An object of the present invention is an electrothermal converter according to the preamble of claim 1 (Electrothermal converter (112), which has at least one cold side (114) and one warm side (115), characterized in that all components of the converter (112) cope with thermal loads when the converter is operating and/or especially retain their mechanical stability). Such converters are often subjected to strong thermal loadings, such as temperature fluctuations, tensile stresses, etc. They also are under heavy pressure in terms of price.
Therefore a technical concept according to the independent claims is proposed. Additional advantageous embodiments can be gleaned from the following specification and the other claims.
The invention is especially advantageous in regard to manufacturing costs, safety and service life.
The invention is basically suited for all types of temperature control devices and their use in air conditioners, especially for all bolsters, especially motor vehicle seats, seat covers, paneling elements of passenger compartments, armchairs or office equipment, for example.
In what follows, the particulars of the invention are explained. These explanations should make the invention understandable. However, they are only of an exemplary nature. Naturally, within the framework of the invention, individual and multiple described features can also be omitted, altered or supplemented. Additionally, features of various embodiment forms can naturally be combined with each other. What is decisive is that the concept of the invention in essence is implemented. With this, “in essence” means in particular that the implementation results in the desired utility to a recognizable extent. In particular this may mean that a feature in question is at least 50%, 90%, 95% or 99% fulfilled.
In what follows, reference will be made to:
The vehicle 1000 has at least one interior item 1100. In doubtful instances this is meant to be all the components with which a user of the passenger compartment can come in contact, such as a steering mechanism 1120 for the vehicle, a dashboard 1130, an armrest 1140, a door panel 1150, a seat surface 1160, a thermal cover 1170, a vehicle headliner 1180, a bolster 400, a cover 500 or a seat 1110.
The interior item 1100 preferably has at least one bolster 400 and/or at least one cover 500.
The interior item 1100 preferably has at least one air conditioner 100. It is, for example, the temperature controller and air conditioner of surfaces in a vehicle touched by the user. It has at least one temperature control device 110, at least one air ducting device 120 and/or at least one humidity regulator 130. As a temperature controller 140 what is meant is every device that can be used for deliberate alteration of the temperature in its surroundings, for example, all devices with at least one electrical resistance heater, one heat pump, one Peltier element and/or one air circulator, such as a ventilator, or which in essence are formed from one. What is meant by an air circulator is every device that can be used for deliberate alteration of the air composition or of the air flows in a certain planar or three-dimensional area for air exchange, such as an onboard air conditioner, at least partially air-permeable spacer media, spacer textures and/or air conditioning inserts. What is meant by a humidity regulator 130 is a device that serves to regulate the air humidity in its environs, especially the specified temperature control devices 110, humidity absorbers such as activated charcoal fibers or polymeric superabsorbers.
The temperature control device 110 is attached via a connecting cable 119 to a current source 150.
An electrothermal converter 112 is a device for converting electrical energy into thermal energy and/or for generating a temperature gradient between two locations by means of electrical energy. Examples of this are Peltier elements.
A cold side 114 is thus a side of the electrothermal converter 112 that is cooled when the converter operates. As the design dictates, this may always stay the same, or be capable of polar reversal depending on the current flow.
A warm side 115 is a side of the electrothermal converter 112 which is heated when the converter is in operation.
The semiconductor components 220 and the bridge elements 200a-g can be joined by welding, soldering and/or gluing by an electrically conducting adhesive. This joining can occur over a full or broad surface, or partially and pointwise.
Thermally conducting adhesives are especially suited for bonding. These are materials that are good at conducting heat, to minimize transmission loss of the electrothermal converters 112 to the heat exchanger devices 140, 141 and to permit at least two objects to adhere at least slightly to each other. Examples of these are silicon-free thermally conducting pastes such as those based on synthetic fats with metallic admixtures like zinc oxide particles. Further examples are two-component adhesives such as epoxy-based ones. Additionally, PSA-based adhesives are suitable. The adhesives can be applied as fluid adhesives. But they also could be applied as an adhesive strip. An example is a thermally conducting PSA adhesive strip reinforced by an electrically conducting foil such as Kapton™. Additionally, waxes and resins could be considered, especially if they are mixed with metals or metal oxides. When components of temperature control device 110 are glued, preferably an adhesive is used that is still elastic and/or capable of creep. By this means, the semiconductor components obtain play to be able to stretch without tears or breaks.
It is also possible to assign bridge elements 200 in the form of conducting strips made of tin, copper, silver printing paste and/or electrically conducting adhesives.
The thermoelectric converter 112 preferably has a heat exchanger 140, 141 consisting of at least one cold or warm side 114, 115. Preferably at least a share of this is manufactured from a material with good thermal conductivity like aluminum or copper.
It can cover over all the semiconductor components 220 of the electrothermal converter 112 (
To electrically insulate the semiconductor components 220 and the bridge elements 200a-g from the heat exchangers 140, 141, for better distribution of mechanical loads, and for homogenizing of thermal flows, at least one distributor plate 145, 146 can be provided between at least one heat exchanger 140, 141 and at least one semiconductor component 220 or a bridge element 200a-g. Provision can be made that distributor plates 145, 146 be situated that are identical or different from each other both on the hot and cold side.
