The present invention relates generally to an electro-surgical device, and in particular, to the design of efficient electro-surgical probes and waveforms for pulsed plasma-mediated cutting, fragmentation, and evaporation of biological tissue in fluid media.
Plasma-mediated cutting of soft biological tissue in conductive liquid media with sub-microsecond pulses of high voltage is described in the patent of Palanker [U.S. Pat. No. 6,135,998]. Dissection of tissue based on explosive vaporization by short (under few microseconds) pulses of high voltage is described in the patent of Lewis et al. [U.S. Pat. No. 6,352,535]. In these applications an inlaid cylindrical electrode (i.e. a wire embedded into a thick insulator and exposed at its end) is applied to ionize, evaporate and fragment tissue in proximity of electrode using dielectric breakdown or vaporization of water induced by a high electric field. An inlaid cylindrical electrode cannot penetrate into tissue and thus can only produce shallow cuts on its surface. Due to the pulsed regime of application, this device produces a series of perforations in tissue, which often do not merge into a continuous cut. In addition, cavitation bubbles accompanying each pulse create substantial collateral damage in tissue during their growth and collapse phases [Effect of the Probe Geometry on Dynamics of Cavitation, D. Palanker, A. Vankov, and J. Miller, Laser-Tissue Interactions XIII, vol. 4617 SPIE (2002)]. The size of such a damage zone typically far exceeds the size of the electrode and the corresponding zone of initial energy deposition [Effect of the Probe Geometry on Dynamics of Cavitation, D. Palanker, A. Vankov, and J. Miller, Laser-Tissue Interactions XIII, vol. 4617 SPIE (2002)]. Reduction in pulse energy helps to reduce the mechanical damage, but also leads to decreased cutting depth.
A second mechanism of electrosurgical ablation is vaporization of tissue in the proximity of the probe by overheating a conductive medium with either a continuous radio frequency waveform or with sub-millisecond long bursts of pulses. This mechanism is universally applicable to soft and hard biological tissue ranging from membranes and retina to skin and cartilage. In such regimes wire electrodes are typically used, although the use of a device that could provide a uniform electric field along its length would be preferable.
Without considering end effects, the electric field in a conductive liquid at distance r from a cylindrical electrode with potential U and radius r0 much smaller than its length L is:
E=U/(r ln(r0/L)), (1)
assuming that the return electrode is much larger and positioned at infinity. The threshold electric field required for dielectric breakdown in water is on the order of 105-106 V/cm [Jones, H. M. & Kunhardt, E. E. Development of Pulsed Dielectric Breakdown In Liquids. Journal of Physics D-Applied Physics 28, 178-188 (1995); Jones, H. M. & Kunhardt, E. E. Pulsed Dielectric Breakdown of Pressurized Water and Salt Solutions. Journal of Applied Physics 77, 795-805 (1995)]. Such a threshold electric field Eth can be achieved with electric pulses of several kV on a wire electrode with a diameter of several tens of micrometers. The threshold voltage required for ionization of a surface layer of water is:
Uth=Ethr0 ln(L/r0). (2)
The corresponding threshold energy is:
Fth=2πEth2r02L ln(L/r0). (3)
Evaporation of water in the proximity of an electrode begins when the temperature is elevated above 100° C. The threshold voltage required for vaporization of a surface layer is:
Uth=(cρΔT/(τγ))1/2r0 ln(L/r0) (4)
where τ is a pulse duration, γ is the electrical conductivity of the liquid, ρ is the liquid density, c is the liquid heat capacity, and ΔT is the temperature change. The corresponding threshold energy is:
Fth=2πcρΔTr02L ln(L/r0). (5)
Lower threshold voltage and energy, as well as better localization of energy deposition can be achieved by decreasing the radius of electrode r0, as follows from equations 1-5. However, this approach is limited by the mechanical strength of the thin wire and its visibility. In addition, the problem of non-uniform distribution of electric field along the electrode, and particularly, enhancement at the apex remains.
