1. Technical Field
The present disclosure relates to an electrosurgical forceps and more particularly, the present disclosure relates to an endoscopic bipolar electrosurgical forceps having a shaft rotatable by the selective actuation of a thumb lever.
2. Background of Related Art
Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. Many surgical procedures require cutting and/or ligating large blood vessels and large tissue structures. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transfected blood vessels or tissue. By utilizing an elongated electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, larger vessels can be more difficult to close using these standard techniques.
In order to resolve many of the known issues described above and other issues relevant to cauterization and coagulation, a recently developed technology has been developed by Valleylab, Inc. of Boulder, Colo., a division of Covidien, called vessel or tissue sealing. The process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass with limited demarcation between opposing tissue structures. Coagulation of small vessels is sufficient to permanently close them, while larger vessels and tissue need to be sealed to assure permanent closure.
In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters are accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to affect vessel sealing. For example, one such actuating assembly has been developed by Valleylab, Inc. of Boulder, Colo., a division of Covidien, for use with Valleylab's vessel sealing and dividing instrument for sealing large vessels and tissue structures commonly sold under the trademarks LIGASURE™, LIGASURE 5mm™, LIGASURE ATLAS®. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism and is activated by a foot switch. Co-pending U.S. application Ser. Nos. 10/179,863, 10/116,944, 10/460,926, 10/953,757, and 11/595,194, and PCT Application Serial Nos. PCT/US01/01890 and PCT/7201/11340 describe in detail the operating features of the LIGASURE devices and various methods relating thereto. The contents of each of these applications are hereby incorporated by reference herein.
During electrosurgical procedures, such as vessel sealing, the particular characteristics of a patient's anatomy may require the surgeon to employ specific surgical techniques. For example, the angle at which a vessel is to be sealed may be dictated by adjacent anatomical structures, as well as the target vessel itself. Anatomical structures may dictate that a surgeon manipulate an electrosurgical instrument in a precise manner in order, for example, to traverse a path to the surgical site. Such manipulations may include varying the attitude of the instrument jaws in order to achieve the desired operative result.
The present disclosure is directed to an electrosurgical instrument having a housing that includes a movable thumb handle disposed thereon that is rotatable about a first axis defined by a driveshaft having a first end and a second end. The driveshaft is operably coupled at a first end thereof to the thumb handle and a second handle thereof to a drive assembly. The electrosurgical instrument in accordance with the present disclosure includes a shaft coupled to the housing and rotatable about a second axis defined longitudinally therethrough and having an end effector disposed at a distal end thereof for performing an electrosurgical procedure. In use, a surgeon may rotate the shaft and end effector by manipulating the thumb handle, for example, in a leftward or rightward direction. Advantageously, an instrument in accordance with the present disclosure allows a surgeon to manipulate the instrument, including effectuating the rotation of the shaft, using a single hand.
The disclosed electrosurgical instrument includes a drive assembly configured to couple the driveshaft and the rotatable shaft, wherein a rotation of the thumb handle and driveshaft is translated into a rotation of the rotatable shaft. In embodiments, the drive assembly includes a driving element operably coupled to a second end of the driveshaft and a driven element operably coupled to a proximal end of the shaft. The driving element and driven element cooperate to translate rotation therebetween. In embodiments, the driving element and/or driven element may be a bevel gear or friction roller configured to cooperate to translate rotational motion therebetween.
Also disclosed is an electrosurgical system that includes an electrosurgical generator configured to generate electrosurgical energy. The electrosurgical generator may be operatively coupled to the presently disclosed electrosurgical instrument for performing electrosurgical procedures, for example without limitation, cutting, blending, coagulating, ablation, and vessel sealing. In embodiments the electrosurgical generator may supply electrosurgical signals in the radiofrequency range, for example without limitation the 200 kHz-3.3 mHz range, and/or the electrosurgical generator may supply electrosurgical signals in the microwave range, for example without limitation the 900 mHz-2.0 gHz range.
A method of performing electrosurgery is disclosed herein which includes the steps of providing an electrosurgical module configured to generate electrosurgical energy; providing the electrosurgical instrument described hereinabove; providing a cable assembly configured to operably couple the electrosurgical module and the electrosurgical instrument; actuating the movable thumb handle to rotate the end effector; and applying electrosurgical energy to tissue. In embodiments, the end effector assembly provides two jaw members movable from a first position in spaced relation relative to one another to at least a second position closer to one another for grasping tissue therebetween. In embodiments, the disclosed method includes the step of positioning the jaw members around tissue therebetween and moving the jaw members from a first position in spaced relation relative to one another to at least a second position closer to one another to grasp tissue therebetween.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings wherein:
Particular embodiments of the present disclosure will be described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure, which may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In the drawings and in the descriptions which follow, the term “proximal,” as is traditional, shall refer to the end of the instrument which is closer to the user, while the term “distal” shall refer to the end which is farther from the user. Relative terms, such as “left”, “right”, “clockwise”, and “counterclockwise” shall be construed from the perspective of the user, i.e., from a proximal viewpoint facing distally.
The present disclosure includes an electrosurgical apparatus that is adapted to connect to an electrosurgical generator that includes a control module configured for electrosurgical procedures.
