The present disclosure relates to electrosurgical instruments used for open and endoscopic surgical procedures. More particularly, the present disclosure relates to a bipolar forceps for sealing vessels and vascular tissue having an electrode assembly which is designed to limit and/or reduce thermal spread to adjacent tissue structures.
A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict tissue and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.
By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate tissue and/or simply reduce or slow bleeding by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.
Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.
Bipolar electrosurgical forceps utilize two generally opposing electrodes which are generally disposed on the inner facing or opposing surfaces of the end effectors which are, in turn, electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the end effectors are utilized to clamp or grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.
Over the last several decades, more and more surgeons are complimenting traditional open methods of gaining access to vital organs and body cavities with endoscopes and endoscopic instruments which access organs through small puncture-like incisions. Endoscopic instruments are inserted into the patient through a cannula, or port, that has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make surgical instruments that fit through the cannulas.
Certain surgical procedures require sealing blood vessels or vascular tissue. However, due to space limitations surgeons can have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. Blood vessels, in the range below two millimeters in diameter, can often be closed using standard electrosurgical techniques. If a larger vessel is severed, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of laparoscopy.
It is known that the process of coagulating small vessels is fundamentally different than vessel sealing. For the purposes herein the term “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. The term “vessel sealing” is defined as the process of liquefying the collagen in the tissue so that the tissue cross-links and reforms into a fused mass. Thus, coagulation of small vessels is sufficient to close them, however, larger vessels need to be sealed to assure permanent closure.
Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it is not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190, describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.
In order to effect a proper seal with larger vessels, two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel and the gap between the electrodes both of which affect thickness of the sealed vessel. More particularly, accurate application of the pressure is important for several reasons: 1) to oppose the walls of the vessel; 2) to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; 3) to overcome the forces of expansion during tissue heating; and 4) to contribute to the end tissue thickness which is an indication of a good seal. In some instances a fused vessel wall is optimum between 0.001 and 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.
Numerous bipolar electrosurgical instruments have been proposed in the past for various open and endoscopic surgical procedures. However, some of these designs may not provide uniformly reproducible pressure to the blood vessel and may result in an ineffective or non-uniform seal. For example, U.S. Pat. No. 2,176,479 to Willis, U.S. Pat. Nos. 4,005,714 and 4,031,898 to Hiltebrandt, U.S. Pat. Nos. 5,827,274, 5,290,287 and 5,312,433 to Boebel et al., U.S. Pat. Nos. 4,370,980, 4,552,143, 5,026,370 and 5,116,332 to Lottick, U.S. Pat. No. 5,443,463 to Stern et al., U.S. Pat. No. 5,484,436 to Eggers et al. and U.S. Pat. No. 5,951,549 to Richardson et al., all relate to electrosurgical instruments for coagulating, sealing and cutting vessels or tissue.
Many of these instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments generally rely on clamping pressure alone to procure proper sealing thickness and are often not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied, a thicker less reliable seal is created.
It has been found that using electrosurgical instruments to seal tissue may result in some degree of so-called “thermal spread” across adjacent tissue structure. For the purposes herein the term “thermal spread” refers generally to the heat transfer (heat conduction, heat convection or electrical current dissipation) traveling along the periphery of the electrically conductive surfaces. This can also be termed “collateral damage” to adjacent tissue. As can be appreciated, reducing the thermal spread during an electrical procedure reduces the likelihood of unintentional or undesirable collateral damage to surrounding tissue structures which are adjacent to an intended treatment site.
Instruments which include dielectric coatings disposed along the outer surfaces are known and are used to prevent tissue “blanching” at points normal to the sealing site. In other words, these coatings are primarily designed to reduce accidental burning of tissue as a result of incidental contact with the outer surfaces end effectors. So far as is known these coating are not designed or intended to reduce collateral tissue damage or thermal spread to adjacent tissue (tissue lying along the tissue plane).
Several electrosurgical instruments have been introduced which are known to solve many of the aforementioned problems associated with sealing, cutting, cauterizing and/or coagulating differently-sized vessels. Some of these instruments are described in co-pending U.S. patent application Ser. No. 09/178,027 filed on Oct. 23, 1998, entitled OPEN VESSEL SEALING FORCEPS WITH DISPOSABLE ELECTRODES, co-pending U.S. patent application Ser. No. 09/425,696 filed on Oct. 22, 1999, entitled OPEN VESSEL SEALING FORCEPS WITH DISPOSABLE ELECTRODES, co-pending U.S. patent application Ser. No. 09/177,950 filed on Oct. 23, 1998, entitled ENDOSCOPIC BIPOLAR ELECTROSURGICAL FORCEPS; and co-pending U.S. patent application Ser. No. 09/621,029 filed on Jul. 21, 2000, entitled ENDOSCOPIC BIPOLAR ELECTROSURGICAL FORCEPS, the entire contents of all of which are hereby incorporated by reference herein.
