Electrosurgical instrument including nested knife assembly

Information

  • Patent Grant
  • 9636168
  • Patent Number
    9,636,168
  • Date Filed
    Tuesday, May 28, 2013
    11 years ago
  • Date Issued
    Tuesday, May 2, 2017
    7 years ago
Abstract
An electrosurgical instrument includes a handle assembly and an end effector assembly operatively coupled with the handle assembly. The end effector assembly includes a first jaw member including a first jaw housing and a first electrically conductive surface, a second jaw member including a second jaw housing and a second electrically conductive surface, and a knife assembly. The knife assembly includes a base member translatably disposed in the first jaw housing, a pivot portion coupled with the base portion, and a blade pivotally associated with the pivot portion. The knife assembly is transitionable between a retracted state in which the blade is disposed within the first jaw housing and an extended state in which the blade is disposed at least partially within the second jaw housing.
Description
BACKGROUND

Technical Field


The present disclosure relates to an electrosurgical instrument and, more particularly, to a knife assembly configured for use with the electrosurgical instrument.


Description of Related Art


Electrosurgical forceps are well known in the medical arts. For example, electrosurgical endoscopic forceps are utilized in surgical procedures, e.g., laparoscopic surgical procedure, where access to tissue is accomplished through a cannula or other suitable device positioned in an opening on a patient. The endoscopic forceps, typically, include a housing, a handle assembly including a movable handle, a drive assembly, a shaft and an end effector assembly attached to a distal end of the shaft. Typically, the endoscopic forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, cut, desiccate, and/or fulgurate tissue. In particular, the jaw members operably communicate with the drive assembly to manipulate tissue, e.g., grasp and seal tissue, and the jaw members have respective seal plates secured to the jaw housing of the respective jaw members to seal tissue. Electrosurgical forceps typically include a knife assembly to cut tissue. To safely cut tissue, the user must be careful to avoid any inadvertent contact of tissue with the knife assembly prior to the cutting process.


SUMMARY

In view of the foregoing, a need exists for a knife assembly that can be positioned safely within the electrosurgical instrument to avoid inadvertent contact with tissue.


In accordance with an embodiment of the present disclosure, there is provided an electrosurgical instrument for sealing and/or cutting tissue. The instrument includes a handle assembly and an end effector assembly operatively coupled to the handle assembly. The end effector assembly includes a first jaw member including a first jaw housing and a first electrically conductive surface, a second jaw member including a second jaw housing and a second electrically conductive surface, and a knife assembly. The first and second jaw members are movable relative to the other between a first position in which the first and second jaw members are disposed in spaced apart relation relative to one another and a second position in which the first and second jaw members cooperate to grasp tissue therebetween. The knife assembly includes a base member translatably disposed in the first jaw housing, a pivot portion coupled with the base portion, and a blade pivotally associated with the pivot portion. In particular, the knife assembly is transitionable between a retracted state in which the blade is disposed within the first jaw housing and an extended state in which the blade is disposed at least partially within the second jaw housing.


In an embodiment, the blade of the knife assembly may include a blade edge configured to cut tissue. In particular, the blade edge may be oriented away from the electrically conductive sealing surfaces when the knife assembly is in the retracted state.


In another embodiment, the first jaw housing may include a slit configured to secure a portion of the blade therein. A portion of the blade may be secured within the slit in a friction fit engagement. In addition, the slit may define an opening substantially parallel to the second electrically conductive sealing surface. Moreover, the blade may be disposed entirely within the first jaw member when the blade is in the retracted state. The blade may extend from the first jaw member to the second jaw member when the blade is in the extended state.


In yet another embodiment, the pivot portion may include a plurality of circumferentially arranged and radially extending teeth corresponding to a plurality of circumferentially defined grooves in the base member. Each tooth may be configured to slidably engage each groove.


In still another embodiment, the end effector assembly may further include an actuation assembly including a helical gear and a worm gear operatively coupled with the base member of the knife assembly. The actuation assembly may be configured to cause translation of the knife assembly.


