The present invention relates to electrosurgical instruments and, more particularly, to a bipolar electrosurgical instrument useful to cut tissue.
Doctors and surgeons have used electrosurgery for many decades. In use, electrosurgery consists of applying electrical energy to tissue using an active and a return electrode. Typically, a specially designed electrosurgical generator provides alternating current at radio frequency to the electrosurgical instrument, which in turn contacts tissue. Other power sources are, of course, possible. The art of design and production of electrosurgical generators is well known.
Electrosurgery includes both monopolar electrosurgery and bipolar electrosurgery. Monopolar electrosurgery is somewhat of a misnomer as the surgery uses two electrodes. A surgeon handles a single, active electrode while the second electrode is usually grounded to the patient at a large tissue mass, such as, for example, the gluteus. The second electrode is typically large and attached to a large tissue mass to dissipate the electrical energy without harming the patient. Bipolar electrosurgical instruments differ from monopolar electrosurgical instruments in that the instrument itself contains both the active and return electrode.
In monopolar electrosurgery, or monopolar surgery, or monopolar mode, the patient is grounded using a large return electrode, also referred to as a dispersive electrode or grounding pad. This return electrode is typically at least six (6) square inches in area. The return electrode is attached to the patient and connected electrically to the electrosurgical generator. Most return electrodes today employ an adhesive to attach the electrode to the patient. Typically the return electrode is attached on or around the buttocks region of the patient. A surgical electrode (active electrode) is then connected to the generator. The generator produces the radio frequency energy and when the active electrode comes in contact with the patient the circuit is completed. Certain physiological effects occur at the active electrode-tissue interface depending on generator power levels and waveform output, active electrode size and shape, as well as tissue composition and other factors. These effects include tissue cutting, coagulation of bleeding vessels, ablation of tissue and tissue sealing.
While functional, monopolar surgery has several drawbacks and dangers. One problem is that electrical current needs to flow through the patient between the active electrode and the ground pad. Because the electrical resistance of the patient is relatively high, the power levels used to get the desired effects to the tissue are typically high. Nerve and vessel damage is not uncommon. Another problem includes unintended patient burns. The burns occur from, among other things, current leakage near the active or return electrode and touching of other metal surgical instruments with the active electrode. Another problem is capacitive coupling of metal instruments near the active electrode causing burns or cauterization in unintended areas. Yet another problem includes electrical burns around the ground or return pad because electrical contact between the patient and the ground pad deteriorates at one or more locations. These and other problems make monopolar electrosurgical instruments less than satisfactory.
The drawbacks and problems associated with monopolar surgery resulted in the emergence of bipolar electrosurgery in the mid-twentieth century. With bipolar electrosurgery, the active and ground electrode are proximal to one another, and typically on the same tool. The ground being on the instrument allowed for the removal of the grounding pad and the problems associated therein. Moreover, because the electrical energy only flows between the instrument electrodes, the current flows through the patient only a short distance, thus the resistance and the power required are both lower. This substantially reduces the risk of nerve or vessel damage or unintentional patient burns. Bipolar surgery works very well for coagulation, ablation and vessel sealing.
While bipolar instruments solved many problems associated with monopolar instruments, attempts at creating a bipolar cutting instrument that resembles a monopolar cutting instrument have been largely unsuccessful. In order to have smooth cutting, the energy density and heat generated proximal to the cutting electrode must be great enough to cause the adjacent tissue cells to explode. This thin line of exploding cells is what causes tissue to part when cutting occurs. If the power density and heat are not high enough, the cells fluid will slowly boil off and tissue desiccation and coagulation will occur. Attempts to make a bipolar instrument with two electrodes or blades proximal to each other have not resulted in the desired smooth cutting effect, mostly because a high enough current density could not be achieved and one or both of the electrodes started to stick to the tissue.
U.S. Pat. No. 4,202,337 (Hren et al.) describes an electrosurgical instrument similar to a blade with side return electrodes with an active area that is 0.7 to 2.0 times the active electrode area. This invention does not recognize the need to quickly dissipate the heat from the surface of the return electrode, that is the heat generated at the tissue-electrode interface. It also does not recognize a need to transport the heat away from return electrode. Indeed, the inventor states that the return electrodes should be a thin metalized substance such as silver which is silk screen applied to the ceramic and then fired (7-33 through 7-36). Because the thin metalized substance does not have sufficient volume to transport away or store the heat generated during use, the return electrode of this invention will quickly heat up and start to stick and drag making it unsuitable for most surgical applications.
