Electrosurgical system and method having enhanced temperature measurement

Information

  • Patent Grant
  • 8696659
  • Patent Number
    8,696,659
  • Date Filed
    Friday, April 30, 2010
    14 years ago
  • Date Issued
    Tuesday, April 15, 2014
    10 years ago
Abstract
Electrosurgical systems and methods are described herein in which the temperature of a fluid within a body or joint space is determined and/or monitored despite the energy generated during treatment by an ablation probe. One or more temperature sensors are positioned along the probe proximally of the electrode assembly and measure the temperature of an electrically conductive fluid without being overly influenced by the surgical effect occurring proximate the electrode assembly. A controller automatically suspends energy delivery for one or more periods of time while the temperature is monitored.
Description
FIELD OF THE INVENTION

The present invention relates to systems and methods for measuring temperatures during electrosurgical procedures within a body space of a patient body, such as within a joint. More particularly, the present invention relates to methods and apparatus for measuring temperatures of an electrically conductive fluid within a body space during ablation, such as within a joint space, without being significantly influenced by the surgical effect initiated at the active electrode.


BACKGROUND OF THE INVENTION

The field of electrosurgery includes a number of loosely related surgical techniques which have in common the application of electrical energy to modify the structure or integrity of patient tissue. Electrosurgical procedures usually operate through the application of very high frequency currents to cut or ablate tissue structures, where the operation can be monopolar or bipolar. Monopolar techniques rely on a separate electrode for the return of RF current, that is placed away from the surgical site on the body of the patient, and where the surgical device defines only a single electrode pole that provides the surgical effect. Bipolar devices comprise both electrodes for the application of current between their surfaces.


Electrosurgical procedures and techniques are particularly advantageous since they generally reduce patient bleeding and trauma associated with cutting operations. Additionally, electrosurgical ablation procedures, where tissue surfaces and volume may be reshaped, cannot be duplicated through other treatment modalities.


Present electrosurgical techniques used for tissue ablation suffer from an inability to control the depth of necrosis in the tissue being treated. Most electrosurgical devices rely on creation of an electric arc between the treating electrode and the tissue being cut or ablated to cause the desired localized heating. Such arcs, however, often create very high temperatures causing a depth of necrosis greater than 500 μm, frequently greater than 800 μm, and sometimes as great as 1700 μm. The inability to control such depth of necrosis is a significant disadvantage in using electrosurgical techniques for tissue ablation, particularly in arthroscopic procedures for ablating and/or reshaping fibrocartilage, articular cartilage, meniscal tissue, and the like.


Generally, radiofrequency (RF) energy is extensively used during arthroscopic procedures because it provides efficient tissue resection and coagulation and relatively easy access to the target tissues through a portal or cannula. However, a typical phenomenon associated with the use of RF during these procedures is that the currents used to induce the surgical effect can result in heating of electrically conductive fluid used during the procedure to provide for the ablation and/or to irrigate the treatment site. If the temperature of this fluid were allowed to increase above a threshold temperature value, the heated fluid could result in undesired necrosis or damage to surrounding neuromuscular and/or soft tissue structures.


Previous attempts to mitigate these damaging effects have included either limiting the power output of the RF generator or to include a suction lumen on the distal tip of the electrosurgical device to continuously remove the affected fluid from the surgical site and thereby reduce the overall temperature. These solutions may be effective but are limited and they do not allow for direct feedback based upon the actual temperature of the fluid within the joint space. Furthermore, limiting the power output of the generator reduces the rate of the surgical effect, which is often unacceptable from a clinical perspective. The incorporation of a suction lumen to allow heated fluid to be removed also reduces the performance of the electrosurgical device.


There have been numerous RF based systems introduced into the market that make use of a temperature sensor (e.g., a thermocouple) in order to monitor the temperature of tissue at or near the electrode.


However, the temperature sensors are susceptible to electrical noise. Electrical noise may arise from a number of sources including, for example, (1) high frequency noise present on the electrical circuit used to measure the small voltages induced by the temperature sensor, namely, a thermocouple, or (2) resistive heating of the thermocouple junction arising from the delivery of the ablative energy to the tissue.


Filtering the measured signal to reject the high frequency components can generally remove the high frequency noise described above. However, the error arising from the resistive heating of the thermocouple junction is a physical phenomena that cannot be mitigated by filtering. An improved system and method to accurately monitor the temperature of the fluid is still desired.


SUMMARY OF THE INVENTION

During the electrosurgical ablation of tissue wherein an electrosurgical probe comprising a temperature sensor is positioned in electrically conductive fluid in the region of the target tissue, a controller is operative to receive a temperature signal from the temperature sensor positioned in the electrically conductive fluid. The controller is further operable to automatically suspend or reduce delivery of the high frequency energy to the active electrode terminal of the probe for one or more suspension periods. The controller monitors the temperature signal during the suspension periods. The temperature of the electrically conductive fluid at the target site is calculated or estimated by the controller based on the monitored temperature signal. During the suspension period, and while the energy is suspended or substantially lowered, the temperature signal stabilizes thereby enhancing temperature measurement.


The duration of the suspension period may be fixed, or varied and based on feedback from the procedure. In one embodiment the suspension period continues until the change in temperature is less than a threshold value. In another embodiment the suspension period is fixed at a value equal to or greater than 250 ms.


In another embodiment, the controller is operable to suspend delivery of high frequency energy for a plurality of suspension periods. The plurality of suspension periods are determined by the controller according to a suspension frequency (F) equal to the number of suspension periods per second. The suspension frequency (F) may be calculated or set by the controller using one or more techniques or algorithms. In one embodiment the controller is adapted to receive an input corresponding to a surgical procedure and the suspension frequency (F) is determined based on said input. In another embodiment the suspension frequency (F) is based on a power output. In another embodiment the suspension frequency (F) is based on the measured temperature and is increased when the measured temperature reaches a threshold temperature. Typically, the frequency (F) of temperature-monitoring periods shall be between ⅓ and 2.


In another embodiment, the controller includes a means to detachably and electrically couple with the electrosurgical probe. This may be in the form of an input jack, or receptacle. In another embodiment the controller includes a microprocessor for controlling the power supply and an analog-to-digital converter for converting the temperature signal to a digital signal readable by the microprocessor.


In another embodiment the system includes the electrosurgical probe and the probe comprises one or more fluid delivery and/or aspiration elements. The fluid delivery element directs fluid to the target site. The fluid delivery element is coupled to a pump which is operable to control fluid inflow to the target site. The controller is operable to control the pump and the fluid inflow in order to maintain the temperature of the fluid below a predetermined level. The system may also include a fluid aspiration lumen wherein the fluid aspiration lumen is a component of the electrosurgical probe.


In another embodiment, a method for ablating tissue at a target site comprises positioning a distal end of an electrosurgical instrument adjacent to the tissue to be treated. High frequency energy is applied by the instrument. The method further includes sensing a temperature of the electrically conductive fluid in the vicinity of the tissue and automatically adjusting or suspending the step of applying the high frequency energy while continuing to sense the temperature. Adjusting the energy delivery may be performed by, for example, substantially lowering or suspending the delivery of energy.


In the step of suspending applying high frequency energy, the duration of the suspension period may be fixed, vary, or based on feedback from the procedure. In one embodiment the suspension period continues until the change in temperature is less than a threshold value. In another embodiment the suspension period is fixed at a value equal to or greater than 250 ms.


In another embodiment, the step of suspending comprises suspending the applying step for plurality of suspension periods according to a suspension frequency (F). The suspension frequency (F) is at least 1 period every 3 seconds and less than 2 periods per second.


In another embodiment, the suspension frequency (F) is determined based on power output. In another embodiment, the suspension frequency (F) is determined based on receiving an input of a type of surgical procedure to be performed. In another embodiment, the suspension frequency (F) is determined based on sensing the temperature, and the suspension frequency (F) is increased once the temperature reaches a threshold limit.


The method may further include a step of circulating fluid to the target site at a flowrate adjusted by the controller. The measured temperature is compared to a desired temperature range and the flowrate is adjusted based on the measured temperature.


In another embodiment, the applying step forms a plasma in the vicinity of the active electrode terminal of the electrosurgical probe thereby causing ablation of the soft tissue.


In another embodiment, the method is performed wherein the target site is a joint.


The description, objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of the electrosurgical system including an electrosurgical probe and electrosurgical power supply.



FIG. 2 is side view of an electrosurgical probe according to the present embodiments.



FIG. 3 is a cross-sectional view of the electrosurgical probe of FIG. 2.



FIG. 4A is a perspective view of an embodiment of the active electrode for the probe of FIGS. 1 and 2.



FIG. 4B is a detailed view of the distal tip of the electrosurgical probe of FIGS. 1 and 2 incorporating the active screen electrode of FIG. 4A.



FIG. 5 illustrates a detailed view illustrating ablation of tissue.