The end effector assembly may further include a plurality of sensors including a first sensor in the first jaw member, a second sensor in the second jaw member, and a third sensor in the blade to detect position and orientation of the blade prior to cutting tissue. In particular, the first sensor may be aligned with the third sensor when the blade is in the retracted state and the second sensor may be aligned with the third sensor when the blade is in the extended state.


In still yet another embodiment, at least one of the electrically conductive surfaces may define a channel extending along a length thereof. In particular, the channel may be configured for reciprocation of the blade therein.


In accordance with another embodiment of the present disclosure, there is provided an electrosurgical instrument for sealing and/or cutting tissue. The instrument includes a handle assembly and an end effector assembly operatively coupled to the handle assembly. The end effector assembly includes a first jaw member including a first jaw housing and a first electrically conductive surface, a second jaw member including a second jaw housing and a second electrically conductive surface, and a knife assembly. The first and second jaw members are movable relative to the other between a first position in which the first and second jaw members are disposed in spaced apart relation relative to one another and a second position in which the first and second jaw members cooperate to grasp tissue therebetween. The knife assembly includes a blade disposed within the first jaw housing. In particular, the blade is transitionable between a retracted state in which the blade is disposed entirely within the first jaw housing and an extended state in which the blade extends out of the first jaw housing and engages the second electrically conductive sealing surface of the second jaw member.


In an embodiment, the second electrically conductive sealing surface may include an anvil portion configured to engage the blade.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:



FIG. 1 is a perspective view of an endoscopic electrosurgical instrument including a knife assembly in accordance with an illustrative embodiment of the present disclosure;



FIG. 2 is a partial, perspective view of the instrument of FIG. 1 illustrating jaw members of an end effector assembly in an open, spaced apart position;



FIG. 3 is a partial, side view of the instrument of FIG. 2;



FIG. 4 is a partial, longitudinal cross-sectional view of the end effector assembly of FIG. 2 illustrating the knife assembly in a retracted state;



FIG. 5 is a partial, longitudinal cross-sectional view of the end effector assembly of FIG. 4 illustrating the knife assembly in an extended state;



FIG. 6 is a side, cross-sectional view of the knife assembly of FIG. 4 illustrating pivotal movement of a blade of the knife assembly;



FIG. 7 is a side, cross-sectional view of the knife assembly of FIG. 6 illustrating transition of a pivot portion of the knife assembly between a retracted position and an extended position;



FIG. 8 is a cross-sectional view of the pivot portion of the knife assembly of FIG. 4;



FIG. 9 is a cross-sectional view of a base portion of the knife assembly of FIG. 4;



FIG. 10 is a front, cross-sectional view of the knife assembly of FIG. 7 in the retracted position;



FIG. 11 is a front, cross-sectional view of the knife assembly of FIG. 10 in the extended position;



FIG. 12 is a partial, longitudinal cross-sectional view of an end effector assembly for use with the endoscopic electrosurgical instrument of FIG. 1 in accordance with another illustrative embodiment of the present disclosure; and



FIG. 13 is a partial, longitudinal cross-sectional view of the end effector of FIG. 12 illustrating a knife assembly in an extended state.





DETAILED DESCRIPTION

Embodiments of the present disclosure are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal,” as is conventional, will refer to that portion of the instrument, apparatus, device or component thereof which is farther from the user while, the term “proximal,” will refer to that portion of the instrument, apparatus, device or component thereof which is closer to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


With reference to FIG. 1, there is illustrated an endoscopic electrosurgical instrument 10 in accordance with an embodiment of the present disclosure. Instrument 10 includes a handle assembly 30, an elongated body 12 extending distally from handle assembly 30 and defining a longitudinal axis “A-A,” and an end effector assembly 100 coupled to a distal end portion 16 of elongated body 12. End effector assembly 100 includes opposing jaw members 110, 120 (FIG. 2) that mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue, as will be described in detail below. Instrument 10 also includes electrosurgical cable 6 that connects instrument 10 to a generator (not shown) or other suitable energy source. Alternatively, instrument 10 may be configured as a battery-powered instrument to facilitate an untethered operation. Cable 6 includes one or more wires (not shown) having sufficient length to extend through elongated body 12 in order to provide electrical energy to at least one of jaw members 110, 120 of end effector assembly 100.


