Electrosurgical pencil having a single button variable control

Information

  • Patent Grant
  • 8128622
  • Patent Number
    8,128,622
  • Date Filed
    Monday, July 9, 2007
    17 years ago
  • Date Issued
    Tuesday, March 6, 2012
    12 years ago
Abstract
The present disclosure is directed to electrosurgical pencils having variable controls. In one aspect, the electrosurgical pencil, includes an elongated housing, an electrocautery blade supported within the housing and extending distally from the housing, the electrocautery blade being connected to a source of electrosurgical energy, an activation button supported on the housing, the activation button being movable from a first position to at least a subsequent position, and a transducer electrically connected between the activation button and the source of electrosurgical energy. The transducer is configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button. The source of electrosurgical energy correspondingly supplies an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal.
Description
BACKGROUND

1. Technical Field


The present disclosure relates generally to electrosurgical instruments and, more particularly, to an electrosurgical pencil having a single button variable control.


2. Background of Related Art


Electrosurgical instruments have become widely used by surgeons in recent years. Accordingly, a need has developed for equipment and instruments which are easy to handle, are reliable and are safe in an operating environment. By and large, most electrosurgical instruments typically include a hand-held instrument, or pencil, which transfers radio-frequency (RF) electrical energy to a tissue site. The electrosurgical energy is returned to the electrosurgical source via a return electrode pad positioned under a patient (i.e., a monopolar system configuration) or a smaller return electrode positionable in bodily contact with or immediately adjacent to the surgical site (i.e., a bipolar system configuration). The waveforms produced by the RF source yield a predetermined electrosurgical effect known generally as electrosurgical fulguration.


In particular, electrosurgical fulguration includes the application of electric spark to biological tissue, for example, human flesh or the tissue of internal organs, without significant cutting. The spark is produced by bursts of radio-frequency electrical energy generated from an appropriate electrosurgical generator. Generally, fulguration is used to either coagulate, cut or seal body tissue. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dehydrated/dried. Electrosurgical cutting, on the other hand, includes applying an electrical spark to tissue in order to produce a cutting effect. Meanwhile, sealing is defined as the process of liquefying the collagen in the tissue so that it forms into a fused mass.


As used herein the term “electrosurgical pencil” is intended to include instruments which have a handpiece which is attached to an active electrode and which is used to coagulate, cut and/or seal tissue. Typically, the electrosurgical pencil may be operated by a handswitch or a foot switch. The active electrode is an electrically conducting element which is usually elongated and may be in the form of a thin flat blade with a pointed or rounded distal end. Alternatively, the active electrode may include an elongated narrow cylindrical needle which is solid or hollow with a flat, rounded, pointed or slanted distal end. Typically electrodes of this sort are known in the art as “blade”, “loop” or “snare”, “needle” or “ball” electrodes.


As mentioned above, the handpiece of the electrosurgical pencil is connected to a suitable electrosurgical energy source (i.e., generator) which produces the radio-frequency electrical energy necessary for the operation of the electrosurgical pencil. In general, when an operation is performed on a patient with an electrosurgical pencil, electrical energy from the electrosurgical generator is conducted through the active electrode to the tissue at the site of the operation and then through the patient to a return electrode. The return electrode is typically placed at a convenient place on the patient's body and is attached to the generator by a conductive material.


Current electrosurgical instrument systems allow the surgeon to change between two pre-configured settings (i.e., coagulation and cutting) via two discrete buttons disposed on the electrosurgical pencil itself. Other electrosurgical instrument systems allow the surgeon to increment the power applied when the coagulating or cutting button of the instrument is depressed by adjusting or closing a switch on the electrosurgical generator. The surgeon then needs to visually verify the change in the power being applied by looking at various displays and/or meters on the electrosurgical generator. In other words, all of the adjustments to the electrosurgical instrument and parameters being monitored during the use of the electrosurgical instrument are typically located on the electrosurgical generator. As such, the surgeon must continually visually monitor the electrosurgical generator during the surgical procedure.


Accordingly, the need exists for electrosurgical instruments which do not require the surgeon to continually monitor the electrosurgical generator during the surgical procedure. In addition, the need exists for electrosurgical instruments whose power output can be adjusted without the surgeon having to turn his vision away from the operating site and toward the electrosurgical generator.


SUMMARY

The present disclosure is directed to an electrosurgical instrument having variable controls. In accordance with one aspect of the present disclosure the electrosurgical instrument, includes an elongated housing, an electrocautery blade supported within the housing and extending distally from the housing, the electrocautery blade being connected to a source of electrosurgical energy, an activation button supported on the housing, the activation button being movable from a first position to at least a subsequent position, and a transducer electrically connected between the activation button and the source of electrosurgical energy. The transducer is configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button. The source of electrosurgical energy correspondingly supplies an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal.


In one aspect, the activation button is depressed to initiate transmission of the electrical output signal. Preferably, the activation button is movable from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted to the electrocautery blade.


It is envisioned that the transducer is a pressure-sensitive transducer. Preferably, the pressure transducer produces at least two output signals based upon the movement of the activation button. It is further envisioned that one of the at least two signals of the pressure transducer transmits a signal to the electrosurgical generator corresponding to the emission of energy having a cutting-type waveform and the other of the at least two signals of the pressure transducer transmits a signal to the electrosurgical generator corresponding to the emission of energy having a coagulating-type waveform.