FIG. 6A is a partial cross-sectional side view of a temperature sensor positioned along the shaft of an electrosurgical probe proximally of the electrode assembly.



FIG. 6B is a detail cross-sectional side view of a temperature sensor insulated via an adhesive.



FIG. 7 is a side view of another variation where multiple temperature sensors may be positioned about the shaft of an electrosurgical probe proximally of the electrode assembly.



FIG. 8 is a side view of yet another variation in which a temperature sensor may be integrated along the shaft of an electrosurgical probe.



FIG. 9 is a side view of yet another variation where a temperature sensor may be positioned within a fluid lumen of an electrosurgical probe to sense the fluid temperature immediately removed from the vicinity of the active electrode.



FIG. 10 is a schematic representation of a microcontroller within the controller which is coupled to the temperature sensor.



FIG. 11 is an illustrative graph showing how the microcontroller may be programmed comparing treatment time versus temperature.



FIG. 12 is an illustrative graph showing how the microcontroller may be programmed to indicate an alarm at a first temperature threshold and to cease further power upon the temperature reaching a second temperature threshold.



FIG. 13 is a schematic representation of a microcontroller and a fluid pump which may be used to control the inflow or outflow of fluids through an electrosurgical probe to control temperature.



FIG. 14A is an illustrative graph showing measured temperature rise and decline as the flow rate of the fluid is varied.



FIG. 14B is an illustrative graph showing increases in flow rate based upon the sensed temperature.



FIG. 15 is an illustrative graph showing energy output versus time.



FIG. 16 is an illustrative graph showing temperature versus time.





DETAILED DESCRIPTION OF THE INVENTION

Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.


Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.


All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.


Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Last, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


The treatment device of the present invention may have a variety of configurations. However, one variation of the device employs a treatment device using Coblation® technology.


The assignee of the present invention developed Coblation® technology. Coblation® technology involves the application of a high frequency voltage difference between one or more active electrode(s) and one or more return electrode(s) to develop high electric field intensities in the vicinity of the target tissue. The high electric field intensities may be generated by applying a high frequency voltage that is sufficient to vaporize an electrically conductive fluid over at least a portion of the active electrode(s) in the region between the tip of the active electrode(s) and the target tissue. The electrically conductive fluid may be a liquid or gas, such as isotonic saline, blood, extracelluar or intracellular fluid, delivered to, or already present at, the target site, or a viscous fluid, such as a gel, applied to the target site.


When the conductive fluid is heated enough such that atoms vaporize off the surface faster than they recondense, a gas is formed. When the gas is sufficiently heated such that the atoms collide with each other causing a release of electrons in the process, an ionized gas or plasma is formed (the so-called “fourth state of matter”). Generally speaking, plasmas may be formed by heating a gas and ionizing the gas by driving an electric current through it, or by shining radio waves into the gas. These methods of plasma formation give energy to free electrons in the plasma directly, and then electron-atom collisions liberate more electrons, and the process cascades until the desired degree of ionization is achieved. A more complete description of plasma can be found in Plasma Physics, by R. J. Goldston and P. H. Rutherford of the Plasma Physics Laboratory of Princeton University (1995), the complete disclosure of which is incorporated herein by reference.


As the density of the plasma or vapor layer becomes sufficiently low (i.e., less than approximately 1020 atoms/cm3 for aqueous solutions), the electron mean free path increases to enable subsequently injected electrons to cause impact ionization within the vapor layer. Once the ionic particles in the plasma layer have sufficient energy, they accelerate towards the target tissue. Energy evolved by the energetic electrons (e.g., 3.5 eV to 5 eV) can subsequently bombard a molecule and break its bonds, dissociating a molecule into free radicals, which then combine into final gaseous or liquid species. Often, the electrons carry the electrical current or absorb the radio waves and, therefore, are hotter than the ions. Thus, the electrons, which are carried away from the tissue towards the return electrode, carry most of the plasma's heat with them, allowing the ions to break apart the tissue molecules in a substantially non-thermal manner.


By means of this molecular dissociation (rather than thermal evaporation or carbonization), the target tissue structure is volumetrically removed through molecular disintegration of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. This molecular disintegration completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid within the cells of the tissue and extracellular fluids, as is typically the case with electrosurgical desiccation and vaporization. A more detailed description of this phenomena can be found in commonly assigned U.S. Pat. No. 5,697,882 the complete disclosure of which is incorporated herein by reference.


In some applications of the Coblation® technology, high frequency (RF) electrical energy is applied in an electrically conducting media environment to shrink or remove (i.e., resect, cut, or ablate) a tissue structure and to seal transected vessels within the region of the target tissue. Coblation® technology is also useful for sealing larger arterial vessels, e.g., on the order of about 1 mm in diameter. In such applications, a high frequency power supply is provided having an ablation mode, wherein a first voltage is applied to an active electrode sufficient to effect molecular dissociation or disintegration of the tissue, and a coagulation mode, wherein a second, lower voltage is applied to an active electrode (either the same or a different electrode) sufficient to heat, shrink, and/or achieve hemostasis of severed vessels within the tissue.


The amount of energy produced by the Coblation® device may be varied by adjusting a variety of factors, such as: the number of active electrodes; electrode size and spacing; electrode surface area; asperities and sharp edges on the electrode surfaces; electrode materials; applied voltage and power; current limiting means, such as inductors; electrical conductivity of the fluid in contact with the electrodes; density of the fluid; and other factors. Accordingly, these factors can be manipulated to control the energy level of the excited electrons. Since different tissue structures have different molecular bonds, the Coblation® device may be configured to produce energy sufficient to break the molecular bonds of certain tissue but insufficient to break the molecular bonds of other tissue. For example, fatty tissue (e.g., adipose) has double bonds that require an energy level substantially higher than 4 eV to 5 eV (typically on the order of about 8 eV) to break. Accordingly, the Coblation® technology generally does not ablate or remove such fatty tissue; however, it may be used to effectively ablate cells to release the inner fat content in a liquid form. Of course, factors may be changed such that these double bonds can also be broken in a similar fashion as the single bonds (e.g., increasing voltage or changing the electrode configuration to increase the current density at the electrode tips). A more complete description of this phenomena can be found in commonly assigned U.S. Pat. Nos. 6,355,032; 6,149,120 and 6,296,136, the complete disclosures of which are incorporated herein by reference.


The active electrode(s) of a Coblation® device may be supported within or by an inorganic insulating support positioned near the distal end of the instrument shaft. The return electrode may be located on the instrument shaft, on another instrument or on the external surface of the patient (i.e., a dispersive pad). The proximal end of the instrument(s) will include the appropriate electrical connections for coupling the return electrode(s) and the active electrode(s) to a high frequency power supply, such as an electrosurgical generator.


In one example of a Coblation® device for use with the embodiments disclosed herein, the return electrode of the device is typically spaced proximally from the active electrode(s) a suitable distance to avoid electrical shorting between the active and return electrodes in the presence of electrically conductive fluid. In many cases, the distal edge of the exposed surface of the return electrode is spaced about 0.5 mm to 25 mm from the proximal edge of the exposed surface of the active electrode(s), preferably about 1.0 mm to 5.0 mm. Of course, this distance may vary with different voltage ranges, conductive fluids, and depending on the proximity of tissue structures to active and return electrodes. The return electrode will typically have an exposed length in the range of about 1 mm to 20 mm.


A Coblation® treatment device for use according to the present embodiments may use a single active electrode or an array of active electrodes spaced around the distal surface of a catheter or probe. In the latter embodiment, the electrode array usually includes a plurality of independently current-limited and/or power-controlled active electrodes to apply electrical energy selectively to the target tissue while limiting the unwanted application of electrical energy to the surrounding tissue and environment resulting from power dissipation into surrounding electrically conductive fluids, such as blood, normal saline, and the like. The active electrodes may be independently current-limited by isolating the terminals from each other and connecting each terminal to a separate power source that is isolated from the other active electrodes. Alternatively, the active electrodes may be connected to each other at either the proximal or distal ends of the catheter to form a single wire that couples to a power source.


In one configuration, each individual active electrode in the electrode array is electrically insulated from all other active electrodes in the array within the instrument and is connected to a power source which is isolated from each of the other active electrodes in the array or to circuitry which limits or interrupts current flow to the active electrode when low resistivity material (e.g., blood, electrically conductive saline irrigant or electrically conductive gel) causes a lower impedance path between the return electrode and the individual active electrode. The isolated power sources for each individual active electrode may be separate power supply circuits having internal impedance characteristics which limit power to the associated active electrode when a low impedance return path is encountered. By way of example, the isolated power source may be a user selectable constant current source. In this embodiment, lower impedance paths will automatically result in lower resistive heating levels since the heating is proportional to the square of the operating current times the impedance. Alternatively, a single power source may be connected to each of the active electrodes through independently actuatable switches, or by independent current limiting elements, such as inductors, capacitors, resistors and/or combinations thereof. The current limiting elements may be provided in the instrument, connectors, cable, controller, or along the conductive path from the controller to the distal tip of the instrument. Alternatively, the resistance and/or capacitance may occur on the surface of the active electrode(s) due to oxide layers which form selected active electrodes (e.g., titanium or a resistive coating on the surface of metal, such as platinum).


