The present application is based on, and claims priority from, Taiwan Application Serial Number 101106154, filed Feb. 24, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety.
1. Field of the Disclosure
The present disclosure relates to an electrowetting display device.
2. Description of the Related Art
Photo-electrical technology has experienced rapid growth, and various displays have been rapidly developed.
The Liquavista company has developed EWDs. EWDs comprise pixels constructed by non-polarized colored oil drops, a polarized aqua solution, a hydrophobic layer and hydrophilic pixel ribs. The non-polarized oil drops is disposed on the hydrophobic layer and isolated from each other by the hydrophilic pixel ribs. The polarized aqua solution is disposed on the non-polarized oil drops. The operation principle of the EWDs is as follows. When the display is not applied a voltage, the non-polarized oil drops spread on the hydrophobic layer, so the display shows the color of the oil, and it is a dark state. When the voltage applied, the polarized aqua solution could be attracted to the hydrophobic layer due to the electrostatic induction, and it is a bright state.
In order to comply with the requirements of the production speed, dipping is the method to the non-polarized oil. The non-polarized oil suffers from interface tension between the pixel rib and the subsequently filled in polarized solution, thereby, the non-polarized oil cut off by the polarized solution. The thickness of the non-polarized oil is designed as high as the height of the pixel ribs. If the display has a 75% aperture ratio, an average height of the non-polarized oil may be four times greater than the dark state. In this situation, the non-polarized oil of the EWDs may overflow to adjacent pixels, causing the uniformity of the operated display to be influenced.
Various methods have been developed to improve the stability of the EWDs. Apertures of electrodes of the EWDs can be designed to divide a region of shrunk oil drops into several sub-regions, Additional ribs can be fabricated on an upper substrate of the EWDs. The upper substrate is then assembled opposite to a lower substrate to isolate adjacent pixels from each other.
An electrowetting display device is provided. An exemplary embodiment of an electrowetting display device comprises a first substrate and a second substrate disposed opposite to each other. A first electrode layer is disposed on the first substrate. A second electrode layer is disposed on the second substrate. A hydrophobic dielectric layer is disposed on the first electrode layer. A first pixel rib is disposed on the first substrate. A second pixel rib is disposed on the first pixel rib. A water contact angle of the second pixel rib may be larger than that of the first pixel rib. A first liquid and a second liquid are disposed between the first substrate and the second substrate.
Another exemplary embodiment of an electrowetting display device comprises a first substrate and a second substrate disposed opposite to each other. A first electrode layer is disposed on the first substrate. A second electrode layer is disposed on the second substrate. A hydrophobic dielectric layer is disposed on the first electrode layer. A first pixel rib is disposed on the first substrate. A second pixel rib is disposed on the first pixel rib. The first pixel rib and the second pixel rib comprise an ultra-violet light curing photoresist material or a thermal curing photoresist material, wherein the ultra-violet light curing photoresist material or the thermal curing photoresist material contain at least one hydrophilic material, and wherein a content of the at least one hydrophilic material of the first pixel rib is different from that of a content of at least one of the hydrophilic material of the second pixel rib. A first liquid and a second liquid are disposed between the first substrate and the second substrate.
Yet another exemplary embodiment of an electrowetting display device comprises a first substrate and a second substrate disposed opposite to each other. A first electrode layer is disposed on the first substrate. A second electrode layer is disposed on the second substrate. A hydrophobic dielectric layer is disposed on the first electrode layer. A single pixel rib is disposed on the first substrate. The single pixel rib comprises a first hydrophilic region and a second hydrophilic region on the first hydrophilic region, and a water contact angle of the second pixel rib may be larger than that of the first pixel rib. A first liquid and a second liquid are disposed between the first substrate and the second substrate.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The disclosure can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
a is a cross section showing one exemplary embodiment of an electrowetting display device without an applied voltage.
b is a cross section showing one exemplary embodiment of an electrowetting display device with an applied voltage.
a is a cross section showing yet another exemplary embodiment of an electrowetting display device without an applied voltage.
b is a top view showing a bi-layered pixel rib of a pixel of the electrowetting display device as shown in
c is a cross section showing yet another exemplary embodiment of an electrowetting display device with an applied voltage.
a, 5a and 6a are top views showing other exemplary embodiments of an electrowetting display device.