Thus, a need exists to develop an electrosurgical instrument which includes an electrode assembly which can seal vessels and tissue consistently and effectively and reduce the undesirable effects of thermal spread across tissue structures.
The present disclosure generally relates to an open and/or endoscopic electrosurgical instrument which includes a removable electrode assembly having electrodes which are electrically and thermally isolated from the remainder of the instrument by a uniquely designed insulating substrate and electrically conductive surface. It is envisioned that the geometric shape of the insulating substrate relative to the geometric shape of the sealing surface contributes to the overall reduction of collateral damage to adjacent tissue structures.
More particularly, the present disclosure relates to an electrode assembly for use with an electrosurgical instrument which includes opposing end effectors and a handle for effecting movement of the end effectors relative to one another. The assembly includes a housing having at least one portion which is removably engageable with at least one portion of the electrosurgical instrument (e.g., handle, end effector, pivot, shaft, etc.) and a pair of electrodes. Each electrode preferably includes an electrically conductive sealing surface and an insulating substrate and is dimensioned to be selectively engageable with the end effectors such that the electrodes reside in opposing relation relative to one another.
Preferably, the dimensions of the insulating substrate are different from the dimensions of the electrically conductive sealing surface to reduce thermal spread to adjacent tissue structures. For example, in one embodiment of the present disclosure, the cross section of the electrically conductive sealing surface is different from the cross section of the insulating substrate which effectively reduces the thermal spread to adjacent tissue.
In other embodiments, the insulating substrate is mounted to the electrically conductive sealing surface by stamping, by overmolding, by overmolding a stamped seal plate and/or by overmolding a metal injection molded seal plate. All of these manufacturing techniques produce an electrode having an electrically conductive surface which is substantially surrounded by an insulating substrate. These uniquely described embodiments described herein are contemplated to effectively reduce the thermal spread to adjacent tissue structures during and/or immediately following activation. The electrically conductive sealing surface may also include a pinch trim which facilitates secure engagement of the electrically conductive surface to the insulating substrate and also simplifies the overall manufacturing process.
In another embodiment, the electrically conductive sealing surface includes an outer peripheral edge which has a radius and the insulator meets the electrically conductive sealing surface along an adjoining edge which is generally tangential to the radius and/or meets along the radius. Preferably, at the interface, the electrically conductive surface is raised relative to the insulator.
The insulating substrate may be made from a plastic or plastic-based material having a Comparative Tracking Index of about 300 volts to about 600 volts. Preferably, the insulating substrate is substrate is made from a group of materials which include Nylons, Syndiotactic-polystryrene (SPS), Polybutylene Terephthalate (PBT), Polycarbonate (PC), Acrylonitrile Butadiene Styrene (ABS), Polyphthalamide (PPA), Polymide, Polyethylene Terephthalate (PET), Polyamide-imide (PAI), Acrylic (PMMA), Polystyrene (PS and HIPS), Polyether Sulfone (PES), Aliphatic Polyketone, Acetal (POM) Copolymer, Polyurethane (PU and TPU), Nylon with Polyphenylene-oxide dispersion and Acrylonitrile Styrene Acrylate. Alternatively, a non-plastic insulating material, e.g., ceramic, may be used in lieu of or in combination with one or more of the above-identified materials to facilitate the manufacturing process and possibly contribute to uniform and consistent sealing and/or the overall reduction of thermal spread to adjacent tissue structures.
In another embodiment of the present disclosure, the insulating substrate of each electrode includes at least one mechanical interface for engaging a complimentary mechanical interface disposed on the corresponding end effector of the instrument. Preferably, the mechanical interface of the substrate includes a detent and the mechanical interface of the corresponding end effector includes a complimentary socket for receiving the detent.
Other embodiments of the present disclosure include a housing having a bifurcated distal end which forms two resilient and flexible prongs which each carry an electrode designed to engage a corresponding end effector. In another embodiment, the end effectors are disposed at an angle (α) relative to the distal end of the shaft of the electrosurgical instrument. Preferably, the angle is about sixty degrees to about seventy degrees. The end effectors and, in turn, the electrodes, can also be dimensioned to include a taper along a width “W” (See
The present disclosure also relates to an electrode assembly for use with an electrosurgical instrument having a handle and at least one shaft for effecting movement of a pair of opposing end effectors relative to one another. The electrode assembly includes a housing which is removably engageable with the shaft and/or the handle and a pair of electrodes. Each electrode is removably engageable with a corresponding end effector and includes an electrically conductive sealing surface with a first geometric shape and an insulating substrate with a second geometric shape. Preferably, the second geometric shape of the insulating substrate is different from the first geometric shape of the sealing surface which effectively reduces thermal spread to adjacent tissue structures during activation of the instrument.