The Coblation® device is not limited to electrically isolated active electrodes, or even to a plurality of active electrodes. For example, the array of active electrodes may be connected to a single lead that extends through the catheter shaft to a power source of high frequency current.


The voltage difference applied between the return electrode(s) and the active electrode(s) will be at high or radio frequency, typically between about 5 kHz and 20 MHz, usually being between about 30 kHz and 2.5 MHz, preferably being between about 50 kHz and 500 kHz, often less than 350 kHz, and often between about 100 kHz and 200 kHz. In some applications, applicant has found that a frequency of about 100 kHz is useful because the tissue impedance is much greater at this frequency. In other applications, such as procedures in or around the heart or head and neck, higher frequencies may be desirable (e.g., 400-600 kHz) to minimize low frequency current flow into the heart or the nerves of the head and neck.


The RMS (root mean square) voltage applied will usually be in the range from about 5 volts to 1000 volts, preferably being in the range from about 10 volts to 500 volts, often between about 150 volts to 400 volts depending on the active electrode size, the operating frequency and the operation mode of the particular procedure or desired effect on the tissue (i.e., contraction, coagulation, cutting or ablation.)


Typically, the peak-to-peak voltage for ablation or cutting with a square wave form will be in the range of 10 volts to 2000 volts and preferably in the range of 100 volts to 1800 volts and more preferably in the range of about 300 volts to 1500 volts, often in the range of about 300 volts to 800 volts peak to peak (again, depending on the electrode size, number of electrons, the operating frequency and the operation mode). Lower peak-to-peak voltages will be used for tissue coagulation, thermal heating of tissue, or collagen contraction and will typically be in the range from 50 to 1500, preferably 100 to 1000 and more preferably 120 to 400 volts peak-to-peak (again, these values are computed using a square wave form). Higher peak-to-peak voltages, e.g., greater than about 800 volts peak-to-peak, may be desirable for ablation of harder material, such as bone, depending on other factors, such as the electrode geometries and the composition of the conductive fluid.


As discussed above, the voltage is usually delivered in a series of voltage pulses or alternating current of time varying voltage amplitude with a sufficiently high frequency (e.g., on the order of 5 kHz to 20 MHz) such that the voltage is effectively applied continuously (as compared with, e.g., lasers claiming small depths of necrosis, which are generally pulsed about 10 Hz to 20 Hz). In addition, the duty cycle (i.e., cumulative time in any one-second interval that energy is applied) is on the order of about 50% for the present invention, as compared with pulsed lasers which typically have a duty cycle of about 0.0001%.


The preferred power source may deliver a high frequency current selectable to generate average power levels ranging from several milliwatts to tens of watts per electrode, depending on the volume of target tissue being treated, and/or the maximum allowed temperature selected for the instrument tip. The power source allows the user to select the voltage level according to the specific requirements of a particular neurosurgery procedure, cardiac surgery, arthroscopic surgery, dermatological procedure, ophthalmic procedures, open surgery or other endoscopic surgery procedure. For cardiac procedures and potentially for neurosurgery, the power source may have an additional filter, for filtering leakage voltages at frequencies below 100 kHz, particularly frequencies around 60 kHz. Alternatively, a power source having a higher operating frequency, e.g., 300 kHz to 600 kHz may be used in certain procedures in which stray low frequency currents may be problematic. A description of one suitable power source can be found in commonly assigned U.S. Pat. Nos. 6,142,992 and 6,235,020, the complete disclosure of both patents are incorporated herein by reference for all purposes.


The power source may be current limited or otherwise controlled so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. In a presently preferred embodiment of the present invention, current limiting inductors are placed in series with each independent active electrode, where the inductance of the inductor is in the range of 10 μH to 50,000 μH, depending on the electrical properties of the target tissue, the desired tissue heating rate and the operating frequency. Alternatively, capacitor-inductor (LC) circuit structures may be employed, as described previously in U.S. Pat. No. 5,697,909, the complete disclosure of which is incorporated herein by reference. Additionally, current-limiting resistors may be selected. Preferably, these resistors will have a large positive temperature coefficient of resistance so that, as the current level begins to rise for any individual active electrode in contact with a low resistance medium (e.g., saline irrigant or blood), the resistance of the current limiting resistor increases significantly, thereby minimizing the power delivery from said active electrode into the low resistance medium (e.g., saline irrigant or blood).


Moreover, other treatment modalities (e.g., laser, chemical, other RF devices, etc.) may be used in the inventive method either in place of the Coblation® technology or in addition thereto.


Referring now to FIG. 1, an exemplary electrosurgical system for resection, ablation, coagulation and/or contraction of tissue will now be described in detail. As shown, certain embodiments of the electrosurgical system generally include an electrosurgical probe 120 connected to a power supply 110 for providing high frequency voltage to one or more electrode terminals on probe 120. Probe 120 includes a connector housing 144 at its proximal end, which can be removably connected to a probe receptacle 132 of a probe cable 122. The proximal portion of cable 122 has a connector 134 to couple probe 120 to power supply 110 at receptacle 136. Power supply 110 has an operator controllable voltage level adjustment 138 to change the applied voltage level, which is observable at a voltage level display 140. Power supply 110 also includes one or more foot pedals 124 and a cable 126 which is removably coupled to a receptacle 130 with a cable connector 128. The foot pedal 124 may also include a second pedal (not shown) for remotely adjusting the energy level applied to electrode terminals 142, and a third pedal (also not shown) for switching between an ablation mode and a coagulation mode.


Referring now to FIG. 2, an electrosurgical probe 10 representative of the currently described embodiments includes an elongate shaft 13 which may be flexible or rigid, a handle 22 coupled to the proximal end of shaft 13 and an electrode support member 14 coupled to the distal end of shaft 13. Probe 10 includes an active electrode terminal 12 disposed on the distal tip of shaft 13. Active electrode 12 may be connected to an active or passive control network within a power supply and controller 110 (see FIG. 1) by means of one or more insulated electrical connectors (not shown). The active electrode 12 is electrically isolated from a common or return electrode 17 which is disposed on the shaft proximally of the active electrode 12, preferably being within 1 mm to 25 mm of the distal tip. Proximally from the distal tip, the return electrode 17 is generally concentric with the shaft of the probe 10. The support member 14 is positioned distal to the return electrode 17 and may be composed of an electrically insulating material such as epoxy, plastic, ceramic, glass or the like. Support member 14 extends from the distal end of shaft 13 (usually about 1 to 20 mm) and provides support for active electrode 12.


Referring now to FIG. 3, probe 10 may further include a suction lumen 20 for aspirating excess fluids, bubbles, tissue fragments, and/or products of ablation from the target site. Suction lumen 20 extends through support member 14 to a distal opening 21, and extends through shaft 13 and handle 22 to an external connector 24 (see FIG. 2) for coupling to a vacuum source. Typically, the vacuum source is a standard hospital pump that provides suction pressure to connector 24 and suction lumen 20. Handle 22 defines an inner cavity 18 that houses electrical connections 26 and provides a suitable interface for electrical connection to power supply/controller 110 via an electrical connecting cable 122 (see FIG. 1).


In certain embodiments, active electrode 12 may comprise an active screen electrode 40. Screen electrode 40 may have a variety of different shapes, such as the shapes shown in FIGS. 4A and 4B. Electrical connectors 48 (see FIG. 9) extend from connections 26 through shaft 13 to screen electrode 40 to electrically couple the active screen electrode 40 to the high frequency power supply 110 (see FIG. 1). Screen electrode 40 may comprise a conductive material, such as tungsten, titanium, molybdenum, platinum, or the like. Screen electrode 40 may have a diameter in the range of about 0.5 to 8 mm, preferably about 1 to 4 mm, and a thickness of about 0.05 to about 2.5 mm, preferably about 0.1 to 1 mm. Screen electrode 40 may comprise a plurality of apertures 42 configured to rest over the distal opening 21 of suction lumen 20. Apertures 42 are designed to allow for the passage of aspirated excess fluids, bubbles, and gases from the ablation site and are typically large enough to allow ablated tissue fragments to pass through into suction lumen 20. As shown, screen electrode 40 has a generally irregular shape which increases the edge to surface-area ratio of the screen electrode 40. A large edge to surface-area ratio increases the ability of screen electrode 40 to initiate and maintain a plasma layer in conductive fluid because the edges generate higher current densities, which a large surface area electrode tends to dissipate power into the conductive media.