U.S. Pat. No. 5,484,435 (Fleenor et al.) describes a bipolar cutting instrument in which the return electrode, or shoe, that moves out of the way as the instrument is drawn through the tissue. The discussion is that the passive or return electrode should be at least three times the area of the active electrode. This invention also does not recognize the need to quickly dissipate the heat from the surface of the return electrode, that is the heat generated at the tissue-electrode interface and also does not recognize a need to transport the heat away from return electrode. When in use the return electrode of this invention will also quickly heat up and start to stick and drag making it unsuitable for most surgical applications. In addition, the requirement that one electrode spring or move out of the way makes it unusable for many procedures.
It is against this background and the desire to solve the problems of the prior art, that the present invention has been developed.
To attain the advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a electrosurgical device or instrument is provided. The electrosurgical instrument comprises an active electrode and a return electrode residing in close proximity. The active electrode made of a first material with a first thermal diffusivity. The return electrode made of a second material with a second thermal diffusivity greater than the first thermal diffusivity. The volume of the second material, the geometry of the second material, and the thermal diffusivity of the second material being sufficient to facilitate the transport of heat from the surface of the at least one return electrode.
The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention, and together with the description, serve to explain the principles thereof. Like items in the drawings are referred to using the same numerical reference.
The present invention will now be described with reference to the figures. While embodiments of the invention are described, one of ordinary skill in the art will recognize numerous shapes, sizes, and dimensions for the actual instruments are possible. Thus, the specific embodiments described and shown herein should be considered exemplary and non-limiting.
Active electrode 115 and return electrode 118 are separated in close proximity to each other and separated by an insulative material 121 (see
Electrodes 115 and 118 are coupled to connector housing 123. Connector housing 123 may be an insulative material and/or wrapped with an insulative material. Connector housing 123 is coupled or plugged into handle 110 in a manner known to those versed in the art of monopolar electrosurgery. Handle 110 may include one or more power actuators 111 to allow the activation of the bipolar generator and give the user the ability to switch between different waveform outputs and power levels. For example, the signals to facilitate this may be supplied through separate connections, such as connectors 105 and/or 106. The operation and configuration of such power actuators to activate the generator are well known to those versed in the field of electrosurgery and are now commonly used in monopolar electrosurgery. Actuators 111 could include buttons, toggle switches, pressure switches, or the like. Connections 102, 103, 105 and 106 can be combined into a single plug at the generator.
Referring to
Referring now to the return electrode 118, to facilitate the transport of heat from the surface, at least the surface of this electrode and/or a portion of some depth into this electrode should be made of a material with a relatively high thermal diffusivity. Dissipation of localized hot spots is a function of the thermal diffusivity (α) of the electrode material. Hot spots occur where sparking or arching occurs between the tissue and the electrode. These hot spots are where sticking of tissue to the electrode occurs. The higher the thermal diffusivity, the faster the propagation of heat is through a medium. If heat is propagated away fast enough, hot spots are dissipated and the sticking of tissue to the electrode does not occur.
The thermal diffusivity of a material is equal to the thermal conductivity (k) divided by the product of the density (ρ) and the specific heat capacity (Cp).
In most electrosurgery applications, a thermal diffusivity of at least 1.5×10−5 m2/s works to reduce tissue sticking to the electrode. An electrode made of or coated with a sufficient thickness, volume and geometry of higher thermal diffusivity material works significantly better to reduce sticking. A lower thermal diffusivity would work for lower power applications. It has been found that high thermal diffusivity, such as materials with a thermal diffusity of 9.0×10−5 m2/s, works well in the present invention. Materials with these high thermal diffusity rates still need sufficient volume to work. Suitable materials for the return electrode, or at least a portion of the outer surface of the electrode include silver, gold, and alloys thereof. Copper and aluminum may also be used, however a coating of other material must be used in order to achieve biocompatibility. For example, referring to
A relatively high thermal diffusivity material at the surface of the return electrode facilitates dissipating the high temperatures that occur at the point of sparking during electrosurgery at the tissue-electrode interface. The temperature of the sparks may exceed 1000° C. If even a tiny area on the surface of the electrode is heated from the energy of the spark and the surface temperature at that point exceeds 90° C., sticking of tissue to that point is likely to occur. If sticking occurs, the instrument will drag and eschar will build up, making the instrument unsuitable for use.