Preferably, the electrode assembly is removable, disposable and replaceable after the electrode assembly is used beyond its intended number of activation cycles. Alternatively, the electrode assembly and/or the electrodes may be integrally associated with the end effectors of the instrument and are not removable. In this instance, the electrosurgical instrument (open or endoscopic) may be designed for single use applications and the entire instrument is fully disposable after the surgery is completed.
It has been found that by altering the configuration of the electrode insulating material relative to the electrically conductive sealing surface, surgeons can more readily and easily produce a consistent, high quality seal and effectively reduce thermal spread across or to adjacent tissue. For the purposes herein the term “thermal spread” refers generally to the heat transfer (heat conduction, heat convection or electrical current dissipation) dissipating along the periphery of the electrically conductive or electrically active surfaces to adjacent tissue. This can also be termed “collateral damage” to adjacent tissue. It is envisioned that the configuration of the insulating material which surrounds the perimeter of the electrically conductive surface will effectively reduce current and thermal dissipation to adjacent tissue areas and generally restrict current travel to areas between the opposing electrodes. As mentioned above, this is different from dielectrically coating the outer surfaces of the instrument to prevent tissue “blanching” at points normal to the sealing site. These coatings are not designed or intended to reduce collateral tissue damage or thermal spread to adjacent tissue (tissue lying along the tissue sealing plane).
More particularly, it is contemplated that altering the geometrical dimensions of the insulator relative to the electrically conductive surface alters the electrical path thereby influencing the thermal spread/collateral damage to adjacent tissue structures. Preferably, the geometry of the insulating substrate also isolates the two electrically opposing poles (i.e., electrodes) from one another thereby reducing the possibility that tissue or tissue fluids can create an unintended bridge or path for current travel. In other words, the insulator and electrically conductive sealing surface are preferably dimensioned such that the current is concentrated at the intended sealing site between the opposing electrically conductive surfaces as explained in more detail below.
Referring now to
Preferably, shaft portions 12 and 14 are affixed to one another at a point proximate the end effectors 24 and 22 about a pivot 25 such that movement of one of the handles 16, 18 will impart relative movement of the end effectors 24 and 22 from an open position wherein the end effectors 22 and 24 are disposed in spaced relation relative to one another to a clamping or closed position wherein the end effectors 22 and 24 cooperate to grasp a tubular vessel 150 therebetween (see
As best seen in
In some cases, it may be preferable to manufacture mechanical interfaces 41 along another side of jaw member 44 to engage a complimentary mechanical interface of the disposable electrode assembly 21 in a different manner, e.g., from the side. Jaw member 44 also includes an aperture 67 disposed at least partially through inner face 45 of end effector 24 which is dimensioned to receive a complimentary guide pin 124 disposed on electrode 120 of the disposable electrode assembly 21.
End effector 22 includes a second or lower jaw member 42 which has an inner facing surface 47 which opposes inner facing surface 45. Preferably, jaw members 42 and 44 are dimensioned generally symmetrically, however, in some cases it may be preferable to manufacture the two jaw members 42 and 44 asymmetrically depending upon a particular purpose. In much the same fashion as described above with respect to jaw member 44, jaw member 42 also includes a plurality of mechanical interfaces or sockets 43 disposed thereon which are dimensioned to releasable engage a complimentary portion 112 disposed on electrode 110 of the disposable electrode assembly 21 as described below. Likewise, jaw member 42 also includes an aperture 65 disposed at least partially through inner face 47 which is dimensioned to receive a complimentary guide pin 127 (see
Preferably, the end effectors 22, 24 (and, in turn, the jaw members 42 and 44 and the corresponding electrodes 110 and 120) are disposed at an angle alpha (α) relative to the distal ends 19, 17 (See
Preferably, shaft members 12 and 14 of the mechanical forceps 20 are designed to transmit a particular desired force to the opposing inner facing surfaces of the of the jaw members 22 and 24, respectively, when clamped. In particular, since the shaft members 12 and 14 effectively act together in a spring-like manner (i.e., bending that behaves like a spring), the length, width, height and deflection of the shaft members 12 and 14 will directly effect the overall transmitted force imposed on opposing jaw members 42 and 44. Preferably, jaw members 22 and 24 are more rigid than the shaft members 12 and 14 and the strain energy stored in the shaft members 12 and 14 provides a constant closure force between the jaw members 42 and 44.
Each shaft member 12 and 14 also includes a ratchet portion 32 and 34, respectively. Preferably, each ratchet, e.g., 32, extends from the proximal end 13 of its respective shaft member 12 towards the other ratchet 34 in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 32 and 34 abut one another when the end effectors 22 and 24 are moved from the open position to the closed position. Each ratchet 32 and 34 includes a plurality of flanges 31 and 33, respectively, which project from the inner facing surface of each ratchet 32 and 34 such that the ratchets 32 and 34 can interlock in at least one position. In the embodiment shown in
In some cases it may be preferable to include other mechanisms to control and/or limit the movement of the jaw members 42 and 44 relative to one another. For example, a ratchet and pawl system could be utilized to segment the movement of the two handles into discrete units which will, in turn, impart discrete movement to the jaw members 42 and 44 relative to one another.