In the representative embodiment shown in FIGS. 4A and 4B, screen electrode 40 includes a body 44 that rests over insulative support member 14 and the distal opening 21 to suction lumen 20. Screen electrode 40 further comprises at least five tabs 46 that may rest on, be secured to, and/or be embedded in insulative support member 14. In certain embodiments, electrical connectors 48 (see FIG. 9) extend through insulative support member 14 and are coupled (i.e., via adhesive, braze, weld, or the like) to one or more of tabs 46 in order to secure screen electrode 40 to the insulative support member 14 and to electrically couple screen electrode 40 to power supply 110 (see FIG. 1). Preferably, screen electrode 40 forms a substantially planar tissue treatment surface for smooth resection, ablation, and sculpting of the meniscus, cartilage, and other soft tissues. In reshaping cartilage and meniscus, the physician often desires to smooth the irregular, ragged surface of the tissue, leaving behind a substantially smooth surface. For these applications, a substantially planar screen electrode treatment surface is preferred.


Further details and examples of instruments which may be utilized herein are described in detail in U.S. Pat. Nos. 6,254,600; 6,557,559 and 7,241,293 which are incorporated herein by reference in their entirety.



FIG. 5 representatively illustrates in more detail the removal of a target tissue by use of an embodiment of a representative electrosurgical probe 50 according to the present disclosure. As shown, the high frequency voltage is sufficient to convert the electrically conductive fluid (not shown) between the target tissue 502 and active electrode terminal(s) 504 into an ionized vapor layer 512 or plasma. As a result of the applied voltage difference between electrode terminal(s) 504 and the target tissue 502 (i.e., the voltage gradient across the plasma layer 512), charged particles 515 in the plasma are accelerated. At sufficiently high voltage differences, these charged particles 515 gain sufficient energy to cause dissociation of the molecular bonds within tissue structures in contact with the plasma field. This molecular dissociation is accompanied by the volumetric removal (i.e., ablative sublimation) of tissue and the production of low molecular weight gases 514, such as oxygen, nitrogen, carbon dioxide, hydrogen and methane. The short range of the accelerated charged particles 515 within the tissue confines the molecular dissociation process to the surface layer to minimize damage and necrosis to the underlying tissue 520.


During the process, the gases 514 will be aspirated through a suction opening and suction lumen to a vacuum source (not shown). In addition, excess electrically conductive fluid, and other fluids (e.g., blood) will be aspirated from the target site 500 to facilitate the surgeon's view. During ablation of the tissue, the residual heat generated by the current flux lines 510 (typically less than 150° C.) between electrode terminals 504 and return electrode 511 will usually be sufficient to coagulate any severed blood vessels at the site. If not, the surgeon may switch the power supply (not shown) into the coagulation mode by lowering the voltage to a level below the threshold for fluid vaporization, as discussed above. This simultaneous hemostasis results in less bleeding and facilitates the surgeon's ability to perform the procedure.


Because of the energy generated and applied during treatment within the patient body with the above-described probe 10 or other variations thereof, difficulties arise in determining, monitoring, and/or limiting the actual temperature of electrically conductive fluid irrigating the treated body space, joint, or tissue region. Accordingly, probe 10 may include mechanisms for measuring a temperature of the electrically conductive fluid itself without being overly influenced by the surgical effect occurring at the active electrode 12. Turning to FIG. 6A, one embodiment is illustrated in the side view of probe 10 and the detail side view showing a temperature sensor 70 positioned along the probe shaft proximally of the return electrode 17. Temperature sensor 70 may comprise any number of sensors, e.g., thermocouple, thermistor, resistance temperature detector (RTD), etc. In particular, temperature sensor 70 may comprise a T-type thermocouple as these sensors are well-established for use in such probes.


To reduce or eliminate the temperature-monitoring influence from an active electrode 12 during tissue treatment, sensor 70 is desirably distanced from both the active electrode 12 and return electrode 17 and may accordingly be positioned proximally along the shaft 13 of probe 10. In the example shown, the distance L1 of sensor 70 removed from return electrode 17 is at least 5 mm but may also be less than or greater than this distance, as practicable. With sensor 70 positioned accordingly, the sensor 70 may measure the temperature of the infused electrically conductive fluid/irrigant surrounding the probe 10 and sensor 70 as the temperature of the fluid is indicative of the temperature of the surrounding tissue or joint space within which probe 10 may be positioned for treatment. The fluid temperature may thus be measured without regard to any energy generated by the current traveling between active electrode 12 and return electrode 17 of probe 10.


A method to improve temperature measurement and reduce noise includes adjusting (e.g., lowering or suspending) energy delivery for one or more periods of time while continuing to monitor the temperature signal. This may be performed, for example, using a controller 110 as shown and described in FIG. 10.


The controller determines the period of time that the RF energy is suspended. The period of time is preferably sufficient for the noise to diminish, and for the temperature measurement to stabilize. In one embodiment, the suspension period is set at a constant value equal to or greater than 100 ms, and more preferably equal to or greater than 250 ms.


The suspension period may also be determined as a function of time. The controller allows or permits the suspension period to continue until the temperature varies less than about 1 degree per 50 ms.


In one embodiment of the invention, the frequency (F) of the suspension periods (e.g., the number of periods per second) is determined by the controller. The frequency (F) may be a predetermined constant value. This value may be selected or programmed conservatively at, for example, 2 periods per second or more.


In another embodiment, the controller operates to determine the frequency of the suspension periods (F) based on the magnitude and/or variability of the temperature, or the power output measured in real time during a procedure. For example, in one embodiment of the invention, at high temperatures or power outputs the controller operates to increase the frequency of the suspension periods so that safety of the patient is not compromised. Similarly, when the temperature varies greatly, the controller operates to increase the frequency of both the temperature measurement and the suspension periods.


In another embodiment, the controller is programmed to receive an input signal from an operator corresponding to a type of procedure to be performed. The controller determines the frequency (F) of the suspension periods based on the type of procedure. For example, a procedure requiring coagulation would typically be associated with higher heat generation. The controller would thus increase the frequency of suspension periods or temperature-monitoring periods to increase the accuracy and safety of the procedure. Should a temperature of the electrically conductive fluid exceed a threshold temperature, the system would make adjustments to the power output or another component of the system in order to reduce the measured temperature.


In another embodiment, the controller includes a database containing a plurality of types of procedures, and a frequency and suspension period corresponding to each type of procedure. The controller receives an input procedure signal and automatically determines the frequency and suspension period according to a predetermined value from the database.


The above described frequency (F) typically is between one period every 500 ms to one period every 3000 ms. However, the invention is not intended to be limited as such except as where specifically stated in the appended claims.



FIGS. 15-16 illustrate a graphical representation of the application of energy and temperature versus time. FIG. 15 shows an RF output curve 300 representative of the application of voltage or RF output in bursts or pulses. The energy is applied for a period of time (e.g., an active period 304) and suspended for a period of time (suspension period 306). Curve 300 shows a plurality of suspension periods.



FIG. 16 shows an illustration of a temperature curve 310 including a plurality of noise areas 312 and noise-free areas 314. The noise areas and noise-free areas correspond to the active periods and suspension periods of FIG. 15 respectively.


As shown, the temperature stabilizes during the suspension periods 314. In contrast, during energy delivery periods 304 the temperature fluctuates greatly illustrating the benefits of periodically suspending application of energy while monitoring the temperature.


Temperature sensor 70 may be mounted directly upon the shaft as illustrated in FIG. 6A. However, certain embodiments of probe 10 may have a suction lumen (see FIG. 3) for aspirating fluid and ablative byproducts from the treatment site, wherein the inflow and/or outflow of fluid and gas through the underlying suction lumen may affect the temperature sensed by sensor 70. Thus, a thermally insulative layer 74 such as heat shrink tubing or other insulation (e.g., comprised of thermoplastics, such as polyolefin, polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), etc.) may be placed between the temperature sensor 70 and outer surface of shaft 13. Sensor 70 may be secured directly to the shaft 13 and/or underlying layer 74 via another insulative layer 76 overlying sensor 70 and conducting wire 72 coupled to sensor 70. This overlying insulative layer prevents the temperature of the surrounding fluid from effecting the measurement at sensor 70. The addition of the overlying layer 76, which may be comprised of any of the materials mentioned above, may also electrically isolate temperature sensor 70 from its surrounding saline environment to prevent or inhibit electrical noise from being introduced into the temperature measurement circuit. Overlying layer 76 may be adhesive lined to further isolate the sensor 70.


Additionally and/or alternatively, temperature sensor 70 may be isolated and secured to the underlying layer 74 by an adhesive 78, e.g., epoxy or cyanoacrylate glue, which may be adhered directly upon sensor 70, as illustrated in the detail side view of FIG. 6B.