This enhancement is illustrated in
One geometry that provides uniform enhancement of an electric field is a ring electrode shown in
Below we describe probe geometry and pulse waveform structures that provide solutions to these and other problems.
What is desired is a penetrating electrode that can cut tissue uniformly along an extensive cutting zone, rather than just with its apex. As will be shown below, this objective can be achieved through geometric tailoring of the electrode, careful design of the electrical pulses applied to the electrode, or a combination of these approaches.
Tissue can be cut uniformly along an extensive cutting zone through the use of an electrosurgical cutting system that comprises an electrically conductive blade, insulators, and a source of pulsed electrical energy coupled to the blade. In particular, the blade has a first blade surface, a second blade surface, and a blade thickness. The blade thickness is the smallest local distance between the first blade surface and the second blade surface. First and second insulators are affixed to the first and second blade surfaces, respectively. The first blade surface and the second blade surface come together along a blade edge. Ideally, the blade edge is perfectly sharp, but in practice the blade edge will be somewhat rounded and it is this rounded region between the first and second blade surfaces that will be called the blade edge. The blade edge will have an edge radius of curvature, which ideally will be small (thereby providing a sharp blade edge). In practice, the entire blade edge is unlikely to be used for cutting, but only a blade cutting portion, which is a predetermined length of the blade that is used for cutting biological tissue. Unlike the ring electrode discussed earlier, the use of a blade provides substantial mechanical strength while the use of a blade edge with a small edge radius of curvature can provide a substantially uniform enhanced electric field along its cutting zone.
In preferred embodiments, biological tissue is cut with the electrosurgical system with a sharp blade edge by manipulating the blade in a biological medium such that the sharp blade edge is in close proximity to the tissue to be cut. The approach then involves applying at least one electrical pulse along the cutting zone of the blade edge that contacts the region of biological tissue to be cut. In preferred embodiments, multiple electrical pulses are applied to the sharp blade edge. The electrical pulses are of sufficient strength to generate electric breakdown in the tissue that is in a close proximity to the sharp blade edge. The pulse duration is sufficiently long for the generation of a streamer and spark discharge but is sufficiently short to avoid the development of a high current arc discharge. In this case, whether the current was high would be with comparison to the current generated in the biological medium prior to the development of the arc.
Tissue can also be cut uniformly along an extensive cutting zone without the use of a blade as described above. In this approach, biological tissue immersed in a liquid medium can be cut uniformly along a cutting zone of an electrode (not necessarily in the form of a blade) by first forming a uniform vapor cavity surrounding the cutting zone of the electrode. This can be accomplished through the tailoring of the electrical pulses applied to the electrode. After forming the uniform vapor cavity, this approach involves ionizing the vapor in the cavity. This results in a plasma-mediated discharge into the biological tissue inside the vapor cavity.
These two approaches can be combined to form very effective methods for cutting biological tissue. In the combined approach for cutting biological tissue, a burst of pulsed electrical energy is applied to a blade having a blade edge with a relatively small edge radius of curvature. The number of pulses and the energy of each pulse is chosen such that liquid adjacent to the blade cutting portion of the blade edge prior to application of the burst of pulses is, at some time prior to completion of the burst of pulses, vaporized along the entire blade cutting portion of the blade edge. With the combined approach, nonuniformities in the electric field along the blade edge are effectively smoothed out.
In the most preferred embodiments of these methods, the electrical pulses have alternating polarity. Alternating the polarity of the pulses greatly reduces the electroporation-related tissue damage away from the immediate vicinity of the cut.
An electrosurgical cutting system as described above can be readily fabricated. A blade of an electrically conductive material is provided. The blade will have a first blade surface and an opposing second blade surface. The first and second blade surfaces join at a blade edge. In preferred embodiments, the first and second blade surfaces in a predetermined cutting zone near the blade edge are tapered to form a tapering region, which is the region in which the first and second blade surfaces converge towards each other. The blade is coated with a thin layer of insulator to form a coated blade. The coated blade is immersed in a conductive medium. A source of pulsed electrical energy is coupled to the blade. Pulsed electrical energy is then applied to the blade until the thin layer of insulator is removed from the vicinity of the blade edge. Preferably the thin layer of insulator is removed over the entire tapering region.