Preferably, the pressure transducer transmits a range of output signals to the source of electrosurgical energy in response to the position of the activation button. The range of output signals corresponds to a range of energy emission from the source of electrosurgical energy to the electrocautery blade.


In a further aspect, the activation button includes a slide-switch which is slidingly supported on the housing and is configured for selective movement along a slide path formed in the housing. The transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path of the housing.


Preferably, the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position. The slide-switch is configured and adapted to be depressed to initiate movement thereof and activation of the electrocautery blade.


In another aspect of the present disclosure, the electrosurgical pencil further includes a control pendent operatively coupled to the housing and electrically connected to the source of electrosurgical energy. The control pendent includes at least one control knob operatively supported thereon, wherein the at least one control knob is configured and adapted to enable selection of a particular emission signal from the electrosurgical generator.


Preferably, the at least one control knob is electrically connected to the activation button. It is envisioned that the at least one control knob is electrically connected to the source of electrosurgical energy.


It is contemplated that the control pendent is configured and adapted to be removably attached to at least one of a user's wrist, user's garment and operating table. It is further contemplated that the control pendent includes at least one knob for selecting a function of the electrosurgical instrument and at least one other knob for selecting a power output of the source of electrosurgical energy.


These and other objects will be more clearly illustrated below by the description of the drawings and the detailed description of the preferred embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.



FIG. 1 is a partially broken, side elevational view of one embodiment of an electrosurgical pencil in accordance with the present disclosure;



FIG. 2 is a partially broken, side elevational view of an alternate embodiment of the electrosurgical pencil, in accordance with the present disclosure, shown in a first position;



FIG. 3 is a partially broken, side elevational view of the electrosurgical pencil of FIG. 2 shown in a second position; and



FIG. 4 is a perspective view of another alternate embodiment of an electrosurgical pencil shown being held in the hand of a surgeon (shown in phantom).





DETAILED DESCRIPTION

Embodiments of the presently-disclosed electrosurgical pencil will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the drawings, and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the electrosurgical pencil which is closest to the operator, while the term “distal” will refer to the end of the electrosurgical pencil which is furthest from the operator.



FIG. 1 sets forth a partially broken, side elevational view of an electrosurgical pencil constructed in accordance with one embodiment of the present disclosure and generally referenced by numeral 100. While the following description will be directed towards electrosurgical pencils it is envisioned that the features and concepts of the present disclosure can be applied to any electrosurgical type instrument. Electrosurgical pencil 100 includes an elongated housing 102 configured and adapted to support a blade receptacle 104 at a distal end thereof which, in turn, receives a replaceable electrocautery blade 106 therein. A distal end portion 108 of blade 106 extends distally from receptacle 104 while a proximal end portion 110 of blade 106 is retained within the distal end of housing 102. Preferably, electrocautery blade 106 is fabricated from a conductive type material, i.e., stainless steel or is coated with an electrically conductive material.


As shown, electrosurgical pencil 100 is coupled to a conventional electrosurgical generator “G” via a cable 112. Cable 112 includes a transmission wire 114 which electrically interconnects the electrosurgical generator “G” with the proximal end portion 110 of blade 106. Cable 112 further includes a control loop 116 which electrically interconnects an activation button 124, supported on an outer surface 107 of the housing 102, with the electrosurgical generator “G”.


By way of example only, electrosurgical generator “G” may be any one of the following, or equivalents thereof: the “FORCE FX”, “FORCE 2” or “FORCE 4” generators manufactured by Valleylab, Inc. a division of Tyco Healthcare, LP, Boulder, Colo. Preferably, the electrosurgical generator “G” can be variable in order to provide appropriate first RF signals (e.g., 1 to 120 watts) for tissue cutting and appropriate second RF signals (e.g., 1 to 300 watts) for tissue coagulation. Preferably, an exemplary electrosurgical generator “G” is disclosed in commonly assigned U.S. Pat. No. 6,068,627 to Orszulak, et al., the entire content of which are hereby incorporated by reference. The electrosurgical generator disclosed in the '627 patent includes, inter alia, an identifying circuit and a switch therein. In general, the identifying circuit is responsive to information received from a generator and transmits a verification signal back to the generator. Meanwhile, the switch is connected to the identifying circuit and is responsive to signaling received from the identifying circuit.


Turning back to FIG. 1, as mentioned above, electrosurgical pencil 100 includes activation button 124 which is supported on an outer surface 107 of housing 102. Activation button 124 is operatively connected to a pressure transducer 126 (or other variable power switch) which, in turn, controls the RF electrical energy supplied from generator “G” to electrosurgical blade 106. More particularly, pressure transducer 126 electrically couples to control loop 116 and is configured to regulate (or variably control) the amount of RF energy transmitted to electrocautery blade 106 and/or to variably control the waveform output from electrosurgical generator “G”.


In use, pressure transducer 126 converts input energy of one form into output energy of another. For example, pressure transducer 126 initially converts a pressure input from activation button into an output signal which is transmitted to electrosurgical generator “G”. In turn, generator “G” transmits a corresponding amount of energy (or an appropriate waveform output) to electrocautery blade 106 via transmission wire 114. As such, by selectively applying pressure to switch 124 to apply pressure to pressure transducer 126, the surgeon can variably control the amount of energy and/or the waveform output of the electrosurgical generator “G”. For example, by applying a relatively light pressure against activation button 124, and, in turn, to pressure transducer 126, in the direction of arrow “P” in FIG. 1, thus depressing pressure transducer 126 a relatively small amount, a “cutting-type” waveform is transmitted. By applying a relatively heavy pressure against activation button 124, thus depressing pressure transducer 126 a relatively large amount, a “coagulating-type” waveform is transmitted. As can be appreciated, an intermediate pressure applied against activation button 124 will produce varying combinations of “cutting-type” waveforms and “coagulating-type” waveforms.