In another embodiment, a side view of FIG. 7 shows a variation where multiple temperature sensors 70, e.g., greater than one sensor, may be positioned around the shaft 13 to obtain multiple readings of the fluid temperature. Although the multiple temperature sensors 70 may be uniformly positioned relative to one another about a circumference of shaft 13, they may be alternatively positioned at arbitrary locations as well. Moreover, each of the multiple sensors 70 may be positioned at differing distances L1 along shaft 13 from return electrode 17. In sensing the multiple fluid temperatures, each of the temperatures may be displayed to the user and/or alternatively they may be calculated to present an average temperature value to the user and/or the maximum of the measured values may be displayed.


In yet another variation, a side view of FIG. 8 shows another variation where temperature sensor 70 may be integrated along the shaft 13 such that sensor 70 may be recessed along the shaft surface and conducting wire 72 may be passed through a lumen (not shown) defined through probe 10. Sensor 70 may still be insulated from the shaft 13 and may also be insulated as described above. In such an embodiment, a hole through shaft 13 may be located at the location of sensor 70 to improve the accuracy of the measurement of the fluid external to shaft 13.


Referring now to FIG. 9, in yet another variation a representative probe 10 having a suction lumen 20 for aspirating electrically conductive fluid from the body or joint space, a temperature sensor 70 and conducting wire 72 may be alternatively positioned within the suction lumen 20 itself, as illustrated in the detail cross-sectional view of FIG. 9. In this example, a temperature of the electrically conductive fluid recently in the immediate vicinity of the active screen electrode 40 and then aspirated into suction lumen 20 may be measured as one method for determining a temperature-effect induced in nearby tissues due to the electrosurgical procedure. Such temperature measurements could be used to control the RF output in order to provide therapies where it may be desirable to elevate the temperature of the target tissue to a specific temperature range. This configuration may also yield temperature data that may be used to directly correlate the temperature of the target tissue from the aspirated conductive fluid/irrigant and thereby allow the user to get direct feedback of the actual temperature of the tissue and/or limit the RF output depending on preset limits or for a given procedure or tissue type.


Independently from or in addition to the temperature sensing mechanisms in or along the probe 10, the power supply/controller 110 may also be configured for determining and/or controlling a fluid temperature within the body or joint space under treatment. FIG. 10 shows a representative schematic of controller 110 with cable 122 coupled thereto. The one or more conducting wires from their respective temperature sensors may be routed through cable 122 and into electrical communication with analog-to-digital (ADC) converter 90 which may convert the output of the temperature sensor to a digital value for communication with microcontroller 92. The measured and converted temperature value may be compared by microcontroller 92 to a predetermined temperature limit pre-programmed or stored within microcontroller 92 such that if the measured temperature value of the conductive fluid irrigating the body or joint space exceeds this predetermined limit, an alarm or indicator may be generated and/or the RF output may be disabled or reduced. Additionally and/or alternatively, the microcontroller 92 may be programmed to set a particular temperature limit depending upon the type of device that is coupled to controller 110.


Furthermore, microcontroller 92 may also be programmed to allow the user to select from specific tissue or procedure types, e.g., ablation of cartilage or coagulation of soft tissues, etc. Each particular tissue type and/or procedure may have a programmed temperature limit pre-set in advance depending upon the sensitivity of the particular anatomy to injury due to an elevation in temperature.


In additional variations, the microcontroller 92 may be programmed to monitor the exposure of a body or joint space to a specific elevated fluid temperature level rather than limiting the treatment temperature upon the instantaneous measured temperature value. For example, as the fluid treatment temperature increases, tissue necrosis typically occurs more rapidly; thus, microcontroller 92 may be programmed to generate an alarm or indication based upon a combination of time-temperature exposure. An exemplary chart 200 is illustrated in FIG. 11 which shows first temperature plot 202 indicating treatment of a body or joint space exposed to a irrigating conductive fluid at a first elevated temperature level. Because of the relatively elevated fluid treatment temperature, the treatment time may be limited to a first predetermined time 204 by microcontroller 92 which may shut off or reduce the power level automatically. This is compared to second temperature plot 206 indicating treatment of a body or joint space exposed to a irrigating conductive fluid at a second elevated temperature level which is less than first temperature plot 202. Because of the lower relative temperature, tissue necrosis may occur at a relatively slower rate allowing the treatment time to be extended by microcontroller 92 to a relative longer time period to second predetermined time 208.


In yet another variation, microcontroller 92 may be programmed to incorporate a set of multiple progressive temperature limits, as shown in the exemplary chart of FIG. 12. A first temperature limit 212 may be programmed whereby if the measured temperature rise 210 of the irrigating conductive fluid in the body or joint space exceeded first limit 212, an alarm or indication may be automatically generated by microcontroller 92 to alert the user. A second temperature limit 214 may also be programmed whereby if the measured temperature 210 of the irrigating conductive fluid in the body or joint space exceeded the second limit 214, microcontroller 92 may be programmed to reduce or deactivate the RF output of active electrode 12 to mitigate the risk of injury to the patient.


Additionally and/or alternatively, controller 110 may be further configured to interface directly with a fluid pump, e.g., an arthroscopy saline pump 220 which provides a controlled in-flow of electrically conductive fluid (e.g., saline) to the body or joint space. Such a fluid pump 220 may be configured to provide control of both electrically conductive fluid in-flow to the body or joint space as well as out-flow from the body or joint space, as shown in the schematic illustration of FIG. 13. As illustrated, pump 220 may be electrically coupled to pump controller 222 which in turn may be in communication with microcontroller 92. Pump 220 may be further fluidly coupled to fluid reservoir 224 which holds the electrically conductive fluid and/or an empty reservoir (not shown) for receiving evacuated electrically conductive fluid from the body or joint space.


The measured temperature 230 of fluid within the body or joint space may be monitored and utilized as a control parameter for the fluid pump 220 whereby the fluid in-flow and/or out-flow may be regulated to maintain a temperature of the body or joint space within a specified range or below a temperature limit where potential injury could occur. An example of this is illustrated in the chart of FIG. 14A, which shows the measured temperature 230 of fluid within the body or joint space increasing towards a pre-programmed temperature limit 232. Once the measured temperature 230 has approached 234, 236 or exceeded this limit 232, the fluid pump 220 flow rate may be automatically increased by microcontroller 92 from a first pump flow rate 240 to a second increased flow rate 242 until the measured temperature 230 decreases, at which point the pump flow rate may be automatically decreased to the first pump flow rate 240, as indicated in FIG. 14B. This temperature moderation may be continued by cycling the flow rates between an initial level and an increased level for the duration of the procedure if so desired. Alternatively, the out-flow rate may be increased to remove any heated fluid to lower the temperature of fluid within the body or joint space.


Other modifications and variations can be made to the disclosed embodiments without departing from the subject invention. For example, other uses or applications are possible. Similarly, numerous other methods of controlling or characterizing instruments or otherwise treating tissue using electrosurgical probes will be apparent to the skilled artisan. Moreover, the instruments and methods described herein may be utilized in instruments for various regions of the body (e.g., shoulder, knee, etc.) and for other tissue treatment procedures (e.g., chondroplasty, menectomy, etc.). Thus, while the exemplary embodiments have been described in detail, by way of example and for clarity of understanding, a variety of changes, adaptations, and modifications will be obvious to those of skill in the art. Therefore, the scope of the present invention is limited solely by the appended claims.


