The '858 application describes an electrosurgical instrument well known and widely used in the medical field. It offers the capability of precision cutting and coagulation with electrosurgical currents preferably in the megacycle range using an RF probe or handpiece with, for example, needle, ball, or loop electrodes in a monopolar operating mode or with a forceps or other electrode in a bipolar operating mode. Such an instrument now sold by Elliquence, LLP of Oceanside, New York, as illustrated in the '858 application (also published as EP1707147A1) provides on its front panel a female connector (also called receptacle) for receiving the male plug of a cable-connected monopolar handpiece, a connector for receiving a ground or neutral plate, as well as a female connector for receiving the plug of a cable-connected bipolar electrode. Other forms of such an instrument are described in U.S. Pat. Nos. 5,954,686, 6,652,514, and 7,094,231, all of whose contents are incorporated herein by reference. The instruments described in those patents and typical of others in the art are characterized by different modes and sub-modes of operation. For example, the instruments have five possible operating modes, a cutting mode, separable into CUT and CUT/COAG (sometimes called blend) sub-modes, and a coagulation mode, separable into HEMO, FULGURATE, and BIPOLAR sub-modes. In the instruments described in these patents and applications, different frequencies serve as the carriers for the cutting and coagulation actions (thought this is not essential to the present invention), and the carriers are modulated by different waveforms to form the variety of electrosurgical currents used in the different surgical procedures. The instrument described in the '858 application provides the further improvement of improved control software to boost the operational applications to include a more intense coagulating mode known as BIPOLAR TURBO. To operate the instrument a triple footswitch control is provided for controlling monopolar and two bipolar applications, and/or a three-button fingerswitch handpiece is also provided for separately controlling three monopolar modes, respectively—these two control accessories can thus control and activate any desired selected modes with the instrument's preset output power capabilities. As described in detail in the referenced patents and applications, operating a footswitch or a fingerswitch (by the user-surgeon), turns on an RF generator to supply the carrier frequencies and then modulates the carrier with the selected waveform, and supplies the thus produced RF electrosurgical currents to either the selected monopolar output connector or the bipolar output connector.
In a typical surgical setting using such electrosurgical instruments, a surgeon may connect a monopolar handpiece with a cutting electrode to the monopolar connector on the instrument front panel, and then connect a second handpiece with a HEMO electrode to the bipolar connector. During the surgical procedure, the surgeon could first use the monopolar handpiece connected to the monopolar output connector while the monopolar instrument setting is in its cutting mode to perform a desired cutting procedure and then change to the second handpiece connected to the bipolar output connector to coagulate any bleeding blood vessels with the instrument setting in its coagulation mode. With the instrument settings set as indicated, the appropriate footswitch can be used to activate the instrument being used by directing as explained above the selected modulated carrier to the selected output connector. The reader can acquire any additional information desired by referencing the referenced patents and applications.
The important point is that at least two sets of cables connected between the instrument and the several handpieces are required for the surgeon carry out the steps of the procedure. In addition, often a source of suction is desirable at the surgical site to remove vapors and undesired fluids interfering with the surgeon's view of the surgical site. So, an additional cable or duct will be present requiring handling by an associate during the procedure.
A principal object of the invention is an electrosurgical instrument of the type described with which a single handpiece can be connected that can be used for cutting and for coagulation without touching the instrument after the front panel settings have been made.
A major advantage results in that the surgeon does not have to switch handpieces during a typical procedure and only a single set of cables is present between the instrument and the handpiece(s).
This object is achieved in accordance with one aspect of the invention by taking advantage of a novel handpiece design originally designed for coagulation procedures and which relies on the active end of the electrode being capable of extension and retraction from within a tubular body under control of a surgeon manipulating a squeezable handle attached to the handpiece.
U.S. Pat. No. 6,231,571 (hereinafter the '571 patent) describes such a handpiece provided with a spring-biased handle that when squeezed and relaxed extends and retracts selectively a bipolar electrode from within a tubular member. The active end of the electrode is in the form of spaced half-balls between which electrosurgical currents can be generated when bipolar RF power is applied to the handpiece. The handpiece has also been applied to extend tips of a bipolar electrode typically used for hemostasis similar to forceps tips whose ends can be closed over a bleeder and the bleeder sealed off by applying hemo electrosurgical currents to the electrode.
A feature of the invention is to connect essentially two cables to an extendable handpiece of the type described, a first cable terminating in a male connector configured to mate to the bipolar output connector of the electrosurgical unit, and a second cable terminating in a male connector configured to mate with the monopolar output connector of the electrosurgical unit. The first cable is wired to connect the active terminals of the bipolar output connector to each of the active electrode tips. The second cable is wired to connect the active terminal of the monopolar output connector to one of the active electrode tips. As a result, when the bipolar generator is activated to supply bipolar currents to the bipolar output connector, bipolar electrosurgical currents are generated between the active electrode tips, and the surgeon can then coagulate blood vessels or ablate or modulate tissue as needed. Yet, when the monopolar generator is activated to supply monopolar currents to the monopolar output connector, monopolar electrosurgical currents are generated at least at one of the active electrode tips, and the surgeon can then perform cutting operations with the same handpiece as needed using the edge of the active electrode tip. By allowing the electrode tips to come together, by the surgeon relaxing his or her grip on the handle, then the second electrode tip also becomes active due to electrical contact with the first tip and the joint edges can be used to perform cutting or cut/coag operations with monopolar currents.
Another feature of the invention is to provide a channel in the handpiece tubular member and connect a suction fitting to the handpiece so that suction can be provided at the surgical site. This then omits the need for separate suction apparatus and the additional hoses. Thus, the handpiece combines monopolar and bipolar action together with suction to remove noxious odors.