At least one distributor plate 145, 146 is preferably made of a ceramic material. Especially favorable are DBC ceramics because they are more robust than traditional ceramic materials.
Provision can be made that at least one distributor plate 145, 146 can be made at least partially from Kapton. This material is a thermal conductor but an electrical insulator. It permits greater stretching of the electrothermal converter 112 than ceramic materials that are more brittle.
At least one distributor plate 146 is preferably made of a material that is more elastic than the material of at least one additional (such as the first) distributor plate 145. For this, a non-electrically-conducting polymer, for example, is suitable.
In appropriate fashion the distributor plates 145, 146 are able to bend in one direction and are stiff in another direction. This can for example be attained in that they are bent or curved in corrugated sheet fashion. In appropriate fashion the distributor plates of the hot and cold sides are turned 90° to each other (
Semiconductor components 220 are appropriately situated so that they are placed along the ribs or the mountain & valley structure of the distributor plates 145, 146. This improves heat flux and minimizes stresses.
Provision can also be made that only the hot, or only the cold side, be provided with a distributor plate 145, 146. By this means likewise thermal stresses are lowered which are produced from the differing thermal expansion on the warm and cold sides.
To ensure that the semiconductor components 220 are electrically insulated against their environment, for such structures an insulating layer can be provided, for example in the form of a polymeric film and/or dual-sided adhesive strip between heat exchanger 140 and the semiconductor components 220. Such an insulating layer can simultaneously cover bridging devices. For that, we recommend that the insulating layer have abdomen-like meanders or bends between the various bridging devices, to prevent stresses.
However, a separate insulating layer for each bridging element can be provided. For both purposes, layerings with a dielectric are appropriate, which are sprayed on, printed on, rubbed in, sputtered, etc. Especially suitable as material components are paint, enamel, cement, rubber, etc.
Preferably between at least one electrothermal converter 112 and at least one distributor plate 145, 146 and/or one heat exchanger 140, 141, at least one connection zone 230 is provided, on which the electrothermal converter 112 is connected with the heat exchanger 140, 141 or the distributor plate 145, 146 or the distributor plate 145, 146 with at least one of the two other components.
The bridging elements 200a-g can be connected with the heat exchangers 140, 141 and/or the distributor plates 145, 146 in the same way as between the bridge elements 200 and the semiconductor components 220. Preferably the connection is manufactured at least in part from an artificial resin, epoxy adhesive and/or indium solder. Since these materials at least to a certain extent allow a stretching of the electrothermal converter 112 or of the heat exchanger 140, 141, a large-area or full-area attachment of the connection zone 230 between the distributor plates 145, 146 and the electrothermal converter 112 or the heat exchanger 140, 141 is a possibility, even if the heat exchanger 140, 141 is made of copper and the distributor plates 145, 146 are made of ceramic.
Now in what follows, various versions are described, to give the semiconductor components 220 an opportunity to follow thermal expansion movements and at the same time to obtain a fixed temperature control element.
It is decisive that the warm side of a semiconductor component 220 obtains the possibility to arch up in its middle and the cold side can at least slightly raise its edge areas. For that it is appropriate that at least two of the components of the temperature control device 110 and/or of the electrothermal converter 112 be only partially bonded with each other.
Version a) We securely glue a point in the center of the semiconductor components 220 on the bridging elements of the hot side of the temperature control device 110. If the point is small enough, the semiconductor component 220 can bend away from the hot side, even if the adhesive is hard and non-elastic. The zone of adhesive bonding zone 230 may be in the middle or on the edge. It preferably constitutes less than 70% of the basic surface of semiconductor component 220, preferably less than 55% or 30%.
On the opposite cold side 114, the semiconductor components 220 are glued pointwise or over the full surface with the bridging element. However, in this area they are not provided with full-surface attachment on the ceramic plates, but rather at least in part are not attached there—preferably not at all. At best they are connected only at zones between the individual semiconductor components 220 with the ceramic plate. By this means, the edges of the semiconductor components facing the cold side 114 obtain a possibility to move toward one another and the inner area of the base surface can lift off from the cold side 114. The bridging elements can for example be reinforced by foils or textiles, for example with components of polymers like polyurethane and/or metals.
Version b) The semiconductor components 220 are glued on the hot side 115 on a ring and/or frame, which in the middle has a planar recess into which the semiconductor component 220 can warp during heating and expansion.
On the cold side 114, the semiconductor component 220 lies in the middle on a raised surface so that on the edges it has an encircling gap. This gives play to the semiconductor component 220, to bend with its cooling, contracting areas toward the cold side 114. Here it is advantageous if the ring, frame and/or the raised surface are formed at least in part from the jumper material, from soldered, welded or sintered metal and/or from electrically and/or thermally conducting adhesive.
Version c) We glue the semiconductor component only on one edge on the hot ceramic plate. We also securely glue the semiconductor component cold side only on one edge on the cold ceramic plate, but the two edges lie at ends of the semiconductor component 220 that lie opposite each other. Then the semiconductor component 220 has play if it moves the ceramic plate somewhat to the side and upwards.
