is preferably such that the separation between the electrodes is at least 0.2 mm. This may be achieved by the thickness of the insulation member being at least 0.2 mm, or by offsetting one of the electrodes such that the spacing is at least this amount. Preferably, the ratio of the cross-sectional thickness of the outer electrodes to the cross-sectional thickness of the inner electrodes is at least 2:1, and the cross-sectional thickness of the outer electrodes is at least 0.3 mm.
The generator is such that the first cutting waveform delivered between the inner and outer electrodes on each blade is conveniently at least 200 volts peak, preferably at least 300 volts peak, and typically in the range 300 to 500 volts peak. In one convenient arrangement, the generator has a controller that allows the generator to deliver a blended waveform consisting of a rapidly alternating combination of the cutting RF waveform and the coagulating RF waveform. Such a blended signal is disclosed in our U.S. Pat. No. 6,966,907, the details of which are hereby incorporated by reference.
In one convenient arrangement, at least one of the blades has a weak section such that the blade can flex laterally so as to increase the lateral distance between the blades when tissue is present therebetween. This has the advantage that a larger amount of tissue can be accommodated between the blades, and also allows the blades to press the opposite walls of skeletonized tissues such as vessels one against the other. It has been found that tissue sealing is effectively accomplished by pressing together the opposite walls of vessels, and applying heat to seal them one against the other. Conveniently, both blades are provided with a weak section such that both blades can flex laterally so as to increase the lateral distance between the blades when tissue is present therebetween. Typically, the or each weak section is such that the force needed to produce a flexing of the or each blade is at a first lower level when the deflection is below a predetermined threshold distance, and at a second higher level when the deflection is above the predetermined distance. The or each weak section is conveniently produced by having a recess or cut-out in the blade in the region between the area in which the blades contact tissue, and the area in which the blades pivot, so that a portion of reduced thickness is created. The recess is conveniently shaped to give the preferential flexibility up to the predetermined threshold blade separation.
The invention also resides in an electrosurgical instrument for cutting and coagulating tissue, the instrument including a pair of blades pivotally joined for relative movement in a scissors-like action between open and closed positions, each of said blades including a conductive blade member and a conductive electrode electrically isolated from the blade member by means of an insulation member, a first one of either the conductive blade member or the conductive electrode constituting an inner electrode on each blade. The inner electrodes are disposed in face-to-face relationship to provide a shearing edge therebetween, and a second one of either the conductive blade member or the conductive electrode constitutes an outer electrode on each blade spaced from the inner electrode. The instrument further includes an actuation mechanism for effecting relative movement of the blades in said scissors-like action, the shearing edge of one or both blades being rounded so as to discourage the mechanical cutting of tissue. The insulation member separates the inner and outer electrodes of each blade by a distance of at least 0.2 mm such that the instrument is capable of cutting tissue not by mechanical shearing but by means of a cutting RF waveform delivered between the inner and outer electrodes.
As before, the ratio of the cross-sectional thickness of the outer electrodes to the cross-sectional thickness of the inner electrodes is preferably at least 2:1, and the cross-sectional thickness of the outer electrodes is at least 0.3 mm. Also as previously described, the or each blade can be provided with a weak section to permit flexing of the or each blade to increase the lateral distance between the blades.
The invention further resides in an electrosurgical system for cutting and coagulating tissue, the system including a generator for generating radio frequency (RF) power, and an electrosurgical instrument including a pair of blades pivotally joined for relative movement in a scissors-like action between open and closed positions, wherein a first one of said blades includes a first electrode and a second electrode electrically isolated one from the other by means of an insulation member, and a second one of the blades including a third electrode, the instrument further including an actuation mechanism for effecting relative movement of the blades in said scissors-like action, and wherein the generator includes at least one source of RF power and a controller arranged such that the generator is capable of delivering a first, cutting RF waveform to the electrosurgical instrument or a second, coagulating RF waveform to the electrosurgical instrument, the system further including circuitry arranged to cause the cutting RF waveform to be delivered between the first and second electrodes, and the coagulating RF waveform to be delivered between one of the first and second electrodes and the third electrode.
The first and second electrodes are preferably located transversely as inner and outer electrodes, or alternatively located side by side on the blade with the insulating member therebetween. The second blade may be a unitary blade constituting the third electrode, or may contain additional electrodes in a sandwich or side by side structure.
The invention will be further described below, by way of example only, with reference to the accompanying drawings.
In the drawings:
Referring to
The first blade 3 comprises a conductive blade body 6 constituting a first electrode. The blade body 6 carries a second electrode 7 spaced from the blade body by an insulating spacer 8, typically of a ceramic material. The second blade 4 is of a similar construction, with a blade body 9 forming a first electrode, and a second electrode 11 separated from the blade body by a ceramic insulator 13. The two blade bodies 6 and 9 are the components moved by the actuating mechanism to open and close the blades, and the second electrodes 7 and 11 lie in face-to-face juxtaposition when the blades are in their closed position. Unlike those of a conventional scissors instrument, the edges of the second electrodes are rounded where they overlap so that they do not cause the mechanical cutting of tissue positioned between the blades when the blades are closed.
A first conductive actuation rod 33 is conductively connected to the blade body 6, and extends back along the instrument to be connected to an output RF1 of the electrosurgical generator 10. A lead 15 is connected to the second electrode 11 of blade 4, and extends back along the instrument to be connected to a second output RF2 of the electrosurgical generator 10. Finally, a second conductive actuation rod 17 is conductively connected to the blade body 9 and extends back along the instrument to be connected to a third output RF3 of the electrosurgical generator 10.
The output stage of the generator 10 is shown in
The operation of the electrosurgical system will now be described with reference to
In
Generally, it will be appreciated that other embodiments of the generator and the blade members can be envisioned without departing from the scope of the present invention. As described earlier, the electrodes on one or each blade may be provided in a layered sandwich construction, in a side-by-side construction, or even in a staggered construction containing elements of each previous arrangement. By employing an electrosurgical cutting signal to sever the tissue, as opposed to the mechanical shearing between the blades, a more controlled cut can be obtained.
Number | Date | Country | Kind |
---|---|---|---|
0815515.2 | Aug 2008 | GB | national |
This application claims the benefit of Provisional Application No. 61/136,489 filed Sep. 9, 2008.
Number | Date | Country | |
---|---|---|---|
61136489 | Sep 2008 | US |