Technical Field
The present disclosure relates to an electrosurgical instrument and, more particularly, to an electrosurgical instrument configured to dissect, seal or otherwise treat tissue.
Background of Related Art
Electrosurgical instruments, e.g., electrosurgical forceps (open or closed type), are well known in the medical arts and typically include an end effector assembly including jaw members configured to manipulate tissue (e.g., grasp and seal tissue). Typically, the electrosurgical forceps utilizes both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, desiccate, and/or fulgurate tissue.
In certain instances, it may prove advantageous to cut or dissect tissue that has been electrosurgically treated, e.g., sealed. In such instances, a cutting element, e.g., a knife blade, may be configured to translate through a knife channel that is disposed on one or both of the jaw members. Typically, the knife blade is manufactured from surgical steel that is generally very expensive. Moreover, the surgical steel typically needs to be machined into thin sheets and, subsequently, cut or formed into desired shapes and/or dimensions. As can be appreciated, incorporating the knife blade into the electrosurgical instrument may increase manufacturing costs of the electrosurgical instrument.
In addition to electrosurgical instruments, ultrasonic instruments may be utilized to treat tissue. Conventional ultrasonic instruments, e.g., ultrasonic dissectors, typically, include a housing, a handle assembly, a shaft having a transducer and/or a waveguide, and an end effector assembly attached to a distal end of the shaft. The end effector includes jaw members configured to manipulate tissue (e.g., grasp and seal tissue). Typically, ultrasonic dissectors utilize both mechanical clamping action and ultrasonic energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, cut, dissect, desiccate, and/or fulgurate tissue. While ultrasonic instruments may effectively treat and, subsequently, dissect tissue, ultrasonic instruments are typically not configured to articulate and/or “flex.” That is, the transducer and/or waveguide that are disposed within the shaft, typically, are not flexible and, thus, limit or eliminate the degree of flexibility of the shaft. As can be appreciated, this limits the use of the ultrasonic dissectors in the surgical environment.
The present disclosure provides an end effector assembly. The end effector assembly has a pair of first and second jaw members including respective seal plates adapted to connect to a source of electrosurgical energy. One or both of the first and second jaw members may be movable relative to the other jaw member from an open position, wherein the first and the second jaw members are disposed in spaced relation relative to one another, to a clamping position, wherein the first and second jaw members cooperate to grasp tissue therebetween. The first and second jaw members are operable in two bipolar modes of operation, a first bipolar mode of operation for treating tissue and a second bipolar mode of operation for separating tissue. A dissector translatable through one or both of the first and second jaw members is in electrical communication with one of the seal plates of the first and second jaw members and activatable in the second bipolar mode of operation for separating tissue when the first and second jaw members are in one of the open and clamping position and tissue is adjacent thereto.
The present disclosure provides a system for performing an electrosurgical procedure. The system includes a source of electrosurgical energy configured to operate in two or more bipolar modes of operation, a first bipolar mode of operation for treating tissue and a second bipolar mode of operation for separating tissue. The system includes an electrosurgical forceps that includes a handle having one or more shafts extending therefrom and defining a longitudinal axis therethrough. An end effector assembly operatively connected to a distal end of the shaft and has a pair of first and second jaw members including respective seal plates adapted to connect to a source of electrosurgical energy. One or both of the first and second jaw members are movable relative to the other jaw member from an open position, wherein the first and the second jaw members are disposed in spaced relation relative to one another, to a clamping position, wherein the first and second jaw members cooperate to grasp tissue therebetween. The first and second jaw members are operable in two bipolar modes of operation, a first bipolar mode of operation for treating tissue and a second bipolar mode of operation for separating tissue. A dissector translatable through one or both of the first and second jaw members is in electrical communication with one of the seal plates of the first and second jaw members and activatable in the second bipolar mode of operation for separating tissue when the first and second jaw members are in one of the open and clamping position and tissue is adjacent thereto.
The present disclosure also provides a method for performing an electrosurgical procedure. The method includes positioning tissue between first and second jaw members of an electrosurgical instrument. The first and second jaw members including respective seal plates that are adapted to connect to a source of electrosurgical energy. The first and second jaw members are operable in two bipolar modes of operation, a first bipolar mode of operation for treating tissue and a second bipolar mode of operation for separating tissue. A dissector translatable through one or both of the first and second jaw members is in electrical communication with one of the seal plates of the first and second jaw members and is activatable in the second bipolar mode of operation for separating tissue when the first and second jaw members are in one of the open and clamping position and tissue is adjacent thereto. The method includes closing the first and second jaw members such that the tissue is clamped therebetween. Transmitting electrosurgical energy in the first bipolar mode of operation to the first and second jaw members for electrosurgically treating tissue is a step of the method. A step of the method includes translating the dissector through a channel that is operably disposed on one or both of the first and second jaw members. And, transmitting electrosurgical energy in the second bipolar mode of operation to the jaw member with the dissector for dissecting the electrosurgically treated tissue is another step of the method.