Referring now to the drawings, where similar elements are numbered the same,
At any position on the blade 100, the blade thickness is the smallest distance between the first blade surface 110 and the second blade surface 120. In preferred embodiments, in the region adjacent the blade edge 130, the blade thickness is reduced approximately linearly as the first 110 and second 120 blade surfaces approach the blade edge 130. A blade tapering angle 150 is the angle of convergence of the first 110 and second 120 blade surfaces as the blade edge 130 is approached. In preferred embodiments the blade tapering angle 150 is less than 45 degrees; in more preferred embodiments the blade tapering angle 150 is less than 30 degrees; and in the most preferred embodiments the blade tapering angle 150 is less than 15 degrees.
Although in some embodiments the first 210 and second 220 insulators extend completely to the blade edge 130, in preferred embodiments the first 210 and second 220 insulators terminate prior to the blade edge 130. This leaves an exposed portion of the blade 100. As shown in
The planform shown in
Electrode with Uniformly Enhanced Field for Dielectric Breakdown in Liquid
The electric field around a sharp exposed blade edge is similar to that on a ring electrode, but the radius of curvature is not limited by mechanical strength anymore. The blade edge can be sharpened much more because the mechanical strength for this structure is provided by the blade. In addition, visibility of this electrode is no longer a problem—the macroscopic blade can be easily observed while its very sharp blade edge might not be well resolved in a conventional surgical microscope. Thus the blade edge of such an electrode can have an edge radius of curvature much smaller than 10 microns. This will strongly reduce the threshold voltage and energy, as well as the penetration depth of the field into the tissue, which in turn leads to a cleaner cut with a smaller zone of damaged tissue. The distribution of electric field along a 5 μm-thick blade edge on a disk electrode is shown in
The small radius of curvature and low threshold energy make the interaction zone with tissue very shallow, thus fast cutting can be achieved at sufficiently high pulse repetition rates. Cutting tissue by small steps at high repetition rate results in a very smooth action leaving very clean edges of the lesion. For successful insertion of such thin electrode into tissue the layer of insulator on its flat sides (first and second blade surfaces) should be thin—comparable or thinner than the edge radius of curvature.
Providing the blade edge is sharp with nearly uniform edge radius of curvature, the electric field on the blade edge remains uniform, or nearly uniform, even if the planar shape of the electrode is not exactly round. The electric field remains uniform as long as the planar radius of curvature of the blade remains much larger than the edge radius of curvature of the blade edge and the edge radius of curvature is uniform or nearly so. Thus a disk electrode can be deformed into an ellipse or other shape of a blade. Such a blade electrode will preserve a substantially uniform distribution of electric field along the blade edge and can be used for uniform dissection or ablation of tissue with any part on its perimeter. Examples of uniform formation of vapor bubbles and ionization along the blade edge of such an electrode are shown in
Optimal Tapering Angle and Material for the Blade Electrode
The field enhancement at the blade edge of the blade electrode depends on the blade tapering angle. The lower the tapering angle, the more effective is the enhancement of the electric field. In addition, a lower blade tapering angle facilitates access to tissue and penetration into it. The threshold energy is reduced by a factor of 2 when the tapering angle changes from 30° to 0°. Thus, for maximal enhancement of the field, as well as for the most convenient access to tissue and penetration into it, the blade tapering angle should preferably be less than 45°, and more preferably less than 30°, and most preferably less than 15°.
To reduce the rate of etching of the blade by hot plasma, the blade electrode should be made of a material capable of withstanding high temperatures. In addition, the material should be hard enough to provide sufficient rigidity when used as a thin blade. Additionally, to reduce the outflow of heat from the treated area via the blade electrode, it should be made of a material with low thermal conductivity. Materials fitting all these characteristics are for example, Tungsten, and more preferably Titanium since its thermal conductivity is 8 times lower.