More particularly and in use, when activation button 124 is depressed in direction “P”, pressure is applied against transducer 126 which, in turn, converts the input pressure into a corresponding electrical signal. The electrical signal is transmitted, via control loop 116, to electrosurgical generator “G”. Electrosurgical generator “G”, in turn, processes the electrical signal received from pressure transducer 126 and transmits an output signal (i.e., RF energy, waveform, power, voltage, current, duty, cycle, frequency and the like), via transmission wire 114, to electrocautery blade 106. As can be appreciated, the pressure “P” applied to activation button 124 against the pressure transducer 126, directly determines the overall level of output of electrosurgical generator “G” and, in turn, the ultimate function of electrocautery blade 106. Since activation button 124 can be depressed to a variety of positions the surgeon is able to create a pallet of varying therapeutic effects ranging from a pure “cutting” mode to a pure “coagulating” mode and variations therebetween. It is envisioned that the switch 124 may include a plurality of incremental steps (not shown) to provide better tactile feedback to the surgeon. It is also contemplated that the incremental steps may include audible feedback to further enhance the surgeon's tactile feedback.


As such, the surgeon need not visually verify the new setting of electrosurgical pencil 100 by continuously checking the display, meters or gauges on electrosurgical generator “G”. In particular, the surgeon will be able to make changes to the electrosurgical pencil, as needed, from the operative field.


It is contemplated that activation button 124 can included other electromechanical sensors, e.g., optical sensors, pneumatic sensors, accelerometer, position sensors, etc. to provide sensory feedback to generator “G”. As mentioned above, the activation button 124 may also include some measure of tactile feedback which is felt by the surgeon's finger and/or some measure of audible feedback produced by the activation button 124 (e.g., a “click”), by the electrosurgical generator “G” (e.g., a “tone”) and/or an auxiliary sound-producing device such as a buzzer (not shown).


While RF energy and waveforms have been disclosed as being controlled by the position of or pressure applied to pressure transducer 126, it is envisioned that other electrosurgical parameters can be controlled by pressure transducer 126, such as, for example, power, voltage, current, duty, cycle and/or frequency.


Turning now to FIGS. 2-3, an alternate electrosurgical pencil 200 is shown and includes a slide-switch 224 which is slidably supported atop a slide bed 228 disposed within the outer surface 107 of housing 102. Preferably, slide-switch 224 is operatively connected to transducer 226 which is, in turn, electrically connected to control loop 116 in a similar manner as described above.


In the present embodiment, as slide-switch 224 is displaced, either proximally or distally along activation line “X”, transducer 226 converts the degree of displacement of slide-switch 224 into a signal which is transmitted to electrosurgical generator “G” via transmission line 116. Generator “G”, in turn, transmits a corresponding amount of RF energy (or an appropriate waveform output) to electrocautery blade 106. As such, slide-switch 224, in combination with transducer 226, allows the surgeon to variably control the amount of energy and/or the waveform output of electrosurgical generator “G”. For example, when slide-switch 224 is in a proximal-most position, as seen in FIG. 2, a “cutting-type” waveform is selected. Meanwhile, by displacing slide-switch 224 to a distal-most position, as seen in FIG. 3, a “coagulating-type” waveform is selected. It is envisioned that positioning slide-switch 224 at discrete locations along the length of slide bed 228 will induce a combination of “cutting-type” waveforms and “coagulating-type” waveforms. Accordingly, the surgeon can select the therapeutic effect desired by simply displacing slide-switch 224 to an appropriate position along slide bed 228.


It is envisioned that slide bed 228 may be configured such that slide-switch 224 “clicks” into discrete positions along slide bed 228 from the proximal-most position to the distal-most position. The “clicking” provides the surgeon with both tactile and audible feedback as to the location of slide-switch 224. It is further envisioned that electrosurgical pencil 200 may be activated and deactivated (i.e., energized or de-energized) by depressing and then releasing sliding button 224.


Turning now to FIG. 4, an alternate embodiment of an electrosurgical pencil 300 is shown and includes at least one activation button 324 supported on the outer surface 107 of housing 102. It is envisioned that two activation button 324, 325 may also be employed. In accordance with this embodiment, electrosurgical pencil 300 preferably includes a pendent 350 which is configured and adapted to be removably attached to or stuck to the surgeons wrist or coat sleeve “C” (as seen in FIG. 4), the patients drapes or robe, or a Mayo stand. It is envisioned that the pendent 350 may also be removably attached by any known means such as clips, Velcro™, band, belt, elastic, or the like.


As seen in FIG. 4, pendent 350 is electrically connected to electrosurgical pencil 300 via a connecting wire 352. Optionally, pendent 350 can be electrically connected to electrosurgical generator “G” via a connecting wire 354 (shown in phantom in FIG. 4). Pendent 350 preferably includes at least some of, if not all of, the variable controls 356 of electrosurgical pencil 300. Variable controls 356 permit the surgeon to select the function desired (i.e., cutting or coagulating) and to vary the power being supplied by electrosurgical generator “G” to electrosurgical pencil 300. Variable controls 356, include, but are not limited to knobs, buttons, switches, dials, slides, touch screens, etc.