Still another feature is to combine the fingerswitch feature together with the sliding action of the '571 patent into a pencil shaped handpiece without the handles. In this aspect of the invention, the fingerswitches would be connected to select monopolar or bipolar activation, as had been implemented in the referenced applications, and the slide would be connected to the electrodes so as to extend and retract the electrodes as described in the '838 application to select cutting or coagulation.
All of the features of the electrosurgical unit described in the '858 application can be employed with the present invention, including two control accessories (footswitch and fingerswitches) to control and activate any desired selected modes with the instrument's preset output power capabilities, all output parameters can be adjusted prior to the surgical procedure, and the electrosurgical instrument can be designed to operate with manually-chosen operating conditions, and also incorporates one or more sets of stored or preset operating modes and conditions that allows the surgeon to select a particular set customized for the particular procedure to be carried out.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be had to the accompanying drawings and descriptive matter in which there are illustrated and described the preferred embodiments of the invention, like reference numerals or letters signifying the same or similar components.
In the drawings:
In the system in accordance with the invention, in place of separate monopolar and bipolar handpieces, each separately plugged into its respective output connector 16, 18, a single handpiece 30 is provided with one or two cables terminated in male connectors for mating with both of the output connectors. This is illustrated in
Which output connector is activated is determined by which of the triple footswitches is activated. Similar action occurs when fingerswitches are provided on the handpiece, one of which when activated causes the unit to supply desired electrosurgical currents to one or the other of the output connectors. As shown in
The handpiece 30 illustrated in
In operation, when the bipolar output connector 18 is energized, then RF bipolar currents are supplied from the bipolar output connector 18 by way of the plug 36 and handpiece cable 60 to the separate electrode tips 52, 54 in the usual way, and the tips, manipulated by the user squeezing the handle 51, can be used to seal off bleeders. When the monopolar output connector 16 is energized, then RF electrosurgical currents are supplied via the plug 34 to one of the internal wires 60 of the handpiece connected to the electrode 52, and that energized electrode 52 can be used to perform a cutting action with monopolar currents. Preferably, when the handle 51 is manipulated to allow the electrode tips 52, 54 to touch, without tissue between them, then the active tip 52 energizes the other tip 54 and both tips are now at the same active potential and together can be used to supply electrosurgical cutting action.
Different shapes of tips are possible with different kinds of similarly functioning handpieces. For example, in
Thus, with the tips 80 fully extended with its ends pressed up against one another, the application of monopolar electrosurgical currents will allow the surgeon to perform precise cutting operations with the adjacent tips, and when the handle is slowly released, the tips 80 separate and then can be used to embrace a bleeder and seal off that bleeder when bipolar electrosurgical currents are applied to the same handpiece 88. This tip arrangement, shown enlarged in
While it is preferred that a handpiece of the type described in
The invention is not limited to a 3-position footswitch. For example, a 5-position footswitch would be quite useful, including separate monopolar cut, blend, and hemo positions, as well as separate bipolar hemo and turbo positions. All are easily implemented by software responding to signals from the footswitches or if desired fingerswitches.
It is also noted that a suction hose 74 is connected to the handpiece in
Many applications can make use of the system of the invention. Particularly useful medical procedures would involve brain surgery and what is now called keyhole surgery, with or without endoscopic assistance and viewing, and spinal surgery, though the system of the invention is also useful wherever electrosurgery procedures can be used.
The RF power generating circuitry may be of the well known tube-type described in U.S. Pat. No. 3,730,188, whose contents are herein incorporated by reference, which is capable of generating a fully-rectified, filtered RF current for cutting, a full-wave rectified current for combining cutting and coagulation, and a half-wave rectified current for coagulation. Alternatively, the RF power generating circuitry can be of the well-known solid-state type capable of generating the same kinds of waveforms. Those skilled in the art will know how to produce the turbo mode modulation from the description given. The RF circuitry, as such, is not part of the present invention, as such circuits are well-known in the prior art. In this particular example, the RF circuitry provides two different frequencies of operation, a first high frequency in the range of 3.8-4.0 MHz, 4.0 being preferred, and a second high frequency in the range of 1.7-2.0 MHz, which is easily obtained by providing a known RF generator that provides outputs at double these first and second higher frequencies and providing a simple known divide-by-two circuit for obtaining dual outputs at the first or second frequencies, respectively. Both outputs can be separately amplified and processed and made available at the console's output connectors depending on the switches activated. Aspects of the present invention are not limited to the dual-frequency output operation.
After the modulated carrier has been generated, it is processed through a standard driver, a transformer, and a power amplifier controlled by a bias signal and whose input can be monitored for safety's sake by a power tester circuit under control of a μ-controller. The output connectors are electrically isolated as by isolation transformers as described in the referenced applications/patents.
It will be understood that the above examples are only preferred examples and other ways of storing and accessing information representing operating conditions of the system unit or of activating desired known functions of such systems can be employed.
While the invention has been described in connection with preferred embodiments, it will be understood that modifications thereof within the principles outlined above will be evident to those skilled in the art and thus the invention is not limited to the preferred embodiments but is intended to encompass such modifications.
Commonly-owned U.S. application Ser. No. 11/090,858, filed Mar. 28, 2005 (hereinafter the '858 application). Commonly-owned U.S. application Ser. No. 12/228,838, filed Aug. 18, 2008 (hereinafter the '838 application). The invention is directed to an electrosurgical instrument, and in particular to a novel electrosurgical instrument comprising a handpiece connected to an electrosurgical unit such that the same handpiece with the same electrode can perform several electrosurgical functions normally requiring several handpieces or at least several different electrodes.