Preferably, at least one of the shaft members, e.g., 14, includes a tang 99 which facilitates manipulation of the forceps 20 during surgical conditions as well as facilitates attachment of electrode assembly 21 on mechanical forceps 20 as will be described in greater detail below.
As best seen in
In the embodiment shown in
Electrode assembly 21 also includes a cover plate 80 which is also designed to encompass and/or engage mechanical forceps 20 in a similar manner as described with respect to the housing 71. More particularly, cover plate 80 includes a proximal end 85, a distal end 86 and an elongated shaft plate 88 disposed therebetween. A handle plate 82 is disposed near the proximal end 85 and is preferably dimensioned to releasable engage and/or encompass handle 18 of mechanical forceps 20. Likewise, shaft plate 88 is dimensioned to encompass and/or releasable engage shaft 14 and a pivot plate 94 disposed near distal end 86 is designed to encompass pivot 25 and distal end 19 of mechanical forceps 20. Preferably, handle 18, shaft 14, pivot 25 and distal end 19 are all dimensioned to fit into corresponding channels (not shown) located in cover plate 80 in a similar manner as described above with respect to the housing 71.
As best seen with respect to
As best seen with respect to
A pair of wires 60 and 62 are connected to the electrodes 120 and 110, respectively, as best seen in
This arrangement of wires 60 and 62 is designed to be convenient to the user so that there is little interference with the manipulation of bipolar forceps 10. As mentioned above, the proximal end of the wire bundle 28 is connected to a terminal connector 30, however, in some cases it may be preferable to extend wires 60 and 62 to an electrosurgical generator (not shown).
As best seen in
Moreover, it is contemplated that the overmolding technique provides more insulation along the side of the electrically conductive surface which also reduces thermal spread due to less electrode to tissue contact. It is envisioned that by dimensioning substrate, e.g., 121 and electrode 120 in this fashion (i.e., with reduced conductive surface area), the current is restricted (i.e., concentrated) to the intended seal area rather than current traveling to tissue outside the seal area which may come into contact with an outer edge of the electrode 120 (see
Preferably, substrate 121 includes a plurality of bifurcated detents 122 which are shaped to compress during insertion into sockets 41 and expand and releasably engage sockets 41 after insertion. It is envisioned that snap-fit engagement of the electrode 120 and the jaw member 44 will accommodate a broader range of manufacturing tolerances. Substrate 121 also includes an alignment or guide pin 124 which is dimensioned to engage aperture 67 of jaw member 44. A slide-fit technique is also contemplated such as the slide-fit technique describe with respect to commonly-assigned, co-pending U.S. Application Serial No. 203-2348CIP2PCT, by Tetzlaff et al., the entire contents of which is hereby incorporated by reference herein.
Conductive seal surface 126 includes a wire crimp 145 designed to engage the distal end 90 of prong 105 of electrode assembly 21 and electrically engage a corresponding wire connector affixed to wire 60 located within electrode assembly 21. Seal surface 126 also includes an opposing face 125 which is designed to conduct an electrosurgical current to a tubular vessel or tissue 150 when it is held thereagainst.
Electrode 110 includes similar elements and materials for insulating and conducting electrosurgical current to tissue 150. More particularly, electrode 110 includes an electrically conductive seal surface 116 and an electrically insulative substrate 111 which are attached to one another by one of the above methods of assembly. Substrate 111 includes a plurality of detents 112 which are dimensioned to engage a corresponding plurality of sockets 43 and aperture 65 located in jaw member 42. Conductive seal surface 116 includes an extension 155 having a wire crimp 119 which engages the distal end 91 of prong 103 and electrically engages a corresponding wire connector affixed to wire 62 located in housing 71. Seal surface 116 also includes an opposing face 115 which conducts an electrosurgical current to a tubular vessel or tissue 150 when it is held thereagainst. It is contemplated that electrodes 110 and 120 can be formed as one piece and include similar components and/or dimensions for insulating and conducting electrical energy in a manner to effectively reduce thermal spread.
As mentioned above, it is envisioned that thermal spread may be reduced by altering the physical dimensions of the insulators and the electrodes, e.g., by altering the geometry/shape of the insulator. It is envisioned that manufacturing the electrodes 110 and 120 in this fashion will reduce thermal spread and stray currents that may travel to the electrosurgical instrument. Stray current may be further restricted by casting the forceps and/or manufacturing the forceps using a non-conductive material and/or coating the edges of the electrodes 110 and 120 with an insulative coating.