With continued reference to FIG. 1, handle assembly 30 includes a housing 20, a switch assembly 70 configured to actuate a knife assembly 200 (FIG. 4), and a rotating assembly 80 configured to rotate with respect to housing 20 to selectively position end effector assembly 100 to any rotational orientation about longitudinal axis “A-A.” Handle assembly 30 further includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and movable handle 40 is movable relative to fixed handle 50 to actuate the opposing jaw members 110, 120 (FIG. 2) of end effector assembly 100. In particular, movable handle 40 imparts movement of jaw members 110, 120 about a pivot 160 (FIG. 2) from an open position in which jaw members 110, 120 are disposed in a spaced apart relation relative to one another to a clamping or closed position in which jaw members 110, 120 cooperate to grasp tissue therebetween.


Elongated body 12 has a proximal end 14 that mechanically engages housing 20. In particular, proximal end 14 of elongated body 12 mechanically engages rotating assembly 80 to facilitate rotation of end effector assembly 100 to any rotational orientation about longitudinal axis “A-A.” Details relating to the mechanically cooperating components of elongated body 12 and rotating assembly 80 are described in commonly owned U.S. Patent Application Publication No. 2007/0260242, entitled “Vessel Sealer and Divider.”


With reference to FIGS. 2 and 3, elongated body 12 may include one or more known mechanically engaging components that are designed to securely receive and engage end effector assembly 100 such that jaw members 110, 120 are pivotable relative to one another to engage and grasp tissue therebetween. In particular, distal end portion 16 of elongated body 12 defines a pair of camming slots 11 on lateral sides thereof (only one shown) configured to slidably receive a camming pin 15 therein. In addition, distal end portion 16 of elongated body 12 further defines a pivot bore 17 configured to receive a pivot pin 19 to pivotally couple jaw members 110, 120 about pivot 160. Jaw members 110, 120 define camming slots 115, 117 (shown in phantom in FIG. 3), respectively. Camming slots 115, 117 are configured to slidably receive camming pin 15 therein. Each camming slot 115, 117 defines an acute angle with respect to longitudinal axis “A-A” (FIG. 1), whereby sliding movement of camming pin 15 within camming slots 11, 115, 117 pivotally moves jaw members 110, 120 between the open or spaced apart position and the closed or clamping position about pivot 160.


With continued reference to FIGS. 2 and 3, jaw members 110, 120 are generally symmetrical and include similar component features, which cooperate to permit facile rotation about pivot 160 to effect sealing and dividing of tissue. Jaw member 110 includes a jaw housing 116 coated with an insulative coating 114 to reduce stray current concentrations during sealing and an electrically conductive sealing surface 112. However, in some embodiments, jaw housing 116 may include an insulative substrate or insulator configured to securely engage electrically conductive sealing surface 112. This may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate and/or by overmolding a metal injection molded seal plate. All of these manufacturing techniques produce an electrode having an electrically conductive sealing surface that is substantially surrounded by an insulating substrate. In certain instances, it may prove advantageous to provide an exterior portion of jaw housing 116 that is made from metal and an interior portion (e.g., a portion that is configured to support a seal plate thereon) of jaw housing 116 that is made from plastic. In this instance, the interior portion serves as an insulative barrier between the seal plate and the exterior portion of jaw housing 116.


Similarly, jaw member 120 includes a jaw housing 126 coated with an insulative coating 124 to reduce stray current concentrations during sealing and an electrically conductive sealing surface 122. However, in some embodiments, jaw housing 126 may include an insulator and an electrically conductive sealing surface that is dimensioned to securely engage the insulator. Electrically conductive sealing surface 122 defines a longitudinally-oriented channel 168 configured to receive a blade 230 (FIG. 4) therethrough. Channel 168 facilitates longitudinal reciprocation of blade 230 along a preferred cutting plane to effectively and accurately separate tissue along the formed tissue seal. Although not shown, jaw member 110 may also define a knife channel that cooperates with channel 168 to facilitate translation of blade 230 through tissue.


Jaw members 110, 120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through tissue to form a tissue seal. Electrically conductive sealing surfaces 112, 122 are also isolated from the remaining operative components of end effector assembly 100 and elongated body 12. A plurality of stop members 150 are employed to regulate the gap distance between sealing surfaces 112, 122 to ensure accurate, consistent and reliable tissue seals. Gap distances within the range of about 0.001 inch to about 0.006 inch are known to produce quality seals.