While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present teachings, including equivalent structures or materials hereafter thought of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. An electrosurgical method for monitoring temperature during an electrosurgical procedure to ablate soft tissue comprising: delivering high frequency energy to an active electrode terminal located at a distal end of an electrosurgical probe, said active electrode terminal being positioned in electrically conductive fluid during the electrosurgical procedure and wherein a current flow path from the active electrode terminal, through the electrically conductive fluid, to a return electrode is created when the high frequency energy is delivered;monitoring a temperature signal indicative of a temperature of the electrically conductive fluid;automatically suspending the delivering step for at least one suspension period;during the at least one suspension period, measuring or calculating the temperature of the electrically conductive fluid from the temperature signal; andrepeating the step of delivering upon completion of the at least one suspension period, wherein the at least one suspension period has a duration sufficient for an electrical noise associated with the step of delivering the high frequency energy to diminish and to allow the temperature signal to stabilize.
  • 2. The method of claim 1 wherein said at least one suspension period is at least 250 ms.
  • 3. The method of claim 1 further comprising: circulating the electrically conductive fluid to a target site at a flowrate;comparing the temperature signal indicative of the temperature of the electrically conductive fluid to a desired temperature range; andadjusting the flowrate based on the measured or calculated temperature of the electrically conductive fluid.
  • 4. The method of claim 1 wherein said delivering step forms a plasma in the vicinity of the active electrode terminal.
  • 5. The method of claim 1 wherein said soft tissue is within a joint.
  • 6. The method of claim 1 wherein said automatically suspending step is performed by reducing the high frequency energy so as to reduce an applied voltage difference between the active electrode terminal and the return electrode to less than 100 volts.
  • 7. An electrosurgical method for monitoring temperature during an electrosurgical procedure to ablate soft tissue comprising: delivering high frequency energy to an active electrode terminal located at a distal end of an electrosurgical probe, said active electrode terminal being positioned in electrically conductive fluid during the electrosurgical procedure and wherein a current flow path from the active electrode terminal, through the electrically conductive fluid, to a return electrode is created when the high frequency energy is delivered;adjusting the high frequency energy for at least one suspension period;during the at least one suspension period, monitoring a temperature signal indicative of the temperature of the electrically conductive fluid; andrepeating the step of delivering upon completion of the at least one suspension period, wherein the at least one suspension period has a duration sufficient for an electrical noise associated with the step of delivering the high frequency energy to diminish and to allow the temperature signal to stabilize.
  • 8. The method of claim 7 wherein the step of adjusting is done automatically by a controller in electrical communication with the electrosurgical probe.
  • 9. The method of claim 7 wherein adjusting the high frequency energy comprises suspending the high frequency energy delivery for the at least one suspension period.
  • 10. The method of claim 7 wherein adjusting the high frequency energy comprises reducing the high frequency energy delivery for the at least one suspension period.
  • 11. The method of claim 7 wherein monitoring the temperature signal indicative of the temperature of the electrically conductive fluid further comprises measuring or calculating a sensed temperature of the electrically conductive fluid.
US Referenced Citations (547)
Number Name Date Kind
2050904 Trice Aug 1936 A
2056377 Wappler Oct 1939 A
2275167 Bierman Mar 1942 A
3633425 Sanford Jan 1972 A
3699967 Anderson Oct 1972 A
3812858 Oringer May 1974 A
3815604 O'Malley et al. Jun 1974 A
3828780 Morrison, Jr. et al. Aug 1974 A
3901242 Storz Aug 1975 A
3920021 Hiltebrandt Nov 1975 A
3939839 Curtiss Feb 1976 A
3945375 Banko Mar 1976 A
3970088 Morrison Jul 1976 A
4033351 Hetzel Jul 1977 A
4040426 Morrison, Jr. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4092986 Schneiderman Jun 1978 A
4116198 Roos Sep 1978 A
4181131 Ogiu Jan 1980 A
4184492 Meinke et al. Jan 1980 A
4202337 Hren et al. May 1980 A
4203444 Bonnell et al. May 1980 A
4228800 Degler, Jr. et al. Oct 1980 A
4232676 Herczog Nov 1980 A
4240441 Khalil Dec 1980 A
4248231 Herczog et al. Feb 1981 A
4269174 Adair May 1981 A
4326529 Doss et al. Apr 1982 A
4381007 Doss Apr 1983 A
4411266 Cosman Oct 1983 A
4429694 McGreevy Feb 1984 A
4474179 Koch Oct 1984 A
4476862 Pao Oct 1984 A
4483338 Bloom et al. Nov 1984 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4582057 Auth et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4641649 Walinsky Feb 1987 A
4658817 Hardy Apr 1987 A
4660571 Hess et al. Apr 1987 A
4674499 Pao Jun 1987 A
4682596 Bales et al. Jul 1987 A
4706667 Roos Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4719914 Johnson Jan 1988 A
4727874 Bowers et al. Mar 1988 A
4736743 Diakuzono Apr 1988 A
4737678 Hasegawa Apr 1988 A
4762128 Rosenbluth Aug 1988 A
4765331 Petruzzi et al. Aug 1988 A
4785806 Deckelbaum Nov 1988 A
4785823 Eggers et al. Nov 1988 A
4805616 Pao Feb 1989 A
4813429 Eshel et al. Mar 1989 A
4823791 D'Amelio et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4832048 Cohen May 1989 A
4860752 Turner Aug 1989 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4920978 Colvin May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936301 Rexroth et al. Jun 1990 A
4940064 Desai Jul 1990 A
4943290 Rexroth et al. Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4966597 Cosman Oct 1990 A
4967765 Turner et al. Nov 1990 A
4968314 Michaels Nov 1990 A
4976709 Sand Dec 1990 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5007437 Sterzer Apr 1991 A
5007908 Rydell Apr 1991 A
5009656 Reimels Apr 1991 A
5035696 Rydell Jul 1991 A
5037421 Boutacoff et al. Aug 1991 A
5047026 Rydell Sep 1991 A
5047027 Rydell Sep 1991 A
5057105 Malone et al. Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5061266 Hakky Oct 1991 A
5078717 Parins et al. Jan 1992 A
5080660 Buelna Jan 1992 A
5083565 Parins Jan 1992 A
5084044 Quint Jan 1992 A
5084045 Helenowski Jan 1992 A
5085659 Rydell Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5092339 Geddes et al. Mar 1992 A
5093877 Aita et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5099840 Goble Mar 1992 A
5102410 Dressel Apr 1992 A
5103804 Abele et al. Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5112330 Nishigaki et al. May 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5137530 Sand Aug 1992 A
5147354 Boutacoff et al. Sep 1992 A
5151098 Loertscher Sep 1992 A
5156151 Imran Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5176528 Fry et al. Jan 1993 A
5178620 Eggers et al. Jan 1993 A
5190517 Zieve et al. Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5192280 Parins Mar 1993 A
5195959 Smith Mar 1993 A
5197466 Marchosky et al. Mar 1993 A
5197963 Parins Mar 1993 A
5207675 Canady May 1993 A
5217455 Tan Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217459 Kamerling Jun 1993 A
5230334 Klopotek Jul 1993 A
5234428 Kaufman Aug 1993 A
5246438 Langberg Sep 1993 A
5249585 Turner et al. Oct 1993 A
5261410 Alfano et al. Nov 1993 A
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5269794 Rexroth Dec 1993 A
5273524 Fox et al. Dec 1993 A
5277201 Stern Jan 1994 A
5277696 Hagen Jan 1994 A
5279299 Imran Jan 1994 A
5281216 Klicek Jan 1994 A
5281218 Imran Jan 1994 A
5282797 Chess Feb 1994 A
5282799 Rydell Feb 1994 A
5290273 Tan Mar 1994 A
5290282 Casscells Mar 1994 A
5293868 Nardella Mar 1994 A
5295956 Bales et al. Mar 1994 A
5300069 Hunsberger et al. Apr 1994 A
5300099 Rudie Apr 1994 A
5301687 Wong et al. Apr 1994 A
5304169 Sand Apr 1994 A
5304170 Green Apr 1994 A
5306238 Fleenor Apr 1994 A
5312395 Tan et al. May 1994 A
5312400 Bales et al. May 1994 A
5314406 Arias et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5322507 Costello et al. Jun 1994 A
5324254 Phillips Jun 1994 A
5330470 Hagen Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5334140 Philips Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5335668 Nardella Aug 1994 A
5336217 Buys et al. Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5342357 Nardella Aug 1994 A
5348554 Imran et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5370642 Keller Dec 1994 A
5370644 Langberg Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5374261 Yoon Dec 1994 A
5374265 Sand Dec 1994 A
5375588 Yoon Dec 1994 A
5380277 Phillips Jan 1995 A
5380316 Aita Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5389096 Aita Feb 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5419767 Eggers et al. May 1995 A
5423803 Tankovich et al. Jun 1995 A
5423810 Goble et al. Jun 1995 A
5423844 Miller Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5436566 Thompson et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5437664 Cohen et al. Aug 1995 A
5438302 Goble Aug 1995 A
5441499 Fritzsch Aug 1995 A
5445634 Keller Aug 1995 A
5451224 Goble et al. Sep 1995 A
5454809 Janssen Oct 1995 A
5458596 Lax et al. Oct 1995 A
5462545 Wang et al. Oct 1995 A