For example and as best shown in the comparison of
It is envisioned that manufacturing the electrodes 110 and 120 in this fashion will reduce thermal spread to adjacent tissue structures and, possibly, reduce the electric field potential which will, in turn, reduce stray currents traveling through the instrument body. The varying geometry of the insulator 111 compared to the electrically conductive surface 116 also isolates the two opposing poles during activation thereby reducing the possibility that tissue or tissue fluids will bridge a path for stray current travel to surrounding tissue. As best seen in
For example and by way of illustration, FIGS. 12 and 13A-13C show other electrode 110, 120 configurations which are known in the prior art.
By providing insulators 111, 121 which are flush with the electrically conductive sealing surfaces 116, 126 as shown in
As can be appreciated, configuring the electrically conductive sealing surfaces 116, 126 and insulators 111, 121 with this unique profile, additionally provides a more uniform, consistent and more easily controllable electrical field distribution 135 across the adjacent tissue structures. Turning back to
Preferably, the radius “r” and “r′” of the outer peripheries 145, 147 of the electrically conductive sealing surfaces are about the same and are about ten thousandths of an inch to about thirty thousandths of an inch. However, it is contemplated that each radii “r” and “r′” may be sized differently depending upon a particular purpose or to achieve a desired result.
In some cases it may be preferable to utilize different materials which may facilitate the manufacturing process and possibly supplement overall thermal spread reduction. For example, a variety of materials are contemplated which include nylons and syndiotactic polystryrenes such as QUESTRA® manufactured by DOW Chemical. Other materials may also be utilized either alone or in combination, e.g., Polybutylene Terephthalate (PBT), Polycarbonate (PC), Acrylonitrile Butadiene Styrene (ABS), Polyphthalamide (PPA), Polymide, Polyethylene Terephthalate (PET), Polyamide-imide (PAI), Acrylic (PMMA), Polystyrene (PS and HIPS), Polyether Sulfone (PES), Aliphatic Polyketone, Acetal (POM) Copolymer, Polyurethane (PU and TPU), Nylon with Polyphenylene-oxide dispersion and Acrylonitrile Styrene Acrylate.
Utilizing one or more of these materials may produce other desirable effects, e.g., reduce the incidence of flashover. These effects are discussed in detail in concurrently-filed, co-pending, commonly assigned Application Serial No. PCT/US01/11411 entitled “ELECTROSURGICAL INSTRUMENT WHICH IS DESIGNED TO REDUCE THE INCIDENCE OF FLASHOVER” by Johnson et al.
Alternatively, certain coatings can be utilized either alone or in combination with one of the above manufacturing techniques to supplement overall thermal spread reduction.
After the bipolar forceps 10 is used or if the electrode assembly 21 is damaged, the electrode assembly 21 can be easily removed and/or replaced and a new electrode assembly 21 may be attached to the forceps in a similar manner as described above. It is envisioned that by making the electrode assembly 21 disposable, the electrode assembly 21 is less likely to become damaged since it is only intended for a single operation and, therefore, does not require cleaning or sterilization. As a result, the functionality and consistency of the sealing components, e.g., the electrically conductive surface 126, 116 and insulating surface 121, 111 will assure a uniform and quality seal and provide a tolerable and reliable reduction of thermal spread across tissue. Alternatively, the entire electrosurgical instrument may be disposable which, again, will assure a uniform and quality seal with minimal thermal spread.
After the jaw members are closed about the tissue 150, the user then applies electrosurgical energy via connection 128 to the tissue 150. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue 150, the user can either cauterize, coagulate/desiccate seal and/or simply reduce or slow bleeding with minimal collateral or thermal damage to surrounding tissue.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, although it is preferable that electrodes 110 and 120 meet in parallel opposition, and, therefore, meet on the same plane, in some cases it may be preferable to slightly bias the electrodes 110 and 120 to meet each other at a distal end such that additional closure force on the handles 16 and 18 is required to deflect the electrodes in the same plane. It is envisioned that this could improve seal quality and/or consistency.
Although it is preferable that the electrode assembly 21 include housing 71 and cover plate 80 to engage mechanical forceps 20 therebetween, in some cases it may be preferable to manufacture the electrode assembly 21 such that only one piece, e.g., housing 71 is required to engage mechanical forceps 20.
It is envisioned that the outer surface of the end effectors may include a nickel-based material, coating, stamping, metal injection molding which is designed to reduce adhesion between the end effectors (or components thereof) with the surrounding tissue during or after sealing.