Pulse Structure for Minimization of Electroporation
One of the mechanisms of tissue damage in electrosurgery is electroporation. This is a direct effect of high electric fields on the membranes of cells. Electroporation results in an increase of the cell permeability and may lead to cell injury or death. To reduce this effect a voltage-balanced or a charge-balanced pair of pulses of opposite polarity instead of a single pulse of one polarity can be applied. This change leads to significant reduction in tissue damage. For example, application of a single pulse of 200 ns duration and 4 kV in amplitude produces electroporation-related damage on the order of 260 μm, while charge-balanced bi-phasic pulses applied to the same electrode at the same amplitude produces only 90 μm of electroporation-related damage (measured on chorioallantoic membrane of chicken embryo using Propidium Iodide staining technique). In addition to its biological advantage, alternating the polarity of the pulses also decreases the erosion rate of the electrode.
In a preferred embodiment, a microblade of 0.2-0.6 mm in length with insulated flat sides and exposed sharp edges serves as an electrode using bi-phasic charge-balanced waveforms with pulse duration varying from 0.1 to 5 us. Retinal dissection has been performed with complete and partial vitrectomy on excised pig eyes and in-vivo rabbit eyes. Results were analyzed clinically and histologically. When no energy is applied the instrument can be used as a vitreoretinal pick to elevate and expose membranes. A train of charge-balanced pulses of alternating polarity can create uniform cutting along the edge of the blade without generation of visible gas in vitreous or fluid medium. Smooth cutting without turbulent flow or other mechanical interference occurs when operating at repetition rates around 100 Hz. Histology and propidium iodide staining of live tissue demonstrate that the collateral damage zone extends 40-80 um from the edge. With different waveforms the blade electrode can also coagulate.
To reduce electroporation, a symmetric AC waveform, (voltage-balanced rather that charge-balanced) can be applied, which results in a damage zone less than 40 μm.
Pulsed Waveform for Neutralization of “Hot Spots”.
Uneven distribution of the electric field along the electrode affects its performance not only in the regime of dielectric breakdown in liquid, but also in the regime of evaporation of water. This effect can be neutralized using specially designed pulse waveforms. The energy should be delivered in a burst of pulses in such a way that evaporation of the liquid, leading to vapor bubble growth, first occurs in the areas of high electric field. Providing that the electric field is not sufficiently strong for ionization inside the vapor bubble, the vapor bubble will isolate that part of electrode from the conductive fluid. Hence, evaporation will begin in the surrounding areas having a somewhat weaker electric field. This process should continue until the last area of the electrode is covered by the vapor cavity before the first bubble collapses exposing the electrode in that area. This requirement sets the amplitude and optimal duration of the pulse or burst of pulses. The size of individual bubbles and the number of them can be set by choosing the energy of each pulse in the burst and by number of pulses. An example of such process producing uniform vapor cavity along an electrode with a non-uniform electric field is shown in the sequence of photos of
In the example of
The lifetime of an empty spherical cavity of radius Ro in water (density p=1000 kg/m3) and under atmospheric pressure (Po=105 N/m2) is t=0.91 Ro(ρ/Po)1/2. That means an empty bubble with radius 100 μm will collapse in approximately 10 μs. If the bubble is not empty, i.e. if the vapor pressure inside is significant, the lifetime will increase. No simple estimates for the cavity lifetime is known, but as a first approximation P, which is a difference between the pressure outside and inside the bubble, can replace Po. Thus if the vapor pressure inside is 0.9 Po, then P=0.1 Po, and the lifetime t will increase by a factor of 101/2, approximately 3. As the vapor pressure inside the cavity approaches atmospheric pressure the lifetime of the bubble extends to infinity. The amount of vapor inside the cavity depends on the dynamics of the cavity formation. If the bubble is formed as a result of a very fast (as compared to lifetime of the cavitation bubble, which is typically above 10 microseconds) explosion the cavity quickly becomes very cold and is virtually empty. If the bubble is formed by slow (above 10 microseconds) heating and vaporization, the vapor pressure inside will be higher and closer to ambient pressure. These theoretical guidelines can be used to help design waveforms, but some experimentation is likely to be necessary to determine the best waveforms for any particular set of circumstances.