In use, the surgeon can select the function and level of power from pendent 350 instead of electrosurgical generator “G”. The surgeon then uses or activates and deactivates electrosurgical pencil 300 in a conventional manner by depressing and releasing activation button 324 or 325. Accordingly, during use of electrosurgical pencil 300, if the surgeon desires to vary or adjust the output or function of electrosurgical pencil 300, the surgeon simply needs to adjust variable controls 356 of pendent 350. As such, the surgeon does not need to adjust the controls of the electrosurgical generator “G” or take his/her focus and/or attention away from the patient and the surgical procedure being performed. In addition, in combination or alternatively, a status monitor may also be employed to provide visual and audible indications corresponding to the operational status of the generator “G”. For example, one such status monitor is described in commonly owned U.S. Pat. No. 6,402,741 entitled “CURRENT AND STATUS MONITOR”, the entire contents of which are hereby incorporated by reference herein.


While embodiments of electrosurgical instruments according to the present disclosure have been described herein it is not intended that the disclosure be limited there and the above description should be construed as merely exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. An electrosurgical pencil, comprising: an elongated housing;an electrocautery blade supported within the housing and extending distally therefrom, the electrocautery blade being connected to a source of electrosurgical energy;an activation button supported on the housing;a transducer electrically connected between the activation button and the source of electrosurgical energy, the transducer being configured to transmit an electrical output signal to the electrosurgical energy source correlating to the movement of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the electrical output signal; anda control pendent operatively coupled to the housing and electrically connected to the source of electrosurgical energy, the control pendent including at least one control knob operatively supported thereon, wherein the at least one control knob is configured and adapted to enable selection of a particular emission signal from the source of electrosurgical energy.
  • 2. The electrosurgical instrument according to claim 1, wherein the at least one control knob is electrically connected to the activation button.
  • 3. The electrosurgical instrument according to claim 2, wherein the at least one control knob is electrically connected to the source of electrosurgical energy.
  • 4. The electrosurgical instrument according to claim 2, wherein the control pendent is configured and adapted to be removably attached to at least one of a user's wrist, a user's garment, and an operating table.
  • 5. The electrosurgical instrument according to claim 4, wherein the control pendent includes at least one knob for selecting a function of the electrosurgical instrument and at least one other knob for selecting a power output of the source of electrosurgical energy.
  • 6. An electrosurgical system, comprising: a source of electrosurgical energy; andan electrosurgical pencil connectable to the source of electrosurgical energy, the electrosurgical pencil including: an elongated housing;an electrocautery blade supported within the housing and extending distally from the housing, said electrocautery blade being connected to the source of electrosurgical energy;a single activation button supported on the housing, said activation button being movable from a first position to a plurality of subsequent positions in order to activate a plurality of therapeutic effects and to vary an amount of electrosurgical energy transmitted to the electrocautery blade; anda transducer electrically connected between the activation button and the source of electrosurgical energy, said transducer being configured to transmit a discrete electrical output signal to the electrosurgical energy source correlating to each of said plurality of subsequent positions of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the discrete electrical output signal and at least one of said plurality of diverse therapeutic effects.
  • 7. An electrosurgical system according to claim 6, wherein the activation button is configured to initiate transmission of the electrical output signal.
  • 8. An electrosurgical system according to claim 7, wherein the activation button is configured for movement from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted to the electrocautery blade.
  • 9. An electrosurgical system according to claim 7, wherein the transducer is a pressure-sensitive transducer.
  • 10. An electrosurgical system according to claim 9, wherein the pressure transducer is configured to produce at least two output signals based upon the movement of the activation button.
  • 11. An electrosurgical system according to claim 10, wherein one of the at least two signals produced by the pressure transducer transmits a signal to the electrosurgical generator corresponding to a cutting-type waveform and wherein the other of the at least two signals produced by the pressure transducer transmits a signal to the source of electrosurgical energy corresponding to a coagulating-type waveform.