Embodiments of the presently disclosed specimen retrieval apparatus are described hereinbelow with reference to the drawings wherein:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In the drawings and in the descriptions that follow, the term “proximal,” as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end that is farther from the user.
Turning now to
Continuing with reference to
Housing 20 is configured to house and/or support one or more components associated with the forceps 10, such as, for example, a drive assembly (not shown), rotating assembly 80, handle assembly 30 and trigger assembly 70. A distal end of the housing 20 supports the shaft 12.
Shaft 12 extends distally from the housing 20 and defines a longitudinal axis “A-A” therethrough (
Handle assembly 30 includes a fixed handle 50 and a movable handle 40 (
Rotating assembly 80 is configured to rotate the shaft 12 including the jaw members 110 and 120 in either a clockwise or counter-clockwise direction that ranges from about 0-360° (
Trigger assembly 70 is operably coupled to an electrical cutting element or dissection member 90 (hereinafter dissector 90) and is configured to translate the dissector 90 proximally and distally through a dissector channel 101 (
Although the figure drawings depict a forceps 10 for use in connection with endoscopic surgical procedures, the present disclosure may be used for more traditional open surgical procedures. The open version of the forceps may also include the same or similar operating components and features as described below.
For a more detailed description of the housing 20, shaft 12, handle assembly 30 (including movable and fixed handles 40 and 50, respectively), rotating assembly 80, trigger assembly 70 and electrosurgical cable 310 (including line-feed configurations and/or connections), reference is made to commonly owned U.S. Pat. No. 7,150,097 to Sremcich filed Jun. 13, 2003.
With reference again to
In the first bipolar mode of operation the generator “G” including control system “CS” and the forceps 10 are configured to fuse, seal, coagulate and/or fulgurate tissue. To this end, in the first bipolar mode of operation, the respective seal plates 118 and 128 of jaw members 110 and 120 are both active, include opposing polarities and are configured to transmit electrosurgical energy, e.g., current, therebetween. In the second bipolar mode of operation, the generator “G” including control system “CS” and the forceps 10 are configured to dissect, cut, sever and/or transect tissue. To this end, in the second bipolar mode of operation, seal plate 128 is active, dissector 90 is active, seal plate 118 is inactive or neutral (and/or is highly resistive to current flow), and seal plate 128 including dissector 90 is configured to transmit electrosurgical energy, e.g., current, to tissue.
A translation bar or flexible band 71 (shown in phantom in
With reference to
Continuing with reference to
As noted above, in the second bipolar mode of operation, seal plate 118 is inactive or neutral (and/or is highly resistive to current flow). To this end, a high impedance resistor “R1” may be included in the circuitry of the jaw member 110 and placed in-line between the seal plate 118 and the return path to the generator “G” to allow minimal current to return through the seal plate 118. For illustrative purposes, the high impedance resistor is shown disposed within the jaw housing 117 of the jaw member 110 (
Similar to jaw member 110, jaw member 120 includes a jaw housing 127 having a distal end 127a that is configured to support seal plate 128 (
In the illustrated embodiment, and to facilitate separating tissue during the second bipolar mode of operation, the jaw member 120 including the seal plate 128 includes a width that is smaller in comparison to the width of the jaw member 110 including the seal plate 118. That is, the jaw member 120 including the seal plate 128 is smaller or “finer” than the jaw member 110 including the seal plate 118, see
In certain embodiments, it may prove advantageous for the jaw members 110 and 120 and/or respective seal plates 118 and 128 to have the same widths (
In the embodiment illustrated in
Dissector channel 101 extends the length of the jaw member 120. Dissector channel 101 is defined by two non-conductive interior walls 101a and 101b (
The dissector channel 101 is configured to accommodate proximal and distal translation of the dissector 90 therein when the forceps 10 is in the second bipolar mode of operation and when the trigger assembly 70 is depressed. To facilitate translation of the dissector 90 within the dissector channel 101, one or both of the dissector 90 and dissector channel 101 including interior walls 101a and 101b may coated with a material or substance that is lubricious, e.g., polytetrafluoroethylene (PTFE). In the illustrated embodiments, the dissector 90 is coated with PTFE. Coating the dissector 90 with PTFE also facilitates preventing tissue from sticking to the dissector 90 after tissue has been electrosurgically treated, e.g., dissected.