With reference now to FIGS. 4 and 5, end effector assembly 100 includes a knife assembly 200 configured to cut tissue prior to and/or subsequent to the sealing of tissue in accordance with an embodiment of the present disclosure. Knife assembly 200 includes a base portion 220, a blade 230, and a pivot portion 222 that supports blade 230. Blade 230 is pivotable between a retracted state (FIG. 4) which enables blade 230 to be disposed entirely within jaw housing 116 and an extended state (FIG. 5) which enables blade 230 to be disposed at least partially within jaw housing 126. In the retracted state (FIG. 4), blade 230 engages a slit (e.g., friction fit engagement) 135 to secure blade 230 therein. In the extended state (FIG. 5), blade 230 extends from jaw housing 116 into channel 168 (FIG. 2) defined in sealing surface 122.


With reference to FIGS. 4-6, blade 230 is pivotally associated with pivot portion 222. When blade 230 is disposed in slit 135 of jaw housing 116 in friction fit engagement, a blade edge 231 (FIG. 6) is directed away (FIG. 4) from electrically conductive sealing surfaces 112, 122 or tissue (not shown) such that any inadvertent contact of tissue with blade edge 231 is avoided prior to cutting tissue. Knife assembly 200 may include a biasing member (not shown) such as, for example, a torsion spring, to bias blade 230 toward electrically conductive sealing surfaces 112, 122 or tissue when blade 230 is displaced from slit 135. Under such a configuration, upon disengagement of blade 230 from slit 135, blade 230 rotates about pivot point 233 in the direction of an arrow “CW” until blade edge 231 of blade 230 is oriented toward tissue (not shown) disposed between electrically conductive sealing surfaces 112, 122 (FIG. 5). In an embodiment, knife assembly 200 may also include a locking mechanism (not shown) that locks/maintains blade 230 in the extended state to facilitate consistent cutting of tissue.


In another embodiment, jaw housing 116 of jaw member 110 may further include an engaging portion (not shown) disposed adjacent slit 135. Initially, blade 230 is at least partially secured with slit 135 in jaw housing 116. However, upon distal translation of knife assembly 200, blade 230 contacts the engaging portion, which pushes blade 230 out of slit 135. The biasing member (not shown) urges blade 230 toward tissue by pivoting blade 230 in the direction of arrow “CW.”


With reference to FIGS. 7-11, pivot portion 222 is slidably adjustable with respect to base portion 220. Such a configuration enables the clinician to adjust placement of blade 230 between sealing surfaces 112, 122 based on, for example, the thickness of tissue (not shown). In order to facilitate sliding movement of pivot portion 222 with respect to base portion 220 without causing misalignment with channel 168, pivot portion 222 includes a plurality of circumferentially arranged and radially extending teeth 229. Base portion 220 defines a plurality of circumferentially arranged grooves 228 configured to receive respective teeth 229 of pivot portion 222 therein. In this manner, pivot portion 222 may be slidably secured at least partially within base portion 220, while inhibiting rotation of pivot portion 222 with respect to base portion 220.


In an embodiment, jaw members 110, 120, as well as blade 230 may further include sensors (not shown) to determine the position and orientation of blade 230 in the extended and retracted states. When blade 230 is properly secured in slit 135, sensors on blade 230 and jaw member 110 may be properly aligned. Similarly, when blade 230 is properly positioned in channel 168 of jaw member 120, sensors on blade 230 and jaw member 120 may be properly aligned. The sensors may employ, for example, mechanical, optical, magnetic or electrical means. The data collected by the sensors may be sent to a user in a relatively remote location through, for example, wireless means (not shown). Additionally, the sensors may be placed in offset/misaligned positions to detect improper position or orientation of blade 230 in the retracted and extended states.