  • 12. An electrosurgical system according to claim 9, wherein the pressure transducer is configured to transmit a range of output signals to the source of electrosurgical energy in response to the position of the activation button, the range of output signals corresponding to a range of energy delivered from the source of electrosurgical energy to the electrocautery blade.
  • 13. The electrosurgical system according to claim 6, wherein the activation button includes a slide-switch which is slidingly supported on the housing and is configured for selective movement along a slide path formed in the housing.
  • 14. The electrosurgical system according to claim 13, wherein the transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path of the housing.
  • 15. The electrosurgical system according to claim 13, wherein the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position.
  • 16. The electrosurgical system according to claim 13, wherein the slide-switch is adapted to be depressed to initiate movement thereof and activation of the electrocautery blade.
  • 17. An electrosurgical device, comprising: a single activation button movable from a first position to a plurality of subsequent positions in order to activate a plurality of diverse therapeutic effects and to vary an amount of electrosurgical energy transmitted by the electrosurgical device; anda transducer electrically connected between the activation button and a source of electrosurgical energy, said transducer being configured to transmit a discrete electrical output signal to the electro surgical energy source correlating to each of said plurality of subsequent positions of the activation button, the source of electrosurgical energy correspondingly supplying an amount of electrosurgical energy to the electrocautery blade dependant upon the discrete electrical output signal and at least one of said plurality of diverse therapeutic effects.
  • 18. An electrosurgical device according to claim 17, wherein the activation button is configured for movement from a first position to a series of discrete, subsequent positions wherein each subsequent position corresponds to a specific amount of electrosurgical energy being transmitted by the electrosurgical device.
  • 19. An electrosurgical device according to claim 18, wherein the transducer is configured to produce at least two output signals based upon the movement of the activation button.
  • 20. An electrosurgical device according to claim 19, wherein one of the at least two signals produced by the pressure transducer transmits a signal to the electrosurgical generator corresponding to a cutting-type waveform and wherein the other of the at least two signals produced by the pressure transducer transmits a signal to the source of electrosurgical energy corresponding to a coagulating-type waveform.
  • 21. An electrosurgical device according to claim 17, wherein the transducer is configured to transmit a range of output signals to the source of electrosurgical energy in response to the position of the activation button, the range of output signals corresponding to a range of energy emission from the source of electrosurgical energy to the electrosurgical device.
  • 22. The electrosurgical device according to claim 17, wherein the activation button includes a slide-switch which is slidingly supported along a slide path formed in the device.
  • 23. The electrosurgical device according to claim 22, wherein the transducer is configured to produce an output signal to the source of electrosurgical energy which corresponds to the movement of the slide-switch within the slide path.
  • 24. The electrosurgical device according to claim 22, wherein the slide-switch transmits a range of output signals to the source of electrosurgical energy in response to the position of the slide-switch, the range of output signals varying from when the slide-switch is at a proximal-most position to when the slide switch is at a distal-most position.
  • 25. The electrosurgical device according to claim 22, wherein the slide-switch is adapted to be depressed to initiate movement thereof and a transmission of electrosurgical energy.
  • 26. A surgical device, comprising: a housing having an activation switch disposed thereon, the activation switch adapted to couple to an electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; andthe activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the electrosurgical energy source.
  • 27. The surgical device according to claim 26, wherein the activation switch is operable to set the intensity level of electrosurgical energy before electrosurgical energy is activated.
  • 28. The surgical device according to claim 26, wherein the knob is biased in an inactivated position.
  • 29. The surgical device according to claim 26, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.
  • 30. The surgical device according to claim 29, wherein tactile feedback is provided to a user when the knob is slid between the plurality of discreet positions on the guide channel.
  • 31. The surgical device according to claim 26, wherein the device is an electrosurgical pencil.
  • 32. A method for using a surgical device to administer electrosurgical energy to a patient, comprising the steps of: providing a surgical device, including: a housing having an activation switch disposed thereon, the activation switch adapted to couple to an electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; andthe activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the electrosurgical energy source;sliding the knob to set the intensity level of electrosurgical energy; anddepressing the knob to activate electrosurgical energy.