b, 5b and 6b are cross sections taken along lines A-A′ of
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Embodiments disclose an electrowetting display device. The electrowetting display device utilizes the adjusting of hydrophilic degrees of a bi-layered pixel rib structure and the arrangement of the bi-layered pixel rib structure, so that the filling amount of an oil in pixel region defined by the bi-layered pixel rib structure during a dip coating process. Also, a water contact angle of a lower pixel rib of the bi-layered pixel rib structure may design to be smaller than that of a water contact angle of an upper pixel rib of the bi-layered pixel rib structure.
a is a cross section showing one exemplary embodiment of an electrowetting display device 500a without an applied voltage. One exemplary embodiment of the electrowetting display device 500a comprises a first substrate 200 and a second substrate 202 disposed opposite to each other. In one embodiment, the first substrate 200 and the second substrate 202 may comprise rigid substrates comprising glasses or silicon wafers. Alternatively, the first substrate 200 and the second substrate 202 may comprise flexible substrates formed of poly(ethylene terephthalate) (PET), polyethylenenaphthalate (PEN), polycarbonate (PC), polyethersulfone (PES), polyimide (PI) or a metal foil.
As shown in
As shown in
In one embodiment, surface energies of the first pixel rib 212 and the second pixel rib 214 may design to be larger than 36 mN/m. Additionally, a water contact angle of the second pixel rib 214 is designed to be larger than that of the first pixel rib 212 to control the filling amount of the oil. For example, a water contact angle of the first pixel rib 212 is designed to be between 20 and 60 degrees, and a water contact angle of the second pixel rib 214 is designed to be between 40 and 80 degrees. Alternatively, for example, a normalized ratio of a water contact angle of the first pixel rib 212 to a water contact angle of the second pixel rib 214 may design to be between 0.5:1 and 0.9:1. In one exemplary embodiment, the photoresist material can be added various amounts or various types of additives including inorganic hydrophilic materials to respectively form the lower hydrophilic first pixel rib 212 and the upper hydrophobic (lipophile) second pixel rib 214. The inorganic hydrophilic materials may comprise silicon-base substance, carbon nanotubes or titanium dioxide. Alternatively, the photoresist material can be added an additive including an organic hydrophilic material comprising a compound, which contains hydroxyl, aldehyde, carbonate, carboxylate, carboxylic, ether, carbonyl, oxyethylene group, hydroxyl group-containing acrylate, amid amine or oxime, a monomer or an oligomer to form the lower hydrophilic first pixel rib 212 and the upper hydrophobic (lipophile) second pixel rib 214. In one exemplary embodiment, the organic hydrophilic material may have a viscosity of less than 2000 cps/25° C. For example, the organic hydrophilic material may comprise glycerin dimethacrylate, glycerin mono(meth)acrylate, ethyleneglycol dimethacrylate, diethyleneglycol dimethacrylat, 4-hydroxybutyl methacrylate, 2-hydroxypropyl methacrylate, hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate-acrylic acid additive, trimethylol methacrylate or trimethylol propane methacrylate. The organic hydrophilic material as such may be a surfactant, which is a molecule or polymer having both a hydrophilic and a hydrophobic group, for example, trisiloxane, alkoxylate, or Poly[dimethylsiloxane-co-(hydroxyethoxy ethoxy propyl)methylsiloxane]. In another exemplary embodiment, the first pixel rib 212 may comprise a black matrix, which may be formed by a black resin, to improve a contrast of the display.
In another exemplary embodiment, the electrowetting display device 500a may also comprise a single layer structured pixel rib formed of an ultra-violet (UV) light curing photoresist material or a thermal curing photoresist material, and the UV light curing photoresist material or the thermal curing photoresist material may contain polyethylene glycol-based materials, polyurethane-based materials, polyamide-based materials or poly(2-hydroxy ethyl methacrylate)-based materials. After forming the single layer structured pixel rib, a thermal process, a solution process or a plasma treatment process can be performed to change a water contact angle ratio of an upper portion to a lower portion of the single layer structured pixel rib. In one embodiment, the solution process may be performed by adding various reactive materials with different volume ratios or different reactive group to the upper portion and the lower portion of the single layer structured pixel rib. For example, the reactive materials may have reactive groups comprising ester, ether ester, carbonate, etc.. The upper portion and the lower portion of the single layer structured pixel rib are treated in an alkali solution or ozone to change a water contact angle ratio of an upper portion to a lower portion of the single layer structured pixel rib. In one embodiment, the solution process may be performed after forming the single layer structured pixel rib. Alternatively, the may be performed during a photolithography process used to form the single layer structured pixel rib. Therefore, the single layer structured pixel rib may have a first hydrophilic region (e.g. a region occupied by the first pixel rib 212) and a second hydrophilic region (e.g. a region occupied by the second pixel rib 214) on the first hydrophilic region, so that a lower and more hydrophilic first hydrophilic region and the upper and more hydrophobic (lipophile) second hydrophilic region are formed. Alternatively, the photoresist material used to form the single layer structured pixel rib may be added an additives. The photoresist material added with the additives may be formed the single layer structured pixel rib and the additives sinks in a lower portion of the single layer structured, so that the single layer structured pixel rib may have a first hydrophilic region (e.g. a region occupied by the first pixel rib 212) and a second hydrophilic region (e.g. a region occupied by the second pixel rib 214) on the first hydrophilic region. The lower first hydrophilic region is more hydrophilic, and the upper second hydrophilic region is more hydrophobic (lipophile).