With reference back to FIGS. 4 and 5, knife assembly 200 is operatively coupled with an actuation assembly 280. In particular, actuation assembly 280 includes a helical gear 282 and a worm gear 284 rotatably coupled with helical gear 282. Rotation of helical gear 282 through a use of, e.g., a motor (not shown), causes translation of knife assembly 200 along channel 168 defined in electrically conductive sealing surface 122, which in turn enables cutting of tissue. In this manner, actuation of switch assembly 70 causes rotation of helical gear 282 which in turn enables cutting of tissue. It is contemplated that other gear combinations such as, for example, rack and pinion, or any other gear may be used in knife assembly 200. Alternatively, switch assembly 70 may be mechanically coupled to base portion 220 such that actuation of switch assembly 70 causes translation of base portion 220 without actuation assembly 280 and a motor.


In use, the user initially energizes the opposing electrically conductive sealing surfaces 112, 122 to effectively seal tissue disposed between jaw members 110, 120. Once tissue is sealed or otherwise treated, actuation assembly 280 may be actuated to initiate the cutting process by knife assembly 200. Initially, blade 230 is in the retracted state. However, upon initiation of actuation assembly 280, blade 230 disengages slit 135 and is rotated to be positioned in channel 168 of jaw member 120. At this time, the user may translate knife assembly 200 distally to cut tissue through actuation of actuation assembly 280.


With reference now to FIGS. 12 and 13, an end effector assembly in accordance with another embodiment of the present disclosure is shown generally as 700. End effector assembly 700 includes pair of jaw members 710, 720 pivotally associated with each other to effect sealing and dividing of tissue. In particular, a jaw housing 716 of jaw member 710 includes a cavity 705 configured to receive a knife assembly 800 therein. Knife assembly 800 includes a knife member 820 movable between a retracted state (FIG. 12) and an extended state (FIG. 13). In the retracted state, knife member 820 is disposed entirely within cavity 705 of jaw member 710. In the extended state, knife member 820 extends out of jaw member 710 and engages an anvil portion (not shown) of electrically conductive sealing surface 722 of jaw member 720 to cut tissue (not shown) disposed between electrically conductive sealing surfaces 712, 722.


Jaw housing 716 further includes a linear actuation assembly 840 including a rack 802 coupled with knife member 820 and a pinion 804 operatively coupled with a motor (not shown). Rotation of pinion 804 through a use of the motor causes translation of rack 802, which, in turn, causes translation of knife member 820 between the retracted and extended states. The motor may be operatively coupled with switch assembly 70, whereby actuation of switch assembly 70 causes rotation of pinion 804, which, in turn, enables cutting of tissue through translation of knife member 820 to the extended state. Other gear types or gear combinations such as, for example, worm gear, helical gear, and bevel gear, may be utilized to actuate knife member 820.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. In addition, while the illustrative embodiments have been shown with endoscopic instruments, the embodiments of the present disclosure may be used in open surgery instruments. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical instrument for sealing and/or cutting tissue comprising: a handle assembly; andan end effector assembly operatively coupled to the handle assembly, the end effector assembly including: a first jaw member including a first jaw housing and a first electrically conductive surface;a second jaw member including a second jaw housing and a second electrically conductive surface, the first and second jaw members movable relative to each other between a first position in which the first and second jaw members are disposed in spaced apart relation relative to one another and a second position in which the first and second jaw members cooperate to grasp tissue therebetween; anda knife assembly including: a blade disposed within the first jaw housing, the blade transitionable between a retracted state in which the blade is disposed entirely within the first jaw housing and an extended state in which the blade linearly extends out of the first jaw housing in a direction perpendicular to the first electrically conductive surface and engages the second electrically conductive surface of the second jaw member.
  • 2. The electrosurgical instrument according to claim 1, wherein the second electrically conductive surface includes an anvil portion configured to engage the blade.
  • 3. The electrosurgical instrument of claim 1, wherein the knife assembly further includes: a rack operatively coupled to the blade; anda pinion operatively coupled to the rack,wherein rotation of the pinion causes the rack to translate thereby causing the blade to extend out of the first jaw housing.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/681,425, filed on Aug. 9, 2012, the entire contents of which are incorporated herein by reference.