The duration of a burst of pulses is preferably less than 10 ms, and can be less than 1 ms or even less than 0.1 ms, to reduce thermal damage to tissue being cut. The duration of pulses within a burst is preferably between 10 ns and 10 μs. Preferably, adjacent pulses within a burst of pulses have opposite polarity to reduce electroporation damage to tissue. Preferably, bursts are repetitively applied to the electrode such that successive bursts are separated by a burst interval of 1 ms or more.
After the vapor cavity covers the entire electrode, with the proper level of the electric field, ionization of the vapor can occur.
Ideally the bubbles formed during this process grow slowly, on the order of tens of microseconds, so that the maximum velocity associated with bubble growth is below about 10 m/s. Such slow growing bubbles are not as mechanically damaging as cavitation bubbles that have maximum velocities on the order of 100 m/s. In addition, small bubbles are preferred to further minimize mechanical damage at the boundary of the surgical cut.
In applications that involve the cutting of biological tissue, ionization begins and the discharge is predominant in front of tissue, i.e. in the areas where tissue is located closer to electrode than the boundary of the vapor cavity in liquid. Therefore, using this approach, the uniformity of the original electric field is not critical because the tissue will only be exposed to electric current after ionization of the vapor cavity, which will occur substantially uniformly along the vapor cavity. For minimization of electroporation-related damage a burst of pulses should consist of pairs of symmetric bi-phasic or charge-balanced pulses, as described above.
With high electric fields, when ionization of water begins before vaporization, or when vapor cavity is ionized immediately after its formation, the disconnect of electrode from liquid does not occur and thus this process of sequential creation of multiple vapor bubbles along the electrode will not work.
Combination of Sharp Edge with a Burst of Pulses.
A burst of pulses can be applied for vaporization of liquid along a sharp edge of a disk or blade electrode. If a sharp edge is produced along a blade that has a singular point (small planar radius of curvature) at its apex then ordinarily, the advantage of an enhanced electric field associated with the sharp blade edge is tempered by the nonuniformity of the field caused by the apex. However, by using the approach described above for vaporizing the region along the electrode prior to ionizing the vapor bubble the problem of the field non-uniformity can be fixed. The sharp blade edge provides field enhancement that leads to a smaller damage zone and lower threshold energy and is mechanically supported by the thicker part of the insulated blade. The apex with an associated strong field can be neutralized by application of a burst of pulses of optimal duration.
Self-Sharpening of the Edge During “Controlled” Erosion of the Blade Electrode
A thin electrode is rapidly etched during use, especially in the evaporation mode. A sharp blade edge of a blade electrode also is rapidly etched in use. Rounding the edge by etching, i.e., increasing the edge radius of curvature, leads to an increase in the threshold voltage and pulse energy, which in turn, will increase the extent of the collateral damage zone. To prevent this effect a “controlled etching” leading to self-sharpening can be implemented.
Etching is most efficient inside the zone of evaporation (i.e., the vapor bubble). Therefore, the region of most efficient etching can be determined by parameters of the driving waveform, which determine the size of the vapor bubble. Self-sharpening can be achieved by sizing the vapor bubble to include the tapering region near the blade edge. In such a case, efficient etching occurs over the entire tapering region, and the blade edge can be maintained with an approximately constant edge radius of curvature. Optimal width of the etching zone is determined by the thickness of the blade and the desirable tapering angle. For a blade of thickness D outside of the tapering region, blade tapering angle α, and edge radius of curvature r0, the tapering region extends a distance r0+(D/2−r0)/tan(α/2) inward from the end of the blade edge. Ideally the vapor bubble should extend at least this far inward from the end of the blade edge. Such a self-sharpening regime keeps the electrode functional for a long time despite the erosion. Alternatively, blade 100 can be slidably mounted between insulators 210 and 220 such that erosion of blade 100 during operation can be compensated by extending a fresh section of blade 100 from between insulators 210 and 220.