As shown in
By designing a ratio of a water contact angle of the upper pixel rib to the lower pixel rib of the bi-layered pixel rib (comprising the first pixel rib 212 and the second pixel rib 214) may be in between 0.5:1 and 0.9:1 or by designing a ratio of a water contact angle of the upper hydrophilic region to the lower hydrophilic region of the single-layer structured pixel rib (comprising the first hydrophilic region and the second hydrophilic region) may be in between 0.5:1 and 0.9:1, a lower and more hydrophilic first pixel rib 212/first hydrophilic region and an upper and more hydrophobic (lipophile) second pixel rib 214/second hydrophilic region are formed. Therefore, the injection (thickness) of the second liquid during an ink coating process comprising a dip coating process, an ink-jet printing (IJP) process or slit coating process may be controlled. As shown in
Please refer to
In another embodiment, a shape of a longitudinal cross section of the bi-layered pixel rib (e.g. a shape of the cross section of the bi-layered pixel rib as shown in
In one embodiment as shown in
By designing a structural arrangement of the upper pixel rib and the lower pixel rib of the bi-layered pixel rib (the first pixel rib 312 and the second pixel rib 314), a width of a longitudinal cross section of the first pixel rib to a width of a longitudinal cross section of the second pixel rib ratio (A1/A2) can be designed to larger than or equal to 1. By controlling the normalized water contact angles of the first pixel rib 312 and the second pixel rib 314, a lower and more hydrophilic first pixel rib 312 and the upper and more hydrophobic (lipophile) second pixel rib 314 are formed. Also, by designing a structural arrangement of the upper pixel rib and the lower pixel rib of the bi-layered pixel rib (the first pixel rib 312 and the second pixel rib 314), the second liquid 320 may have a convex surface profile, and the surface of the second liquid 320, which is adjacent to a boundary of the pixel 300, to contact the first pixel rib 312 without climbing up to the second pixel rib 314. Therefore, the thickness distribution of the second liquid 320 in the pixel 300 may be controlled after performing an ink coating process comprising a dip coating process, an ink-jet printing (IJP) process or slit coating process. As shown in
a, 5a and 6a are top views showing other exemplary embodiments of an electrowetting display device.
Embodiments provide an electrowetting display device. By designing a ratio of a water contact angle of the upper pixel rib to the lower pixel rib of the bi-layered pixel rib (may comprise the first pixel rib 212 and the second pixel rib 214) may be in between 0.5:1 and 0.9:1 or a water contact angle of the upper hydrophilic region to the lower hydrophilic region of the single-layer structured pixel rib (comprising the first hydrophilic region and the second hydrophilic region) may be in between 0.5:1 and 0.9:1, the a lower and more hydrophilic first pixel rib 212/first hydrophilic region and the upper and more hydrophobic (lipophile) second pixel rib 214/second hydrophilic region are formed. Alternatively, by designing a structural arrangement of the upper pixel rib and the lower pixel rib of the bi-layered pixel rib (comprising the first pixel rib 312 and the second pixel rib 314), a width of a longitudinal cross section of the first pixel rib to a width of a longitudinal cross section of the second pixel rib ratio (A1/A2) can be designed to be larger than or equal to 1. When the electrowetting display device is operated (applied a voltage), the overflow problem of the conventional electrowetting display device due to the second liquid with more injection amount than the first liquid can be avoided. Also, a velocity of the first liquid attracting to the hydrophobic dielectric layer is improved. The response time, uniformity and reliability of an operational electrowetting display device can be improved.
While the embodiments have been described, it is to be understood that the disclosure is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
101106154 | Feb 2012 | TW | national |