  • 33. The method according to claim 32, wherein the activation switch is operable to set the intensity level of electrosurgical energy before electrosurgical energy is activated.
  • 34. The method according to claim 32, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.
  • 35. An electrosurgical system for performing electrosurgery on a patient, the electrosurgical system comprising: an electrosurgical energy source that provides electrosurgical energy;an active electrode which supplies electrosurgical energy to a patient;an electrosurgical return electrode which returns electrosurgical energy to the electrosurgical energy source; anda surgical device, including: a housing having an activation switch disposed thereon, the activation switch adapted to couple to the electrosurgical energy source, the activation switch including a knob slidingly disposed within a guide channel defined within said housing; andthe activation switch being selectively moveable in a first direction within the guide channel to set a desired electrosurgical energy level and the activation switch being selectively moveable in a second direction to activate the clectrosurgical energy source.
  • 36. The electrosurgical system according to claim 35, wherein the activation switch is operable to set the intensity level of clectrosurgical energy before electrosurgical energy is activated.
  • 37. The electrosurgical system according to claim 35, wherein the guide channel includes a plurality of discreet positions, the knob being slideable between the plurality of discreet positions.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Divisional Application which claims the benefit of and priority to U.S. application Ser. No. 10/701,796, filed on Nov. 5, 2003 now U.S. Pat. No. 7,244,257, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/424,352 filed on Nov. 5, 2002, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (440)
Number Name Date Kind
2031682 Charles et al. Feb 1936 A
2102270 Hyams Dec 1937 A
2993178 Burger Jul 1961 A
3058470 Seeliger et al. Oct 1962 A
3219029 Richards et al. Nov 1965 A
3460539 Anhalt, Sr. Aug 1969 A
3494363 Jackson Feb 1970 A
3648001 Anderson et al. Mar 1972 A
3675655 Sittner Jul 1972 A
3699967 Anderson Oct 1972 A
3720896 Beierlein Mar 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3825004 Durden, III Jul 1974 A
3828780 Morrison, Jr. Aug 1974 A
3875945 Friedman Apr 1975 A
3902494 Haberlen et al. Sep 1975 A
3906955 Roberts Sep 1975 A
3911241 Jarrard Oct 1975 A
3967084 Pounds Jun 1976 A
3974833 Durden, III Aug 1976 A
4014343 Esty Mar 1977 A
4032738 Esty et al. Jun 1977 A
4034761 Prater et al. Jul 1977 A
4038984 Sittner Aug 1977 A
4112950 Pike Sep 1978 A
D253247 Gill Oct 1979 S
4232676 Herczog Nov 1980 A
4314559 Allen Feb 1982 A
4427006 Nottke Jan 1984 A
4443935 Zamba et al. Apr 1984 A
4459443 Lewandowski Jul 1984 A
4463234 Bennewitz Jul 1984 A
4463759 Garito et al. Aug 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4545375 Cline Oct 1985 A
4562838 Walker Jan 1986 A
4589411 Friedman May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4595809 Pool Jun 1986 A
4606342 Zamba et al. Aug 1986 A
4619258 Pool Oct 1986 A
4620548 Hasselbrack Nov 1986 A
4625723 Altnether et al. Dec 1986 A
4640279 Beard Feb 1987 A
4642128 Solorzano Feb 1987 A
4655215 Pike Apr 1987 A
4657016 Garito et al. Apr 1987 A
4683884 Hatfield et al. Aug 1987 A
4688569 Rabinowitz Aug 1987 A
4701193 Robertson et al. Oct 1987 A
4712544 Ensslin Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4754754 Garito et al. Jul 1988 A
4785807 Blanch Nov 1988 A
4788977 Farin et al. Dec 1988 A
4794215 Sawada et al. Dec 1988 A
4796623 Krasner et al. Jan 1989 A
4803323 Bauer et al. Feb 1989 A
4811733 Borsanyi et al. Mar 1989 A
4827911 Broadwin et al. May 1989 A
4827927 Newton May 1989 A
D301739 Turner et al. Jun 1989 S
4846790 Hornlein et al. Jul 1989 A
4850353 Stasz et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4862890 Stasz et al. Sep 1989 A
4869715 Sherburne Sep 1989 A
4872454 DeOliveira et al. Oct 1989 A
4876110 Blanch Oct 1989 A
4886060 Wiksell Dec 1989 A
4901719 Trenconsky et al. Feb 1990 A
4903696 Stasz et al. Feb 1990 A
4909249 Akkas et al. Mar 1990 A
4911159 Johnson et al. Mar 1990 A
4916275 Almond Apr 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4921476 Wuchinich May 1990 A
4922903 Welch et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4949734 Bernstein Aug 1990 A
4969885 Farin Nov 1990 A
4986839 Wertz et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
5000754 DeOliveira et al. Mar 1991 A
5011483 Sleister Apr 1991 A
5013312 Parins et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5026368 Adair Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5035696 Rydell Jul 1991 A
5046506 Singer Sep 1991 A
5055100 Olsen Oct 1991 A
5071418 Rosenbaum Dec 1991 A
5074863 Dines Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5088997 DeLahuerga et al. Feb 1992 A
5098430 Fleenor Mar 1992 A
5100402 Fan Mar 1992 A
5108391 Flachenecker et al. Apr 1992 A
5133714 Beane Jul 1992 A
5147292 Kullas et al. Sep 1992 A
D330253 Burek Oct 1992 S
5154709 Johnson Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167659 Ohtomo et al. Dec 1992 A
5178012 Culp Jan 1993 A
5178605 Imonti Jan 1993 A
5190517 Zieve et al. Mar 1993 A
5192267 Shapira et al. Mar 1993 A
5195959 Smith Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5197962 Sansom et al. Mar 1993 A
5199944 Cosmescu Apr 1993 A