Dissector channel 101 may be also configured to raise or elevate the dissector 90 above the seal surface of the seal plate 128 when the dissector 90 is translated distally. To this end, a bottom surface of the dissector channel 101 may be sloped, angled or otherwise configured to raise or elevate the dissector 90 above the seal surface of the seal plate 128. In the illustrated embodiment, one or more protrusions 123 (detents or the like) of suitable dimensions are operably positioned at a distal end of the dissector channel 101 (
Protrusion 123 includes a generally rectangular configuration with a sloped trailing edge that is angled to provide a smooth transition from the bottom surface of the dissector channel 101 to a leading edge of protrusion 123 such that the dissector 90 is raised a predetermined distance above the seal surface of the seal plate. In the illustrated embodiment, the protrusion 123 is configured to raise the dissector 90 (or portion thereof, e.g., a proximal surface 92) approximately 0.5 mm to 1.0 mm above the seal surface of the seal plate 128.
In certain embodiments, forceps 10 may be configured to dissect into a plane of the electrosurgically treated tissue. In this instance, a distal tip 93 of the dissector 90 may be configured to extend to or slightly past (approximately 0.5 mm to about 1.5 mm) a distal tip of the jaw member 128. With this purpose in mind, the dissector channel 101 extends the length of the jaw member 120 and forms an opening 105 of suitable dimensions at a distal end thereof, as best seen in
Dissector 90 is configured to separate tissue, e.g., dissect tissue, when the jaw members 110 and 120 are in either the open position (
Dissector 90 is movable from a partially extended position within the dissector channel 101 (
In the first bipolar mode of operation, the dissector 90 is flush with the seal surface of seal plate 128, each of the seal plates 118 and 128 is active including the dissector 90 and electrosurgical energy is transmitted from seal plate 128 to seal plate 118. In the second bipolar mode of operation, the dissector 90 is elevated from the seal surface of the seal plate 128, the seal plate 128 is active and electrosurgical energy is transmitted therefrom to the dissector 90 and vice-versa.
Operation of forceps 10 is described in terms of use of a method for electrosurgically treating tissue, such as, for example, during a hysterectomy, a colectomy and/or a Nissen fundoplication, commonly referred to in the art as a lap Nissen. Initially, the forceps 10 is inserted through an incision in a patient. Tissue is positioned between the jaw members 110 and 120. In the instance where a user wants to seal tissue, the user activates switch “S.” Activation of switch “S” indicates to the generator “G” and/or control system “CS” that the jaw members 110 and 120 are ready to operate in the first bipolar mode of operation. Thereafter, generator “G” delivers electrosurgical energy to the respective seal plates 118 and 128 of the jaw members 110 and 120 to seal tissue positioned between the jaw members 110 and 120.
To dissect tissue, a user activates switch “D.” Activation of switch “D” indicates to the generator “G” and/or control system “CS” that the jaw members 110 and 120 are ready to operate in the second bipolar mode of operation. In the second bipolar mode of operation, generator “G” delivers electrosurgical energy to the seal plate 128 and the dissector 90 to dissect the electrosurgically treated tissue. During dissection, the jaw members 110 and 120 may be in either the open or closed position. Moreover, any portion of the dissector 90 may be utilized to dissect the electrosurgically treated tissue.
For example, and in one particular surgical scenario, the jaw members 110 and 120 may be in the open position and the distal tip 93 of the dissector 90 may utilized to dissect the electrosurgically treated tissue. In this instance, the distal tip 93 is positioned adjacent tissue and moved in a direction indicated by directional arrow “M” into the tissue with a force of suitable proportion while simultaneously energizing the seal plate 128 (
In another surgical scenario, the jaw members 110 and 120 may be in the open position and seal plate 128 may be utilized to dissect the electrosurgically treated tissue. In this instance, the seal plate 128 is positioned adjacent tissue and moved in a direction indicated by directional arrow “N” across the tissue with a force of suitable proportion while simultaneously energizing the seal plate 128 (
In yet another surgical scenario, the jaw members 110 and 120 may be, initially, in the open position and seal plate 128 may utilized to dissect the electrosurgically treated tissue. In this instance, the seal plate 128 is positioned adjacent tissue and moved in a direction indicated by directional arrow “O” across the tissue with a force of suitable proportion while simultaneously energizing the seal plate 128 and closing the jaw members 110 and 120 (
The forceps 10 including the jaw members 110 and 120 overcome some of aforementioned shortcomings of the above-referenced electrosurgical and/or ultrasonic instruments. More particularly, providing the forceps 10 with the jaw member 120 including the seal plate 128 and dissector 90 eliminates the need for a knife blade and components associated therewith to dissect tissue. As can be appreciated, this lowers manufacturing costs of the forceps 10. Moreover, while not discussed in great detail, the shaft 12 may be configured to bend or articulate; this provides a surgeon with greater flexibility with respect to treating and/or dissecting tissue when compared to ultrasonic instruments.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, in certain embodiments, it may prove useful to have one or both of the seal plates 118 and 128 with a textured or otherwise treated seal surface.