US Referenced Citations (133)
Number Name Date Kind
D249549 Pike Sep 1978 S
D263020 Rau, III Feb 1982 S
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
D343453 Noda Jan 1994 S
D348930 Olson Jul 1994 S
D349341 Lichtman et al. Aug 1994 S
D354564 Medema Jan 1995 S
D358887 Feinberg May 1995 S
5573534 Stone Nov 1996 A
D384413 Zlock et al. Sep 1997 S
H1745 Paraschac Aug 1998 H
D402028 Grimm et al. Dec 1998 S
D408018 McNaughton Apr 1999 S
5944717 Lee et al. Aug 1999 A
D416089 Barton et al. Nov 1999 S
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
H1904 Yates et al. Oct 2000 H
D449886 Tetzlaff et al. Oct 2001 S
D453923 Olson Feb 2002 S
D454951 Bon Mar 2002 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
H2037 Yates et al. Jul 2002 H
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6752767 Turovskiy et al. Jun 2004 B2
D493888 Reschke Aug 2004 S
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
6840948 Albrecht et al. Jan 2005 B2
D502994 Blake, III Mar 2005 S
D509297 Wells Sep 2005 S
D525361 Hushka Jul 2006 S
D531311 Guerra et al. Oct 2006 S
7131971 Dycus et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7150097 Sremcich et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
D538932 Malik Mar 2007 S
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
D541611 Aglassinge May 2007 S
D541938 Kerr et al. May 2007 S
D545432 Watanabe Jun 2007 S
D547154 Lee Jul 2007 S
D564662 Moses et al. Mar 2008 S
D567943 Moses et al. Apr 2008 S
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
D582038 Swoyer et al. Dec 2008 S
7510556 Nguyen et al. Mar 2009 B2
7540872 Schechter et al. Jun 2009 B2
7628791 Garrison et al. Dec 2009 B2
7686804 Johnson et al. Mar 2010 B2
7695485 Whitman et al. Apr 2010 B2
7722607 Dumbauld et al. May 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7731717 Odom et al. Jun 2010 B2
D621503 Otten et al. Aug 2010 S
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
D630324 Reschke Jan 2011 S
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
D661394 Romero et al. Jun 2012 S
8343151 Siebrecht et al. Jan 2013 B2
8679140 Butcher Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8858554 Kerr et al. Oct 2014 B2
8920461 Unger et al. Dec 2014 B2
8939975 Twomey et al. Jan 2015 B2
8968298 Twomey Mar 2015 B2
8968311 Allen, IV et al. Mar 2015 B2
8968313 Larson Mar 2015 B2
9011436 Garrison Apr 2015 B2
20030109802 Laeseke et al. Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030144605 Burbank et al. Jul 2003 A1
20050203441 Voegele Sep 2005 A1
20070250242 Herges Oct 2007 A1
20080058802 Couture et al. Mar 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson Jan 2009 A1
20100179543 Johnson et al. Jul 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20120095460 Rooks et al. Apr 2012 A1
20130247343 Horner et al. Sep 2013 A1
20130253489 Nau, Jr. et al. Sep 2013 A1
20130255063 Hart et al. Oct 2013 A1
20130267949 Kerr Oct 2013 A1
20130274736 Garrison Oct 2013 A1
20130282010 McKenna et al. Oct 2013 A1
20130289561 Waaler et al. Oct 2013 A1
20130296848 Allen, IV et al. Nov 2013 A1
20130296854 Mueller Nov 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20130296923 Twomey et al. Nov 2013 A1
20130304058 Kendrick Nov 2013 A1
20130304059 Allen, IV et al. Nov 2013 A1
20130304066 Kerr et al. Nov 2013 A1
20130310832 Kerr et al. Nov 2013 A1
20130325057 Larson et al. Dec 2013 A1
20130338666 Bucciaglia et al. Dec 2013 A1
20130338693 Kerr et al. Dec 2013 A1
20130345701 Allen, IV et al. Dec 2013 A1
20130345735 Mueller Dec 2013 A1
20140005663 Heard et al. Jan 2014 A1
20140005666 Moua et al. Jan 2014 A1
20140025052 Nau, Jr. et al. Jan 2014 A1
20140025053 Nau, Jr. et al. Jan 2014 A1
20140025059 Kerr Jan 2014 A1
20140025060 Kerr Jan 2014 A1
20140025066 Kerr Jan 2014 A1
20140025067 Kerr et al. Jan 2014 A1
20140025070 Kerr et al. Jan 2014 A1
20140031821 Garrison Jan 2014 A1
20140031860 Stoddard et al. Jan 2014 A1
20140046323 Payne et al. Feb 2014 A1
20140066910 Nau, Jr. Mar 2014 A1
20140066911 Nau, Jr. Mar 2014 A1
20140074091 Arya et al. Mar 2014 A1
20140100564 Garrison Apr 2014 A1
20140100568 Garrison Apr 2014 A1