5217457 DeLahuerga et al. Jun 1993 A
5224944 Elliott Jul 1993 A
5226904 Gentelia et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234428 Kaufman Aug 1993 A
5234429 Goldhaber Aug 1993 A
5242442 Hirschfeld Sep 1993 A
5244462 DeLahuerga et al. Sep 1993 A
5246440 Van Noord Sep 1993 A
5254082 Takase Oct 1993 A
5254117 Rigby et al. Oct 1993 A
5256138 Burek et al. Oct 1993 A
5261906 Pennino et al. Nov 1993 A
5269781 Hewell, III Dec 1993 A
5300087 Knoepfler Apr 1994 A
5304763 Ellman et al. Apr 1994 A
5306238 Fleenor Apr 1994 A
5312329 Beaty et al. May 1994 A
5312400 Bales et al. May 1994 A
5312401 Newton et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5322503 Desai Jun 1994 A
5330470 Hagen Jul 1994 A
5334183 Wuchinich Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5348555 Zinnanti Sep 1994 A
5366464 Belknap Nov 1994 A
5376089 Smith Dec 1994 A
5380320 Morris Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5395363 Billings et al. Mar 1995 A
5399823 McCusker Mar 1995 A
5401273 Shippert Mar 1995 A
5403882 Huggins Apr 1995 A
5406945 Riazzi et al. Apr 1995 A
5409484 Erlich et al. Apr 1995 A
5413575 Haenggi May 1995 A
5421829 Olichney et al. Jun 1995 A
5423838 Willard Jun 1995 A
5431645 Smith et al. Jul 1995 A
5431650 Cosmescu Jul 1995 A
5451222 De Maagd et al. Sep 1995 A
5460602 Shapira Oct 1995 A
5462522 Sakurai et al. Oct 1995 A
5468240 Gentelia et al. Nov 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5484398 Stoddard Jan 1996 A
5484434 Cartmell et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5496314 Eggers Mar 1996 A
5498654 Shimasaki et al. Mar 1996 A
D370731 Corace et al. Jun 1996 S
5531722 Van Hale Jul 1996 A
5549604 Sutcu et al. Aug 1996 A
5561278 Rutten Oct 1996 A
5601224 Bishop et al. Feb 1997 A
5609573 Sandock Mar 1997 A
5626575 Crenner May 1997 A
5630417 Petersen et al. May 1997 A
5630426 Eggers et al. May 1997 A
5630812 Ellman et al. May 1997 A
5633578 Eggers et al. May 1997 A
5634912 Injev Jun 1997 A
5634935 Taheri Jun 1997 A
5643256 Urueta Jul 1997 A
D384148 Monson Sep 1997 S
5669907 Platt, Jr. et al. Sep 1997 A
5674219 Monson et al. Oct 1997 A
5693044 Cosmescu Dec 1997 A
5693050 Speiser Dec 1997 A
5693052 Weaver Dec 1997 A
5697926 Weaver Dec 1997 A
5702360 Dieras et al. Dec 1997 A
5702387 Arts et al. Dec 1997 A
5712543 Sjostrom Jan 1998 A
5713895 Lontine et al. Feb 1998 A
5720745 Farin et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5749869 Lindenmeier et al. May 1998 A
5765418 Rosenberg Jun 1998 A
5776092 Farin et al. Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5797907 Clement Aug 1998 A
5800431 Brown Sep 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836944 Cosmescu Nov 1998 A
D402030 Roberts et al. Dec 1998 S
D402031 Roberts et al. Dec 1998 S
5843109 Mehta et al. Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5859527 Cook Jan 1999 A
5868768 Wicherski et al. Feb 1999 A
5876400 Songer Mar 1999 A
5888200 Walen Mar 1999 A
5893848 Negus et al. Apr 1999 A
5893849 Weaver Apr 1999 A
5893862 Pratt et al. Apr 1999 A
5913864 Garito et al. Jun 1999 A
5919219 Knowlton Jul 1999 A
5928159 Eggers et al. Jul 1999 A
5938589 Wako et al. Aug 1999 A
5941887 Steen et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5951548 DeSisto et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954686 Garito et al. Sep 1999 A
5972007 Sheffield et al. Oct 1999 A
6004318 Garito et al. Dec 1999 A
6004333 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010499 Cobb Jan 2000 A
6022347 Lindenmeier et al. Feb 2000 A
6045564 Walen Apr 2000 A
6063050 Manna et al. May 2000 A
6068603 Suzuki May 2000 A
6068627 Orszulak et al. May 2000 A
6070444 Lontine et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074387 Heim et al. Jun 2000 A
6086544 Hibner et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6099525 Cosmescu Aug 2000 A
6117134 Cunningham et al. Sep 2000 A
6139547 Lontine et al. Oct 2000 A
D433752 Saravia Nov 2000 S
6142995 Cosmescu Nov 2000 A
6146353 Platt, Jr. Nov 2000 A
6149648 Cosmescu Nov 2000 A
6156035 Songer Dec 2000 A
6197024 Sullivan Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
D441077 Garito et al. Apr 2001 S
6213999 Platt, Jr. et al. Apr 2001 B1
6214003 Morgan et al. Apr 2001 B1
6238388 Ellman et al. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6249706 Sobota et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6257241 Wampler Jul 2001 B1
6258088 Tzonev et al. Jul 2001 B1
6273862 Privitera et al. Aug 2001 B1
6277083 Eggers et al. Aug 2001 B1
6286512 Loeb et al. Sep 2001 B1
6287305 Heim et al. Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6312441 Deng Nov 2001 B1
6325799 Goble Dec 2001 B1
D453222 Garito et al. Jan 2002 S
D453833 Hess Feb 2002 S
6350276 Knowlton Feb 2002 B1
6352544 Spitz Mar 2002 B1
6355034 Cosmescu Mar 2002 B2
6358281 Berrang et al. Mar 2002 B1
6361532 Burek Mar 2002 B1
D457955 Bilitz May 2002 S
6386032 Lemkin et al. May 2002 B1
6395001 Ellman et al. May 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409725 Khandkar et al. Jun 2002 B1
6413255 Stern Jul 2002 B1
6416491 Edwards et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6458122 Pozzato Oct 2002 B1
6458125 Cosmescu Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6464702 Schulze et al. Oct 2002 B2
6471659 Eggers et al. Oct 2002 B2
6494882 Lebouitz et al. Dec 2002 B1
6500169 Deng Dec 2002 B1
6511479 Gentelia et al. Jan 2003 B2
6526320 Mitchell Feb 2003 B2
6551313 Levin Apr 2003 B1
6558383 Cunningham et al. May 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6589239 Khandkar et al. Jul 2003 B2