While only one embodiment of the disclosure has been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of a preferred embodiment. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of U.S. application Ser. No. 10/474,168 and now issued as U.S. Pat. No. 7,435,249 filed on Oct. 3, 2003, which is a national stage entry of PCT/US01/11412 filed on Apr. 6, 2001, which is a continuation-in-part of U.S. application Ser. No. 09/387,883 filed on Sep. 1, 1999, now abandoned, which is a continuation of U.S. application Ser. No. 08/968,496 and now issued as U.S. Pat. No. 6,050,996 filed on Nov. 12, 1997. The contents of each of U.S. application Ser. Nos. 10/474,168, 09/387,883, 08/968,496 are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
1822330 | Ainslie | Sep 1931 | A |
1852542 | Sovatkin | Apr 1932 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2054149 | Wappler | Sep 1936 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Apr 1941 | A |
2279753 | Knopp | Apr 1942 | A |
2327353 | Karle | Aug 1943 | A |
2632661 | Cristofv | Aug 1948 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3073311 | Tibbs et al. | Jan 1963 | A |
3372288 | Wigington | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3648001 | Anderson et al. | Mar 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3678229 | Osika | Jul 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
3779918 | Ikeda et al. | Dec 1973 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4016881 | Rioux et al. | Apr 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4076028 | Simmons | Feb 1978 | A |
4080820 | Allen | Mar 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4187420 | Piber | Feb 1980 | A |
4233734 | Bies | Nov 1980 | A |
4236470 | Stenson | Dec 1980 | A |
4300564 | Furihata | Nov 1981 | A |
4311145 | Esty et al. | Jan 1982 | A |
D263020 | Rau, III | Feb 1982 | S |
4370980 | Lottick | Feb 1983 | A |
4375218 | DiGeronimo | Mar 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4418692 | Guay | Dec 1983 | A |
4443935 | Zamba et al. | Apr 1984 | A |
4452246 | Bader et al. | Jun 1984 | A |
4470786 | Sano et al. | Sep 1984 | A |
4492231 | Auth | Jan 1985 | A |
4493320 | Treat | Jan 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4506669 | Blake, III | Mar 1985 | A |
4509518 | McGarry et al. | Apr 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4655215 | Pike | Apr 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4754892 | Retief | Jul 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4829313 | Taggart | May 1989 | A |
4846171 | Kauphusman et al. | Jul 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4947009 | Osika et al. | Aug 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026371 | Rydell et al. | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5100430 | Avellanet et al. | Mar 1992 | A |
5108392 | Spingler | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5116332 | Lottick | May 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5151978 | Bronikowski et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5265608 | Lee et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5300082 | Sharpe et al. | Apr 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308353 | Beurrier | May 1994 | A |
5308357 | Lichtman | May 1994 | A |
5313027 | Inoue et al. | May 1994 | A |
5314445 | Degwitz et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5326806 | Yokoshima et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376089 | Smith | Dec 1994 | A |
5383875 | Bays et al. | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5409763 | Serizawa et al. | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425690 | Chang | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431672 | Cote et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5449480 | Kuriya et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5461765 | Linden et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5512721 | Young et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5528833 | Sakuma | Jun 1996 | A |
5529067 | Larsen et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569241 | Edwardds | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5582611 | Tsukagoshi et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591181 | Stone et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5638003 | Hall | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5655650 | Naitou | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5690653 | Richardson et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5693920 | Maeda | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766196 | Griffiths | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779646 | Koblish et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5792137 | Carr et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5824978 | Karasik et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5827548 | Lavallee et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5859527 | Cook | Jan 1999 | A |
5860976 | Billings et al. | Jan 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5882567 | Cavallaro et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921916 | Aeikens et al. | Jul 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5944718 | Dafforn et al. | Aug 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5954733 | Yoon | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5957937 | Yoon | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5964758 | Dresden | Oct 1999 | A |
5976132 | Morris | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5993467 | Yoon | Nov 1999 | A |
5997565 | Inoue | Dec 1999 | A |
6004332 | Yoon et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka et al. | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6021693 | Feng-Sing | Feb 2000 | A |
6024741 | Williamson et al. | Feb 2000 | A |
6024743 | Edwards | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059782 | Novak et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6077287 | Taylor et al. | Jun 2000 | A |