Technology for fabrication of such a blade can be simplified by using the electrical discharge itself to remove the insulators from the blade surfaces near the blade edge. Preferably, the blade is milled to achieve an appropriate blade tapering angle either before, or immediately after the blade surfaces are covered with thin layers of insulators. The blade is immersed into a conductive medium and electrical pulses are applied with waveform parameters similar or identical to those appropriate for electrosurgery. The electrical discharge at discontinuities will break and remove the insulator from the active surfaces of the electrode, but in other areas the insulator will remain intact. As the blade edge is etched during use, the insulator in its proximity will be removed as well.
This application is related to and claims priority from U.S. provisional application 60/447,715, filed on Feb. 14, 2003, and hereby incorporated by reference.
The present invention was made with support from the National Institutes of Health, under contract number R01-EY-12888. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3799168 | Peters | Mar 1974 | A |
3903891 | Brayshaw | Sep 1975 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4161950 | Doss et al. | Jul 1979 | A |
4202337 | Hren et al. | May 1980 | A |
4228800 | Degler, Jr. et al. | Oct 1980 | A |
4248231 | Herczog et al. | Feb 1981 | A |
4429694 | McGreevy | Feb 1984 | A |
4476862 | Pao | Oct 1984 | A |
4534347 | Taylor | Aug 1985 | A |
4559943 | Bowers | Dec 1985 | A |
4589411 | Friedman | May 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4597388 | Koziol et al. | Jul 1986 | A |
4655215 | Pike | Apr 1987 | A |
4674499 | Pao | Jun 1987 | A |
4781175 | McGreevy et al. | Nov 1988 | A |
4805616 | Pao | Feb 1989 | A |
4901709 | Rattner | Feb 1990 | A |
4927420 | Newkirk et al. | May 1990 | A |
4936301 | Rexroth et al. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
5080660 | Buelna | Jan 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5254121 | Manevitz et al. | Oct 1993 | A |
5267994 | Gentelia et al. | Dec 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5454809 | Janssen | Oct 1995 | A |
5549604 | Sutcu et al. | Aug 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5658279 | Nardella et al. | Aug 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5785704 | Bille et al. | Jul 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5860976 | Billings et al. | Jan 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5958266 | Fugo et al. | Sep 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6066137 | Greep | May 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6132427 | Jones et al. | Oct 2000 | A |
6135998 | Palanker | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6149646 | West, Jr. et al. | Nov 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6267757 | Aita et al. | Jul 2001 | B1 |
6287305 | Heim et al. | Sep 2001 | B1 |
6287306 | Kroll et al. | Sep 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6447511 | Slater | Sep 2002 | B1 |
6458121 | Rosenstock et al. | Oct 2002 | B1 |
6478794 | Trapp et al. | Nov 2002 | B1 |
6479785 | Fugo et al. | Nov 2002 | B1 |
6533781 | Heim et al. | Mar 2003 | B2 |
6620160 | Lewis et al. | Sep 2003 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6787730 | Coccio et al. | Sep 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
7238185 | Palanker et al. | Jul 2007 | B2 |
20030097129 | Davison et al. | May 2003 | A1 |
20040267254 | Manzo et al. | Dec 2004 | A1 |
20050043728 | Ciarrocca | Feb 2005 | A1 |
20050143726 | Bortkiewicz | Jun 2005 | A1 |
20050220674 | Shafirstein et al. | Oct 2005 | A1 |
20050234446 | Van Wyk et al. | Oct 2005 | A1 |
20060069386 | Dubnack et al. | Mar 2006 | A1 |
20060259033 | Nesbitt | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20040236321 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60447715 | Feb 2003 | US |