With reference to
With particular respect to the prior disclosure, generator 200 includes a control module 300 that is configured and/or programmed to control the operation of generation of 200, including without limitation the intensity, duration, and waveshape of the generated electrosurgical energy, and/or accepting input, such as without limitation user input and sensor input. Generator 200 generates electrosurgical energy, which may be RF (radio frequency), microwave, ultrasound, infrared, ultraviolet, laser, thermal energy or other electrosurgical energy. An electrosurgical module 220 generates RF energy and includes a power supply 250 for generating energy and an output stage 252 which modulates the energy that is provided to the delivery device(s), such as an end effector 100, for delivery of the modulated energy to a patient. Power supply 250 may be a high voltage DC or AC power supply for producing electrosurgical current, where control signals generated by the system 300 adjust parameters of the voltage and current output, such as magnitude and frequency. The output stage 252 may modulate the output energy (e.g., via a waveform generator) based on signals generated by control module 300 to adjust waveform parameters, e.g., waveform shape, pulse width, duty cycle, crest factor, and/or repetition rate. Control module 300 may be coupled to the generator module 220 by connections that may include wired and/or wireless connections for providing the control signals to the generator module 220.
As shown in
In one embodiment, the generator 200 includes various safety and performance features including isolated output and independent activation of accessories. It is envisioned that the electrosurgical generator includes Valleylab's Instant Response™ technology features which provides an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power.
Electrosurgical instrument 10 can be any type of electrosurgical apparatus known in the available art, including but not limited to electrosurgical apparatuses that can grasp and/or perform any of the above mentioned electrosurgical procedures. One type of electrosurgical apparatus 10 may include bipolar forceps as disclosed in commonly-owned United States Patent Publication No. 2007/0173814 entitled “Vessel Sealer and Divider For Large Tissue Structures”, which is hereby incorporated by reference in its entirety for all purposes herein.
With reference now to
Fixed handle assembly 50 may be integrally associated with housing 52. Movable handle 30 is movable relative to fixed handle 50. Fixed handle 50 may be oriented about 30 degrees relative to the longitudinal axis of shaft 12. Fixed handle 50 and/or movable handle 30 may include one or more ergonomic enhancing elements to facilitate handling, e.g., scallops, protuberances, elastomeric material, etc. In embodiments, movable handle 30 has an opening 40 defined therein which may facilitate grasping by permitting the fingers of a user to pass therethrough, as can be appreciated.
Thumb lever 90 is operatively associated with housing 52 and is rotatable through an arc of about 180 degrees about the rotational axis “B-B” (See
Driveshaft 94 is supported within housing 52 by driveshaft sleeve 96 which may be integrally formed with housing 52. Driveshaft sleeve 96 has an inside diameter dimensioned to allow free rotation of driveshaft 94 within driveshaft sleeve 96 while maintaining alignment of driveshaft 94 with lever drive assembly 102. In embodiments, driveshaft sleeve 96 may include a bearing (not explicitly shown) such as without limitation ball bearing, roller bearing or friction bearing. In embodiments, the clearance between driveshaft 94 and driveshaft sleeve 96 may be dimensioned to achieve a predetermined amount of friction.
Lever drive assembly 102 includes bevel gear 98 that is disposed upon the lower end 103 of driveshaft 94 and bevel gear 99 that is disposed upon the proximal end 18 of shaft 12. Bevel gear 99 engages bevel gear 98 to communicate the side-to-side motion of thumb lever 90 about the B-B (i.e., vertical) axis thereof into rotational motion of shaft 12 about the A-A (i.e., longitudinal) axis. In embodiments, bevel gears 98 and 99 have a unity (1:1) gear ratio. In other envisioned embodiments, bevel gears 98 and 99 have a non-unity gear ratio whereby shaft 12 is driven at a rotational rate greater, or alternatively, less than, that of driveshaft 94. Bevel gears 98 and 99 may be arranged such that a clockwise rotation of driveshaft 94 imparts a clockwise rotation to shaft 12, or alternatively, a clockwise rotation of driveshaft 94 imparts a counterclockwise rotation to shaft 12. In yet other embodiments, the relationship between the rotation of driveshaft 94 and the rotation of shaft 12 is switchably selectable.
The present disclosure is not limited to the use of bevel gears to translate motion between the driveshaft and shaft. Other envisioned embodiments are disclosed wherein friction rollers, pulley and belts configurations, sprocket and chain configurations, and the like perform the function of lever drive assembly 102 and/or bevel gears 98 and 99.
Shaft 12 includes a shaft proximal portion 19 thereof that extends into housing 52. Shaft proximal portion 19 is supported within housing 52 by shaft sleeve 97 and 97′ which may be integrally formed with housing 52. Shaft sleeve 97, 97′ have an inside diameter dimensioned to allow free rotation of shaft 12 and thus shaft proximal portion 19 within sleeves 97, 97′ while maintaining alignment of shaft 12 and thus shaft proximal portion 19 with lever drive assembly 102, i.e., maintaining the engagement of bevel gears 98 and 99. In embodiments, shaft sleeves 97, 97′ may include a bearing (not explicitly shown) such as without limitation ball bearing, roller bearing or friction bearing. In embodiments, the clearance between shaft proximal portion 19 and driveshaft sleeves 97, 97′ may be dimensioned to achieve a predetermined amount of friction.
In use, electrosurgical instrument 10 may be introduced to the surgical site of patient P through a cannula or trocar port 410 as best illustrated in
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.