6080180 | Yoon et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6086601 | Yoon | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6106542 | Toybin et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6126665 | Yoon | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6143005 | Yoon et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6178628 | Clemens et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6190400 | Van De Moer et al. | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6217615 | Sioshansi et al. | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6224614 | Yoon | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6248944 | Ito | Jun 2001 | B1 |
6261307 | Yoon et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6298550 | Kirwan | Oct 2001 | B1 |
6302424 | Gisinger et al. | Oct 2001 | B1 |
6319262 | Bates et al. | Nov 2001 | B1 |
6319451 | Brune | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358259 | Swain et al. | Mar 2002 | B1 |
6358268 | Hunt et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514215 | Ouchi | Feb 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517539 | Smith et al. | Feb 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6545239 | Spedale et al. | Apr 2003 | B2 |
6558385 | McClurken et al. | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6569105 | Kortenbach et al. | May 2003 | B1 |
6582450 | Ouchi | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6605790 | Yoshida | Aug 2003 | B2 |
6616658 | Ineson | Sep 2003 | B2 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620184 | De Laforcade et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6638287 | Danitz et al. | Oct 2003 | B2 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660072 | Chatterjee | Dec 2003 | B2 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6673092 | Bacher | Jan 2004 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6676676 | Danitz et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6693246 | Rudolph et al. | Feb 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6726694 | Blatter et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756553 | Yamaguchi et al. | Jun 2004 | B1 |
6757977 | Dambal et al. | Jul 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773432 | Clayman et al. | Aug 2004 | B1 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800825 | Sasaki et al. | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6857357 | Fujii | Feb 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6914201 | Van Vooren et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6934134 | Mori et al. | Aug 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
6942662 | Goble et al. | Sep 2005 | B2 |
6943311 | Miyako | Sep 2005 | B2 |
6953430 | Kodooka | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979786 | Aukland et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6987244 | Bauer | Jan 2006 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7001381 | Harano et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090689 | Nagase et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
D533942 | Kerr et al. | Dec 2006 | S |
7145757 | Shea et al. | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156842 | Sartor et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7207990 | Lands et al. | Apr 2007 | B2 |
D541938 | Kerr et al | May 2007 | S |
7223264 | Daniel et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7244257 | Podjahsky et al. | Jul 2007 | B2 |
7246734 | Shelto, IV | Jul 2007 | B2 |
7248944 | Green | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7314471 | Holman | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7338526 | Steinberg | Mar 2008 | B2 |
7342754 | Fitzgerald et al. | Mar 2008 | B2 |
7344268 | Jhigamian | Mar 2008 | B2 |
D567943 | Moses et al. | Apr 2008 | S |
7367976 | Lawes et al. | May 2008 | B2 |
7377920 | Buysse et al. | May 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7384421 | Hushka | Jun 2008 | B2 |
7396336 | Orszulak et al. | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7435249 | Buysse et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7458972 | Keppel | Dec 2008 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7500975 | Cunningham et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513898 | Johnson et al. | Apr 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7549995 | Schultz | Jun 2009 | B2 |
7553312 | Tetzlaff et al. | Jun 2009 | B2 |
20020013583 | Camran et al. | Jan 2002 | A1 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20020099372 | Schulze et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030032956 | Lands et al. | Feb 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20030236518 | Marchitto et al. | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040030332 | Knowlton et al. | Feb 2004 | A1 |
20040049185 | Latterell et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040073256 | Marchitto et al. | Apr 2004 | A1 |
20040078035 | Kanehira et al. | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040116924 | Dycus et al. | Jun 2004 | A1 |
20040116979 | Truckai et al. | Jun 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040148035 | Barrett et al. | Jul 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040193153 | Sarter et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040210282 | Flock et al. | Oct 2004 | A1 |
20040224590 | Rawa et al. | Nov 2004 | A1 |
20040230189 | Keppel | Nov 2004 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260281 | Baxter, III et al. | Dec 2004 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050004569 | Witt et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050059934 | Wenchell et al. | Mar 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050101952 | Lands et al. | May 2005 | A1 |
20050113818 | Sartor et al. | May 2005 | A1 |
20050113819 | Wham et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050149151 | Orszulak et al. | Jul 2005 | A1 |
20050154387 | Moses et al. | Jul 2005 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060074417 | Cunningham et al. | Apr 2006 | A1 |
20060079888 | Mulier et al. | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060079891 | Arts et al. | Apr 2006 | A1 |
20060079933 | Hushka et al. | Apr 2006 | A1 |
20060084973 | Hushka | Apr 2006 | A1 |
20060089670 | Hushka | Apr 2006 | A1 |