6610054 Edwards et al. Aug 2003 B1
6610057 Ellman et al. Aug 2003 B1
6616658 Ineson Sep 2003 B2
6618626 West, Jr. et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6632193 Davison et al. Oct 2003 B1
6652514 Ellman et al. Nov 2003 B2
6662053 Borkan Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6685701 Orszulak et al. Feb 2004 B2
6685704 Greep Feb 2004 B2
6702812 Cosmescu Mar 2004 B2
6710546 Crenshaw Mar 2004 B2
6712813 Ellman et al. Mar 2004 B2
6719746 Blanco Apr 2004 B2
6740079 Eggers et al. May 2004 B1
6747218 Huseman et al. Jun 2004 B2
D493530 Reschke Jul 2004 S
D493888 Reschke Aug 2004 S
D494270 Reschke Aug 2004 S
D495051 Reschke Aug 2004 S
D495052 Reschke Aug 2004 S
6794929 Pelly Sep 2004 B2
6830569 Thompson et al. Dec 2004 B2
6840948 Albrecht et al. Jan 2005 B2
6855140 Albrecht et al. Feb 2005 B2
6902536 Manna et al. Jun 2005 B2
6905496 Ellman et al. Jun 2005 B1
6923804 Eggers et al. Aug 2005 B2
6923809 Eggers et al. Aug 2005 B2
6939347 Thompson Sep 2005 B2
6955674 Eick et al. Oct 2005 B2
D515412 Waaler et al. Feb 2006 S
7033353 Stoddard et al. Apr 2006 B2
D521641 Reschke et al. May 2006 S
D535396 Reschke et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156844 Reschke et al. Jan 2007 B2
7235072 Sartor et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
20010047183 Privitera et al. Nov 2001 A1
20010049524 Morgan et al. Dec 2001 A1
20020019596 Eggers et al. Feb 2002 A1
20020019631 Kidder et al. Feb 2002 A1
20020022838 Cunningham et al. Feb 2002 A1
20020026145 Bagaoisan et al. Feb 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020049427 Wiener et al. Apr 2002 A1
20020058958 Walen May 2002 A1
20020087079 Culp et al. Jul 2002 A1
20020095199 West, Jr. et al. Jul 2002 A1
20020103485 Melnyk et al. Aug 2002 A1
20020111622 Khandkar et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020151886 Wood Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156471 Stern et al. Oct 2002 A1
20020173776 Batchelor et al. Nov 2002 A1
20020198519 Qin et al. Dec 2002 A1
20030004508 Morgan et al. Jan 2003 A1
20030014043 Henry et al. Jan 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030050633 Ellman et al. Mar 2003 A1
20030055421 West et al. Mar 2003 A1
20030061661 Borders et al. Apr 2003 A1
20030065321 Carmel et al. Apr 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030083655 Van Wyk May 2003 A1
20030088247 Ineson May 2003 A1
20030109864 Greep et al. Jun 2003 A1
20030109865 Greep et al. Jun 2003 A1
20030130663 Walen Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030163125 Greep Aug 2003 A1
20030199856 Hill et al. Oct 2003 A1
20030199866 Stern et al. Oct 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030212393 Knowlton et al. Nov 2003 A1
20030212397 Avrahami et al. Nov 2003 A1
20030216728 Stern et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220638 Metzger Nov 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20030229341 Albrecht et al. Dec 2003 A1
20030229343 Albrecht et al. Dec 2003 A1
20040000316 Knowlton et al. Jan 2004 A1
20040002704 Knowlton et al. Jan 2004 A1
20040002705 Knowlton et al. Jan 2004 A1
20040010246 Takahashi Jan 2004 A1
20040015160 Lovewell Jan 2004 A1
20040015161 Lovewell Jan 2004 A1
20040015162 McGaffigan Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040024396 Eggers Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040030367 Yamaki Feb 2004 A1
20040034346 Stern et al. Feb 2004 A1
20040054370 Given Mar 2004 A1
20040111087 Stern et al. Jun 2004 A1
20040124964 Wang et al. Jul 2004 A1
20040127889 Zhang et al. Jul 2004 A1
20040143677 Novak Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040162553 Peng et al. Aug 2004 A1
20040167512 Stoddard et al. Aug 2004 A1
20040172011 Wang et al. Sep 2004 A1
20040172015 Novak Sep 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040236323 Schoenman et al. Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20040267254 Manzo et al. Dec 2004 A1
20040267297 Malackowski Dec 2004 A1
20050033286 Eggers et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059967 Breazeale, Jr. et al. Mar 2005 A1
20050065510 Carmel et al. Mar 2005 A1
20050070891 DeSisto Mar 2005 A1
20050085804 McGaffigan Apr 2005 A1
20050096645 Wellman et al. May 2005 A1
20050096646 Wellman et al. May 2005 A1
20050096681 Desinger et al. May 2005 A1
20050113817 Isaacson et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113824 Sartor et al. May 2005 A1
20050113825 Cosmescu May 2005 A1
20050149001 Uchikubo et al. Jul 2005 A1
20050154385 Heim et al. Jul 2005 A1
20060041257 Sartor et al. Feb 2006 A1
20060058783 Buchman Mar 2006 A1
20060178667 Sartor et al. Aug 2006 A1
20070049926 Sartor Mar 2007 A1
20070093810 Sartor Apr 2007 A1
20070142832 Sartor Jun 2007 A1
Foreign Referenced Citations (23)
Number Date Country
24 29 021 Jan 1976 DE
24 60 481 Jun 1976 DE
30 45 996 Jul 1982 DE
0186369 Jul 1986 EP
1050277 Nov 2000 EP
1050279 Nov 2000 EP
1082945 Mar 2001 EP
1293171 Mar 2003 EP
1 645 233 Apr 2006 EP
1656900 May 2006 EP
1645234 Dec 2006 EP
1852078 Nov 2007 EP
2235669 Jan 1975 FR
2798579 Mar 2001 FR
WO 9420032 Sep 1994 WO
WO 9639086 Dec 1996 WO
WO 9843264 Oct 1998 WO
WO 0164122 Sep 2001 WO
WO 0247568 Jun 2002 WO
WO 2004010883 Feb 2004 WO
WO 2004045436 Jun 2004 WO
WO 2004073753 Sep 2004 WO
WO 2005060849 Jul 2005 WO
Related Publications (1)
Number Date Country
20070260239 A1 Nov 2007 US
Provisional Applications (1)
Number Date Country
60424352 Nov 2002 US
Divisions (1)
Number Date Country
Parent 10701796 Nov 2003 US
Child 11825821 US