The temperature control device 110 preferably is in an air conditioner. There a first air stream is directed along the one side of the temperature control device 110. By this means it absorbs heat, for example. If heating is to be done, then this heated stream is fed to the user. A second air stream runs past the opposite heat exchanger 140, 141. There it releases its thermal energy to the heat exchanger and is cooled thereby. If cooling is to be done, this air stream is fed to the user.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 040 264 | Aug 2007 | DE | national |
10 2007 053 869 | Nov 2007 | DE | national |
10 2007 060 312 | Dec 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2493303 | McCullough | Jan 1950 | A |
3136577 | Richard | Jun 1964 | A |
3552133 | Lukomsky | Jan 1971 | A |
3653590 | Elsea | Apr 1972 | A |
3681797 | Messner | Aug 1972 | A |
3684170 | Roof | Aug 1972 | A |
4043544 | Ismer | Aug 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4572430 | Takagi et al. | Feb 1986 | A |
4640340 | Noda et al. | Feb 1987 | A |
4665707 | Hamilton | May 1987 | A |
4777802 | Feher | Oct 1988 | A |
5002336 | Feher | Mar 1991 | A |
5106161 | Meiller | Apr 1992 | A |
5117638 | Feher | Jun 1992 | A |
5138851 | Mardikian | Aug 1992 | A |
5187943 | Taniguchi et al. | Feb 1993 | A |
5524439 | Gallup et al. | Jun 1996 | A |
5924766 | Esaki et al. | Jul 1999 | A |
6079485 | Esaki et al. | Jun 2000 | A |
6085369 | Feher | Jul 2000 | A |
6105667 | Yoshinori et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6124577 | Fristedt | Sep 2000 | A |
6186592 | Orizaris et al. | Feb 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6237675 | Oehring et al. | May 2001 | B1 |
6254179 | Kortume et al. | Jul 2001 | B1 |
6263530 | Feher | Jul 2001 | B1 |
6273181 | Matsui et al. | Aug 2001 | B1 |
6278090 | Fristedt et al. | Aug 2001 | B1 |
6291803 | Fourrey | Sep 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6347521 | Kadotani | Feb 2002 | B1 |
6539725 | Bell | Apr 2003 | B2 |
RE38128 | Gallup et al. | Jun 2003 | E |
6598405 | Bell | Jul 2003 | B2 |
6606866 | Bell | Aug 2003 | B2 |
6619736 | Stowe et al. | Sep 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6637210 | Bell | Oct 2003 | B2 |
6664518 | Fristedt et al. | Dec 2003 | B2 |
6672076 | Bell | Jan 2004 | B2 |
6687937 | Harker | Feb 2004 | B2 |
6700052 | Bell et al. | Mar 2004 | B2 |
6719624 | Hayashi et al. | Apr 2004 | B2 |
6793016 | Aoki et al. | Sep 2004 | B2 |
6826792 | Lin | Dec 2004 | B2 |
6828528 | Stöwe et al. | Dec 2004 | B2 |
6848742 | Aoki et al. | Feb 2005 | B1 |
6886352 | Yoshinori et al. | May 2005 | B2 |
6957545 | Aoki | Oct 2005 | B2 |
7070232 | Takeshi et al. | Jul 2006 | B2 |
7231772 | Bell et al. | Jun 2007 | B2 |
8070828 | Shannon | Dec 2011 | B2 |
20020017102 | Bell | Feb 2002 | A1 |
20020150478 | Aoki | Oct 2002 | A1 |
20030029173 | Bell et al. | Feb 2003 | A1 |
20030066554 | Feher | Apr 2003 | A1 |
20030230402 | Leitch | Dec 2003 | A1 |
20050126184 | Cauchy | Jun 2005 | A1 |
20050257541 | Kadle et al. | Nov 2005 | A1 |
20060174633 | Beckley | Aug 2006 | A1 |
20070069554 | Comiskey et al. | Mar 2007 | A1 |
20070095378 | Ito et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
34 38 266 | May 1985 | DE |
19503291 | Aug 1996 | DE |
10 2006 013 994 | Oct 2006 | DE |
60 2004 000 980 | Dec 2006 | DE |
11 2005 001 237 | Apr 2007 | DE |
102006050048 | May 2007 | DE |
1025687 | Apr 2003 | GB |
2005333083 | Dec 2005 | JP |
2005333083 | Dec 2005 | JP |
2006-234250 | Jul 2006 | JP |
0102983 | Mar 2003 | SE |
04114513 | Dec 2004 | WO |
Entry |
---|
International Search Report, Application No. PCT/DE2008/001374, dated Aug. 10, 2009, published as WO2009/026890A3. |
Translation of Written Opinion, Application No. PCT/DE2008/001374, dated Mar. 2, 2010. |
Chinese Office Action, Application No. 200880110369.0 dated Aug. 9, 2011. |
German Office Action, Application No. 102007060312.8 dated Nov. 16, 2010. |
Japanese Office Action, Application No. 2010521300 dated Oct. 4, 2011. |
Number | Date | Country | |
---|---|---|---|
20150369523 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12674533 | US | |
Child | 14837657 | US |