While dissector 90 is described herein as being movable or translatable within the dissector channel 90, it is within the purview of the present disclosure for the dissector 90 to be rigidly or non-movably secured to the seal surface of the seal plate 128 (see
In certain embodiments, one or more insulative or non-conductive standoffs 113 (shown in phantom in
It is contemplated that the generator “G” may be configured to automatically detect when to place the forceps 10 in either the first or second bipolar modes of operation. In this instance, switches 60 may be utilized in a limited capacity or eliminated altogether.
In certain embodiments, a seal plate 118 of the jaw member 110 may include an etched or bored channel that is configured to substantially cover the dissector 90 when the jaw member 110 is moved to the clamping position. For illustrative purposes, a channel 91 of suitable dimension is shown in phantom in
In certain embodiments, an insulative material 93 may be disposed in vertical registration with the dissector 90, see
In certain embodiments, the dissector 90 may be configured to operate with jaw members 110 and 120 that are curved or otherwise shaped. In this instance, the dissector 90 may be made from a relatively flexible or resilient conductive material that is configured to conform to the shape of the jaw members 110 and 120. For example, in the instance where the jaw members 110 and 120 are curved and the jaw member 120 includes a dissector channel 101 that is a curved, the dissector 90 may be substantially resilient and configured to bend or flex as the dissector 90 is translated distally and/or proximally.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a continuation application of U.S. patent application Ser. No. 12/876,705, filed on Sep. 7, 2010, now U.S. Pat. No. 8,734,445, the disclosure of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D348930 | Olson | Jul 1994 | S |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5522830 | Aranyi | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5549623 | Sharpe et al. | Aug 1996 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5913857 | Ritchart et al. | Jun 1999 | A |
5913866 | Ginn et al. | Jun 1999 | A |
5976132 | Morris | Nov 1999 | A |
6024744 | Kese et al. | Feb 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6066137 | Greep | May 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6206877 | Kese et al. | Mar 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6423080 | Gellman et al. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6679882 | Kornerup | Jan 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6752814 | Gellman et al. | Jun 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
6773434 | Ciarrocca | Aug 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D509297 | Wells | Sep 2005 | S |
6960210 | Lands et al. | Nov 2005 | B2 |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541938 | Kerr et al | May 2007 | S |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
7381209 | Truckai et al. | Jun 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7614999 | Gellman et al. | Nov 2009 | B2 |
7662164 | Kasahara et al. | Feb 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7918848 | Lau et al. | Apr 2011 | B2 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20040204734 | Wagner et al. | Oct 2004 | A1 |
20050113827 | Dumbauld et al. | May 2005 | A1 |
20050171533 | Latterell et al. | Aug 2005 | A1 |
20060074417 | Cunningham et al. | Apr 2006 | A1 |
20060189980 | Johnson et al. | Aug 2006 | A1 |
20080015567 | Kimura | Jan 2008 | A1 |
20080021450 | Couture | Jan 2008 | A1 |
20090326530 | Orban, III et al. | Dec 2009 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100204697 | Dumbauld et al. | Aug 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
20100217258 | Floume et al. | Aug 2010 | A1 |
20100249769 | Nau, Jr. et al. | Sep 2010 | A1 |
20100249776 | Kerr | Sep 2010 | A1 |
20110257643 | Lau et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10045375 | Oct 2002 | DE |