In addition to having a relatively high thermal diffusivity, the return electrode should have thermal mass to assist in heat transport. The thermal mass inhibits the overall electrode from heating up to a temperature where sticking occurs. The geometry of the high diffusivity material of the return electrode should also be designed to facilitate flow of heat away from the surface and distal portion of the return electrode. As shown, the body of the return electrode 118 is provided with a larger cross-sectional area as compared to the cross-sectional area of the active electrode 115 and has enough thermal mass such that for most electrosurgery applications the overall electrode will remain below the temperature at which sticking will occur. For higher power electrosurgery applications, where more heat must be dissipated, the length or cross sectional area of the electrode can be increased as one moves distally away from the electrode tip. If a plated or coated return electrode is used, the cross sectional area of the portion of the electrode made of the high thermal diffusivity material should either remain constant or increase when one moves distally away from the return electrode tip. If the cross sectional area of the high thermal diffusivity material diminishes or necks down along the length of the electrode, this will restrict heat flow away from the tip and may diminish the operational performance of the device. Analysis and experimentation has shown that when using a material with a thermal diffusivity greater than 9.0×10−5 m2/s for the return electrode, and a relatively small active electrode less than 1 cm in length, that the return electrode mass should be at least 0.5 grams to facilitate good cutting. For larger active electrodes, the mass of the return electrode or portion of the return electrode made out of material with a high coefficient of thermal diffusivity should be greater such as, for example, greater than 1.0 grams, and for some geometries, substantially greater. Conversely, for very small active electrodes, the mass of the return electrode can be much less. The shape of the return electrode should also be optimized to facilitate flow of heat away from the electrode surface. When referring to the electrode mass in the above discussion, this is defined as the mass of the portion of the electrode that dissipates the thermal energy during electrosurgery. Thus certain portions of the instrument that are electrically connected to the electrodes, but do not significantly contribute to dissipation of thermal energy, such as a long shaft connected to the tip, may be of significantly higher mass than as outlined in the above discussion. Lastly, materials with higher thermal diffusivity tend to require less thermal mass than materials with lower thermal diffusivities.
While a thermal mass is used in the above described embodiment to facilitate flow of heat away from the surface and distal portion of the return electrode, a heat pipe or circulating fluid can also be used to pull heat away from the body of the return electrode.
The distance between the active and return electrode is also an important factor. If the distance between the electrodes is too small, shorting or arching between the electrodes will occur. If the distance is too large the instrument will be awkward to use and will not be acceptable to the surgeon. Further, the increase distance may increase the overall power requirements. While smaller and/or larger distances are possible, it has been found that having a minimum distance between the two electrodes that falls in the range of 0.1 mm to 3.0 mm works well. The distance between the two electrodes is also limited by the dielectric strength of the insulative material used between the electrodes.
In designing the electrodes it has been found that the difference between the thermal diffusivity of the return electrode and the thermal diffusivity of the active electrode has some effect. Using a material for the active electrode with a thermal diffusivity relatively lower than the thermal diffusivity of the return electrode means the return electrode can be either designed with a material with a lower thermal diffusivity, or, if the return electrode is made of a material with a high thermal diffusivity, the volume of the return electrode can be smaller.
One optimized design that works well uses a volume of high purity silver for the return electrode combined with a tungsten or stainless steel active electrode.
While the above description focuses on using metals with various thermal properties for the electrodes or the electrode surface, electrically conductive materials other than metals, such as a composite, resins, carbon, carbon fiber, graphite, and the like filled composite may also be used for at least one of the electrodes. These materials, or the portion that comes in contact with tissue, need to be biocompatible.
This embodiment allows the surgeon to cut and coagulate using a single bipolar instrument. Return electrodes 141 and 142 are separated electrically. During use a surgeon can extend active electrode 145 to cut tissues. In the cutting mode, return electrodes 141 and 142 may or may not be coupled. However, during a procedure if the surgeon needs to coagulate, active electrode 145 is retracted. While retracted, electrical power is provided to one of the return electrodes 141 or 142 while the other remains grounded, providing bipolar coagulation action for low power coagulation. As can be appreciated, in the extended position, the electrosurgical instrument tip 90 functions similar to the electrosurgical instrument tip 114 as shown in
While the whole tip of the forceps, or return electrode 166 (sometimes referred to as forceps tip 166) can be made of a high thermal diffusivity material,
When the surgeon wishes to resect tissue, the loop electrode can be extended as shown on
An embodiment of the present invention and many of its improvements have been described with a degree of particularity. It should be understood that this description has been made by way of example, and that the invention is defined by the scope of the following claims.
The present application claims the benefit of U.S. Utility patent application Ser. No. 11/146,867, titled ELECTROSURGICAL CUTTING INSTRUMENT, filed 7 Jun. 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/578,138, titled BIPOLAR ELECTROSURGICAL CUTTING INSTRUMENT, filed Jun. 8, 2004, both of which are incorporated herein as in by reference.
Number | Date | Country | |
---|---|---|---|
60578138 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11146867 | Jun 2005 | US |
Child | 12350078 | US |