20060116675 | McClurken et al. | Jun 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060167450 | Johnson et al. | Jul 2006 | A1 |
20060167452 | Moses et al. | Jul 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060189981 | Dycus et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060229666 | Suzuki et al. | Oct 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060259036 | Tetzlaff et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060264931 | Chapman et al. | Nov 2006 | A1 |
20060283093 | Petrovic et al. | Dec 2006 | A1 |
20060287641 | Perlin | Dec 2006 | A1 |
20070016182 | Lipson et al. | Jan 2007 | A1 |
20070016187 | Weinberg et al. | Jan 2007 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070060919 | Isaacson et al. | Mar 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070074807 | Guerra | Apr 2007 | A1 |
20070078456 | Dumbauld et al. | Apr 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070078459 | Johnson et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20070118111 | Weinberg | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070156139 | Schechter et al. | Jul 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070198011 | Sugita | Aug 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
20070255279 | Buysse et al. | Nov 2007 | A1 |
20070260235 | Podhajsky | Nov 2007 | A1 |
20070260238 | Guerra | Nov 2007 | A1 |
20070260241 | Dalla Betta et al. | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080009860 | Odom | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080021450 | Couture | Jan 2008 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080039835 | Johnson et al. | Feb 2008 | A1 |
20080039836 | Odom et al. | Feb 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20080091189 | Carlton | Apr 2008 | A1 |
20080114356 | Johnson et al. | May 2008 | A1 |
20080167651 | Tetzlaff et al. | Jul 2008 | A1 |
20080195093 | Couture et al. | Aug 2008 | A1 |
20080215051 | Buysse et al. | Sep 2008 | A1 |
20080243120 | Lawes et al. | Oct 2008 | A1 |
20080249527 | Couture | Oct 2008 | A1 |
20080312653 | Arts et al. | Dec 2008 | A1 |
20080319442 | Unger et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090018535 | Schechter et al. | Jan 2009 | A1 |
20090024126 | Artale et al. | Jan 2009 | A1 |
20090043304 | Tetzlaff et al. | Feb 2009 | A1 |
20090048596 | Shields et al. | Feb 2009 | A1 |
20090062794 | Buysse et al. | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090082767 | Unger et al. | Mar 2009 | A1 |
20090082769 | Unger et al. | Mar 2009 | A1 |
20090088738 | Guerra et al. | Apr 2009 | A1 |
20090088739 | Hushka et al. | Apr 2009 | A1 |
20090088740 | Guerra et al. | Apr 2009 | A1 |
20090088741 | Hushka et al. | Apr 2009 | A1 |
20090088744 | Townsend | Apr 2009 | A1 |
20090088745 | Hushka et al. | Apr 2009 | A1 |
20090088746 | Hushka et al. | Apr 2009 | A1 |
20090088747 | Hushka et al. | Apr 2009 | A1 |
20090088748 | Guerra et al. | Apr 2009 | A1 |
20090088749 | Hushka et al. | Apr 2009 | A1 |
20090088750 | Hushka et al. | Apr 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090149853 | Shields et al. | Jun 2009 | A1 |
20090149854 | Cunningham et al. | Jun 2009 | A1 |
20090171350 | Dycus et al. | Jul 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090187188 | Guerra et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3612646 | Apr 1987 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19738457 | Jan 2009 | DE |
0364216 | Apr 1990 | EP |
0467501 | Jan 1992 | EP |
0518230 | Dec 1992 | EP |
0541930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
0584787 | Mar 1994 | EP |
0589453 | Mar 1994 | EP |
0589555 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
0517243 | Sep 1997 | EP |
0853922 | Jul 1998 | EP |
0875209 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
1177771 | Feb 2002 | EP |
1301135 | Apr 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
0774232 | Jan 2005 | EP |
1527747 | May 2005 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1609430 | Dec 2005 | EP |
1632192 | Mar 2006 | EP |
1642543 | Apr 2006 | EP |
1645238 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1649821 | Apr 2006 | EP |
1707143 | Oct 2006 | EP |
1769765 | Apr 2007 | EP |
1769766 | Apr 2007 | EP |
1929970 | Jun 2008 | EP |
1683496 | Dec 2008 | EP |
623316 | May 1949 | GB |
1490585 | Nov 1977 | GB |
2214430 | Jun 1989 | GB |
2213416 | Aug 1989 | GB |
61-501068 | Sep 1984 | JP |
65-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000-342599 | Dec 2000 | JP |
2000-350732 | Dec 2000 | JP |
2001-008944 | Jan 2001 | JP |
2001-029356 | Feb 2001 | JP |
2001-128990 | May 2001 | JP |
401367 | Nov 1974 | SU |
WO 8900757 | Jan 1989 | WO |
WO 9204873 | Apr 1992 | WO |
WO 9206642 | Apr 1992 | WO |
WO 9321845 | Nov 1993 | WO |
WO 9408524 | Apr 1994 | WO |
WO 9420025 | Sep 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9507662 | Mar 1995 | WO |
WO 9515124 | Jun 1995 | WO |
WO 9605776 | Feb 1996 | WO |
WO 9611635 | Apr 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9613218 | Sep 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO 0036986 | Jun 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0047124 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0207627 | Jan 2002 | WO |
WO 02067798 | Sep 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO 02080784 | Oct 2002 | WO |
WO 02080785 | Oct 2002 | WO |
WO 02080786 | Oct 2002 | WO |
WO 02080793 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 02081170 | Oct 2002 | WO |
WO 03061500 | Jul 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03101311 | Dec 2003 | WO |
WO 2004032776 | Apr 2004 | WO |
WO 2004032777 | Apr 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004073488 | Sep 2004 | WO |
WO 2004073490 | Sep 2004 | WO |
WO 2004073753 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 2004103156 | Dec 2004 | WO |
WO 2005004734 | Jan 2005 | WO |
WO 2005004735 | Jan 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008045350 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090062794 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10474168 | US | |
Child | 12211261 | US | |
Parent | 08968496 | Nov 1997 | US |
Child | 09387883 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09387883 | Sep 1999 | US |
Child | 10474168 | US |