5484435 Fleenor et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5490850 Ellman et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5496317 Goble et al. Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5514130 Baker May 1996 A
5520685 Wojciechowicz May 1996 A
5536267 Edwards et al. Jul 1996 A
5542928 Evans et al. Aug 1996 A
5545161 Imran Aug 1996 A
5554152 Aita Sep 1996 A
5556397 Long et al. Sep 1996 A
5562703 Desai Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5579764 Goldreyer Dec 1996 A
5584872 LaFontaine et al. Dec 1996 A
5607391 Klinger et al. Mar 1997 A
5607421 Jeevanandam et al. Mar 1997 A
5609151 Mulier et al. Mar 1997 A
5626576 Janssen May 1997 A
5633578 Eggers et al. May 1997 A
5643255 Organ Jul 1997 A
5647869 Goble et al. Jul 1997 A
5653692 Masterson et al. Aug 1997 A
5660836 Knowlton Aug 1997 A
5662680 Desai Sep 1997 A
5676693 LaFontaine et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5713896 Nardella Feb 1998 A
5725524 Mulier et al. Mar 1998 A
5743870 Edwards Apr 1998 A
5743903 Stern et al. Apr 1998 A
5746746 Garito et al. May 1998 A
5749869 Lindenmeier et al. May 1998 A
5755753 Knowlton May 1998 A
5766153 Eggers et al. Jun 1998 A
5769843 Abela et al. Jun 1998 A
5769847 Panescu et al. Jun 1998 A
5782795 Bays Jul 1998 A
5785705 Baker Jul 1998 A
5800429 Edwards Sep 1998 A
5800431 Brown Sep 1998 A
5807384 Mueller Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810809 Rydell Sep 1998 A
5836875 Webster, Jr. Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843078 Sharkey Dec 1998 A
5855277 Apps et al. Jan 1999 A
5860951 Eggers Jan 1999 A
5860974 Abele Jan 1999 A
5860975 Goble et al. Jan 1999 A
5871469 Eggers et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5876398 Mulier et al. Mar 1999 A
5885277 Korth Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5895386 Odell et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5902272 Eggers et al. May 1999 A
5904681 West, Jr. May 1999 A
5906613 Mulier et al. May 1999 A
5919219 Knowlton Jul 1999 A
5944715 Goble et al. Aug 1999 A
5954716 Sharkey et al. Sep 1999 A
5964754 Osypka Oct 1999 A
5976127 Lax Nov 1999 A
5980516 Mulier et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
5984919 Hilal et al. Nov 1999 A
6004319 Goble et al. Dec 1999 A
6007533 Casscells et al. Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6016809 Mulier et al. Jan 2000 A
6024733 Eggers et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030383 Benderev Feb 2000 A
6032673 Savage et al. Mar 2000 A
6032674 Eggers et al. Mar 2000 A
6039734 Goble et al. Mar 2000 A
6042580 Simpson Mar 2000 A
6045532 Eggers et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056746 Goble et al. May 2000 A
6063079 Hovda et al. May 2000 A
6063081 Mulier et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068628 Fanton et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6090106 Goble et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093186 Goble et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6110169 Mueller et al. Aug 2000 A
6117109 Eggers et al. Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6156031 Aita et al. Dec 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6168593 Sharkey et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210405 Goble et al. Apr 2001 B1
6214001 Casscells et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228078 Eggers May 2001 B1
6228081 Goble May 2001 B1
6234178 Goble et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6235023 Lee et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6254600 Willink et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6267757 Aita et al. Jul 2001 B1
6270460 McCartan et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6302903 Mulier et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6308089 von der Rur et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6312429 Burbank et al. Nov 2001 B1
6315774 Daniel et al. Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328736 Mulier et al. Dec 2001 B1
6336926 Goble Jan 2002 B1
6346107 Cucin Feb 2002 B1
6355006 Ryaby et al. Mar 2002 B1
6355032 Hovda et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6379350 Sharkley et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6391025 Weinstein et al. May 2002 B1
6391028 Fanton et al. May 2002 B1
6398781 Gobel et al. Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6432105 Ellman et al. Aug 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6491690 Gobel et al. Dec 2002 B1
6497705 Comben Dec 2002 B2
6497706 Burbank et al. Dec 2002 B1
6510854 Gobel Jan 2003 B2
6514250 Jahns et al. Feb 2003 B1
6517498 Burbank et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6530922 Cosman Mar 2003 B2
6540741 Underwood et al. Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6575968 Eggers et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6578579 Burnside Jun 2003 B2
6582423 Thapliyal et al. Jun 2003 B1
6589237 Woloszko et al. Jul 2003 B2
6595990 Weinstein et al. Jul 2003 B1
6597950 Linder et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6605085 Edwards Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6620156 Garito et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6632230 Barry Oct 2003 B2
6645203 Sharkey et al. Nov 2003 B2
6663628 Peters Dec 2003 B2
6695839 Sharkey et al. Feb 2004 B2
6699206 Burbank et al. Mar 2004 B2
6699244 Carranza et al. Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6746447 Davison et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6749608 Garito et al. Jun 2004 B2
6763836 Tasto et al. Jul 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6796982 Carmel et al. Sep 2004 B2
6802842 Ellman et al. Oct 2004 B2
6805130 Tasto et al. Oct 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6855143 Davison et al. Feb 2005 B2
6896674 Woloszko et al. May 2005 B1
6904303 Phan et al. Jun 2005 B2
6920883 Bessette et al. Jul 2005 B2
6929640 Underwood et al. Aug 2005 B1
6949096 Davison et al. Sep 2005 B2
6960204 Eggers et al. Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6979332 Adams Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7041102 Truckai et al. May 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7090672 Underwood et al. Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7104986 Hovda et al. Sep 2006 B2
7131969 Hovda et al. Nov 2006 B1
7150747 McDonald et al. Dec 2006 B1
7169143 Eggers et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7201750 Eggers et al. Apr 2007 B1
7217268 Eggers et al. May 2007 B2
7241293 Davison Jul 2007 B2
7258690 Sutton et al. Aug 2007 B2
7261712 Burbank et al. Aug 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Hovda et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Ormsby et al. Nov 2007 B2
7318823 Sharps et al. Jan 2008 B2
7331956 Hovda et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7357798 Sharps et al. Apr 2008 B2
7387625 Hovda et al. Jun 2008 B2
7419488 Ciarrocca et al. Sep 2008 B2
7429260 Underwood et al. Sep 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7445618 Eggers et al. Nov 2008 B2
7449021 Underwood et al. Nov 2008 B2
7462178 Woloszko et al. Dec 2008 B2
7468059 Eggers et al. Dec 2008 B2
7488295 Burbank et al. Feb 2009 B2
7491200 Underwood et al. Feb 2009 B2
7507236 Eggers et al. Mar 2009 B2
7572251 Davison et al. Aug 2009 B1
7632267 Dahla Dec 2009 B2
7691101 Davison et al. Apr 2010 B2
7704249 Woloszko et al. Apr 2010 B2
7708733 Sanders et al. May 2010 B2
7776034 Kampa Aug 2010 B2
7819863 Eggers et al. Oct 2010 B2
8038670 McClurken Oct 2011 B2
8317786 Dahla et al. Nov 2012 B2
8323279 Dahla et al. Dec 2012 B2
20010001314 Davison et al. May 2001 A1
20020029036 Goble et al. Mar 2002 A1
20020049438 Sharkey et al. Apr 2002 A1
20020072739 Lee et al. Jun 2002 A1
20030013986 Saadat Jan 2003 A1
20030036753 Morgan et al. Feb 2003 A1
20030088245 Woloszko et al. May 2003 A1
20030097129 Davison et al. May 2003 A1
20030130655 Woloszko et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030171743 Tasto et al. Sep 2003 A1
20030208196 Stone Nov 2003 A1
20030212396 Eggers et al. Nov 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040127893 Hovda Jul 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050004634 Hovda et al. Jan 2005 A1
20050261754 Woloszko et al. Nov 2005 A1
20050288665 Woloszko et al. Dec 2005 A1
20060036237 Davison et al. Feb 2006 A1
20060095031 Ormsby May 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060189971 Eggers et al. Aug 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20070106288 Woloszko et al. May 2007 A1
20070149965 Gallo et al. Jun 2007 A1
20070149966 Dahla et al. Jun 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070208334 Woloszko et al. Sep 2007 A1
20070208335 Woloszko et al. Sep 2007 A1
20070282323 Woloszko et al. Dec 2007 A1
20080021447 Davison et al. Jan 2008 A1
20080167645 Woloszko Jul 2008 A1
20080167646 Godara et al. Jul 2008 A1
20080234673 Marion et al. Sep 2008 A1
20080300590 Horne et al. Dec 2008 A1
20090069807 Eggers et al. Mar 2009 A1
20090138011 Epstein May 2009 A1
20090209958 Davison et al. Aug 2009 A1
20100042095 Bigley et al. Feb 2010 A1
20100152724 Marion et al. Jun 2010 A1
20100204690 Bigley et al. Aug 2010 A1
20120179157 Frazier et al. Jul 2012 A1
20130116689 Marion May 2013 A1
Foreign Referenced Citations (113)
Number Date Country
2521719 Nov 1976 DE
3930451 Mar 1991 DE
4425015 Jan 1996 DE
296 09 350 Aug 1996 DE
195 37 084 Apr 1997 DE
296 19 029 Apr 1997 DE
19850671 May 1999 DE
10254668 Jun 2004 DE
69822877 Jan 2005 DE
202008000276 Jun 2008 DE
102009057921 Jun 2010 DE
0 502 268 Sep 1992 EP
0 515 867 Dec 1992 EP
543123 May 1993 EP
0 597 463 May 1994 EP
774926 Mar 1995 EP
0 650 701 May 1995 EP
0703461 Mar 1996 EP
0740926 Nov 1996 EP
0754437 Jan 1997 EP
923907 Jun 1999 EP
0694290 Nov 2000 EP
1149564 Oct 2001 EP