202007009317 | Aug 2007 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
1 159 926 | Dec 2001 | EP |
0913126 | Oct 2004 | EP |
1878400 | Jan 2008 | EP |
61-501068 | Sep 1984 | JP |
65-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11-070124 | Mar 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0154604 | Aug 2001 | WO |
2005110264 | Nov 2005 | WO |
Entry |
---|
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003. |
Int'l Search Report PCT/USO4/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
European Search Report for European Application No. 11180368.0 dated Feb. 24, 2012. |
European Search Report for European Application No. 11180368.0 dated Dec. 2, 2011. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008. |
U.S. Appl. No. 12/419,729, filed Apr. 7, 2009. |
U.S. Appl. No. 12/429,533, filed Apr. 24, 2009. |
U.S. Appl. No. 12/434,382, filed May 1, 2009. |
U.S. Appl. No. 12/437,254, filed May 7, 2009. |
U.S. Appl. No. 12/503,256, filed Jul. 15, 2009. |
U.S. Appl. No. 12/535,869, filed Aug. 5, 2009. |
U.S. Appl. No. 12/543,831, filed Aug. 19, 2009. |
U.S. Appl. No. 12/548,031, filed Aug. 26, 2009. |
U.S. Appl. No. 12/548,534, filed Aug. 27, 2009. |
U.S. Appl. No. 12/548,566, filed Aug. 27, 2009. |
U.S. Appl. No. 12/551,944, filed Sep. 1, 2009. |
U.S. Appl. No. 12/553,509, filed Sep. 3, 2009. |
U.S. Appl. No. 12/556,025, filed Sep. 9, 2009. |
U.S. Appl. No. 12/556,407, filed Sep. 9, 2009. |
U.S. Appl. No. 12/556,427, filed Sep. 9, 2009. |
U.S. Appl. No. 12/556,796, filed Sep. 10, 2009. |
U.S. Appl. No. 12/562,281, filed Sep. 18, 2009. |
U.S. Appl. No. 12/565,281, filed Sep. 23, 2009. |
U.S. Appl. No. 12/568,199, filed Sep. 28, 2009. |
U.S. Appl. No. 12/568,282, filed Sep. 28, 2009. |
U.S. Appl. No. 12/568,838, filed Sep. 29, 2009. |
U.S. Appl. No. 12/569,395, filed Sep. 29, 2009. |
U.S. Appl. No. 12/569,710, filed Sep. 29, 2009. |
U.S. Appl. No. 12/574,001, filed Oct. 6, 2009. |
U.S. Appl. No. 12/574,292, filed Oct. 6, 2009. |
U.S. Appl. No. 12/576,380, filed Oct. 9, 2009. |
U.S. Appl. No. 12/607,191, filed Oct. 28, 2009. |
U.S. Appl. No. 12/619,100, filed Nov. 16, 2009. |
U.S. Appl. No. 12/692,414, filed Jan. 22, 2010. |
U.S. Appl. No. 12/696,592, filed Jan. 29, 2010. |
U.S. Appl. No. 12/696,857, filed Jan. 29, 2010. |
U.S. Appl. No. 12/700,856, filed Feb. 5, 2010. |
U.S. Appl. No. 12/719,407, filed Mar. 8, 2010. |
U.S. Appl. No. 12/728,994, filed Mar. 22, 2010. |
U.S. Appl. No. 12/748,028, filed Mar. 26, 2010. |
U.S. Appl. No. 12/757,340, filed Apr. 9, 2010. |
U.S. Appl. No. 12/758,524, filed Apr. 12, 2010. |
U.S. Appl. No. 12/759,551, filed Apr. 13, 2010. |
U.S. Appl. No. 12/769,444, filed Apr. 28, 2010. |
U.S. Appl. No. 12/770,369, filed Apr. 29, 2010. |
U.S. Appl. No. 12/770,380, filed Apr. 29, 2010. |
U.S. Appl. No. 12/770,387, filed Apr. 29, 2010. |
U.S. Appl. No. 12/773,526, filed May 4, 2010. |
U.S. Appl. No. 12/773,644, filed May 4, 2010. |
U.S. Appl. No. 12/775,553, filed May 7, 2010. |
U.S. Appl. No. 12/786,589, filed May 25, 2010. |
U.S. Appl. No. 12/791,112, filed Jun. 1, 2010. |
U.S. Appl. No. 12/792,001, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,008, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,019, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,038, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,051, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,068, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,097, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,262, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,299, filed Jun. 2, 2010. |
U.S. Appl. No. 12/792,330, filed Jun. 2, 2010. |
U.S. Appl. No. 12/820,024, filed Jun. 23, 2010. |
U.S. Appl. No. 12/821,253, filed Jun. 23, 2010. |
U.S. Appl. No. 12/832,772, filed Jul. 8, 2010. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967, British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” , Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Number | Date | Country | |
---|---|---|---|
20140257283 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12876705 | Sep 2010 | US |
Child | 14286105 | US |