Foreign Referenced Citations (86)
Number Date Country
201299462 Sep 2009 CN
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3423356 Jun 1986 DE
3612646 Apr 1987 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
10031773 Nov 2001 DE
19946527 Dec 2001 DE
20121161 Apr 2002 DE
10045375 Oct 2002 DE
10 2004 026179 Dec 2005 DE
20 2007 009318 Aug 2007 DE
20 2007 009165 Oct 2007 DE
20 2007 009317 Oct 2007 DE
20 2007 016233 Mar 2008 DE
19738457 Jan 2009 DE
10 2008 018406 Jul 2009 DE
1159926 Dec 2001 EP
61-501068 Sep 1984 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
6-030945 Feb 1994 JP
6-121797 May 1994 JP
6-285078 Oct 1994 JP
6-343644 Dec 1994 JP
6-511401 Dec 1994 JP
7-265328 Oct 1995 JP
8-56955 Mar 1996 JP
8-317936 Mar 1996 JP
8-289895 May 1996 JP
8-252263 Oct 1996 JP
8-317934 Dec 1996 JP
9-10223 Jan 1997 JP
09000538 Jan 1997 JP
9-122138 May 1997 JP
10-000195 Jan 1998 JP
10-24051 Jan 1998 JP
11-070124 May 1998 JP
10-155798 Jun 1998 JP
2000-102545 Sep 1998 JP
11-47149 Feb 1999 JP
11-47150 Feb 1999 JP
11-169381 Jun 1999 JP
11-192238 Jul 1999 JP
11-244298 Sep 1999 JP
2000-135222 May 2000 JP
2000-342599 Dec 2000 JP
2000-350732 Dec 2000 JP
2001-8944 Jan 2001 JP
2001-29355 Feb 2001 JP
2001-29356 Feb 2001 JP
2001-128990 May 2001 JP
2001-190564 Jul 2001 JP
2001-3400 Nov 2001 JP
2002-528166 Mar 2002 JP
2002-136525 May 2002 JP
2003-116871 Apr 2003 JP
2003-175052 Jun 2003 JP
2003-245285 Sep 2003 JP
2004-517668 Jun 2004 JP
2004-528869 Sep 2004 JP
2005-152663 Jun 2005 JP
2005-253789 Sep 2005 JP
2006-015078 Jan 2006 JP
2006-501939 Jan 2006 JP
2006-095316 Apr 2006 JP
2011-125195 Jun 2011 JP
401367 Nov 1974 SU
WO 0036986 Jun 2000 WO
WO 0059392 Oct 2000 WO
WO 0115614 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0245589 Jun 2002 WO
WO 2005110264 Nov 2005 WO
WO 2006021269 Mar 2006 WO
WO 2008040483 Apr 2008 WO
Non-Patent Literature Citations (45)
Entry
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003, 4 pages.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003, pp. 87-92.
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003, 1 page.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001), 8 page.
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000, 6 pages.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004, 1 page.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000, 1 page.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000), 1 page.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002, 4 pages.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy ,(2001) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002, 4 pages.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002, pp. 15-19.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999, 1 page.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002, 8 pages.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002, 4 pages.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001, 8 pages.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003, pp. 147-151.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001, 1 page.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001, 1 page.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003, 15 pages.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004, 1 page.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000, 1 page.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000, 4 pages.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999, 1 page.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C., 1 page.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000, 1 page.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000, 1 page.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C., 1 page.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999, 1 page.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Siegel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, D.C., vol. 259, Mar. 5, 1993, pp. 1463-1466.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Related Publications (1)
Number Date Country
20140046323 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61681425 Aug 2012 US