1041933 Mar 2004 EP
2313949 Jan 1977 FR
2037167 Jul 1980 GB
2 308 979 Jul 1997 GB
2 308 980 Jul 1997 GB
2 308 981 Jul 1997 GB
2 327 350 Jan 1999 GB
2 327 351 Jan 1999 GB
2 327 352 Jan 1999 GB
2331247 May 1999 GB
2379878 Mar 2003 GB
2408936 Jun 2005 GB
57-57802 Apr 1982 JP
57-117843 Jul 1982 JP
57-183850 Nov 1982 JP
63-40099 Aug 1988 JP
9-501328 Feb 1997 JP
9003152 Apr 1990 WO
9007303 Jul 1990 WO
9113650 Sep 1991 WO
9221278 Dec 1992 WO
9313816 Jul 1993 WO
9320747 Oct 1993 WO
9403134 Feb 1994 WO
9404220 Mar 1994 WO
9408654 Apr 1994 WO
9410924 May 1994 WO
9414383 Jul 1994 WO
9426228 Nov 1994 WO
9505780 Mar 1995 WO
9505781 Mar 1995 WO
9505867 Mar 1995 WO
9510326 Apr 1995 WO
9530373 Nov 1995 WO
9534259 Dec 1995 WO
9600042 Jan 1996 WO
9607360 Mar 1996 WO
9634568 Nov 1996 WO
9635469 Nov 1996 WO
9639914 Dec 1996 WO
9639962 Dec 1996 WO
9639964 Dec 1996 WO
9639965 Dec 1996 WO
9639967 Dec 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9715238 May 1997 WO
9718765 May 1997 WO
9724073 Jul 1997 WO
9724074 Jul 1997 WO
9724992 Jul 1997 WO
9724993 Jul 1997 WO
9724994 Jul 1997 WO
9725101 Jul 1997 WO
9732551 Sep 1997 WO
9733523 Sep 1997 WO
9734540 Sep 1997 WO
9741786 Nov 1997 WO
9744071 Nov 1997 WO
9748345 Dec 1997 WO
9748346 Dec 1997 WO
9807468 Feb 1998 WO
9814131 Apr 1998 WO
9817185 Apr 1998 WO
9817186 Apr 1998 WO
9827877 Jul 1998 WO
9827879 Jul 1998 WO
9827880 Jul 1998 WO
9830144 Jul 1998 WO
9834550 Aug 1998 WO
9834558 Aug 1998 WO
9838925 Sep 1998 WO
9839038 Sep 1998 WO
9900060 Jan 1999 WO
9920185 Apr 1999 WO
9942037 Aug 1999 WO
9944506 Sep 1999 WO
9951155 Oct 1999 WO
9951158 Oct 1999 WO
0009053 Feb 2000 WO
0126570 Apr 2001 WO
0187154 May 2001 WO
0195819 Dec 2001 WO
0236028 May 2002 WO
02078557 Oct 2002 WO
03024339 Mar 2003 WO
2005125287 Dec 2005 WO
2008073727 Jun 2008 WO
2009094392 Jul 2009 WO
2011071482 Jun 2011 WO
Non-Patent Literature Citations (111)
Entry
Buchelt, et al. “Excimer Laser Ablation of Fibrocartilage: An In Vitro and In Vivo Study”, Lasers in Surgery and Medicine, vol. 11, pp. 271-279, 1991.
Costello et al., “Nd: YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy”, Lasers in Surgery and Medicine, vol. 12, pp. 121-124, 1992.
Hardy et al., “Regional Myocardial Blood Flow and Cardiac mechanics in dog Hearts with CO2 laser-induced Intramyocardial Revascularization”, Basic Research in cardiology 85:179-196 (1990).
Mirhoseini et al., “New Concepts in Revascularization of the Myocardium”, Ann Thorac Surg 45:415-420 (1988).
Mirhoseini et al., “Revascularization of the heart by Laser”, J. of Microsurgery 2:253-260 (1981).
Mirhoseini et al., “Transmyocardial Laser Revascularization: A Review”, J. of Clinical Laser medicine & Surgery 11 (1) :15-19 (1993).
Mirhoseini et al., “Transventricular Revascularization by Laser”, Lasers in Surgery and Medicine 2:187-198 (1982).
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pp. 242-246, 1985.
Walter et al., “Treatment of Acute Mycardial Infarction by Transmural Blood Supply from the Ventricular Cavity”, Erop. Surgery Res. 3:130-138 (1971).
Whittaker et al., “Transmural Channels Can Protect Ischemic Tissue”, Circulation 93(1):143-152 Jan. 1, 1996.
EP Search Report for EP01124768 2 pgs, Nov. 30, 2001.
EP Search Report for EP01935650 10 pgs, Mailed Jul. 26, 2006.
EP Search Report for EP01935650 8 pgs, Mailed May 3, 2005.
EP Search Report for EP02768969 3 pgs, Mailed Feb. 12, 2007.
EP Search Report for EP03762238 3 pgs, Mailed Jun. 2, 2006.
EP Search Report for EP94916716 2 pgs, Oct. 29, 1996.
EP Search Report for EP96941386 2 pgs, Nov. 27, 1998.
EP Search Report for EP98952032 2 pgs, Nov. 24, 2000.
EP Search Report for EP 03736488 3 pgs, Mailed Jun. 25, 2009.
PCT International Search Report for PCT/US00/07718 1 pg, Mailed Sep. 5, 2000.
PCT International Search Report for PCT/US01/16006 1 pg, Mailed Aug. 14, 2001.
PCT International Search Report for PCT/US02/31640 1 pg, Mailed May 23, 2003.
PCT International Search Report for PCT/US03/04689 1 pg, Mailed Sep. 26, 2003.
PCT International Search Report for PCT/US03/12790 1 pg, Mailed Aug. 12, 2003.
PCT International Search Report for PCT/US03/20574 1 pg, Mailed May 25, 2005.
PCT International Search Report for PCT/US04/22803 1 pg, Mailed Apr. 29, 2005.
PCT International Search Report for PCT/US05/07038 1 pg, Mailed Sep. 2, 2005.
PCT International Search Report for PCT/US94/05168, 1 pg, Mailed Oct. 18, 1994.
PCT International Search Report for PCT/US96/18505, 3 pgs, Mailed Jan. 17, 1997.
PCT International Search Report for PCT/US98/20768 1 pg, Mailed Jan. 20, 1999.
PCT International Search Report for PCT/US98/22327 1 pg, Mailed Feb. 9, 1999.
PCT Notif of the Int'l Search Report and Written Opinion for PCT/US09/67001 6 pgs, Mailed Jan. 29, 2010.
PCT IPER for PCT/US01/16006 3pgs, Apr. 16, 2002.
PCT IPER for PCT/US98/22327 4pgs, Aug. 27, 2000.
PCT Written Opinion for PCT/US04/22803 3pgs, Mailed Apr. 29, 2005.
PCT Written Opinion for PCT/US05/07038 3pgs, Mailed Sep. 2, 2005.
UK Search Report for GB0805061.9 1 pg, Jul. 15, 2008.
UK Search Report for GB0921635.9 3pgs, Apr. 12, 2010.
EP Search Report for EP 07118068 3pgs, Mailed Dec. 27, 2010.
EP Search Report for EP 04778347 4pgs, Feb. 22, 2011.
UK Search Report for GB1106425.0 6 pages, Mailed Aug. 16, 2011.
UK combined Search and Examination Report for GB1121048.1 3pgs, Apr. 18, 2012.
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982.
BiLAP Generator Settings, Jun. 1991.
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991.
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993.
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991.
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC—III Instruction Manual” , 15 pgs, Jul. 1991.
Cook et al., “Therapeutic Medical Devices: Application and Design” , Prentice Hall, Inc., 3pgs, 1982.
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979.
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969.
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976.
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998.
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975.
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991.
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990.
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989.
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs.
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg.
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs.
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987.
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996.
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg, 1995.
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985.
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988.
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993.
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989.
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992.
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991.
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986.
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988.
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978.
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981.
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985.
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987.
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001.
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987.
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-1386, Jun. 1985.
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002.
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002.
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002.
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003.
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003.
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003.
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003.
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: A Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004.
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550, Aug. 2004.
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004.
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004.
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004.
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: A Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005.
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005.
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005.
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006.
Stoffels, E. et al., Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006.
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006.
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006.
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006.
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006.
Swain, C.P., et al., “Which Electrode, A Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987.
Tucker, R. et al., Abstract P14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989.
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989.
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990.
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984.
Tucker et al. “The interaction between electrosurgical generators, endoscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992.
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991.
Valley Forge's New Products, CLINICA, 475, 5, Nov. 6, 1991.
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983.
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988.
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995.
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000.
Related Publications (1)
Number Date Country
20110270242 A1 Nov 2011 US