This invention relates to electrowetting displays.
It has been known for more than a century that the interfacial tension between two immiscible media can be controlled by applying an electric potential across these media; see, for example, Lippmann, M. G., Ann. Chim. Phys., 5, 494 (1875). It has also long been known that the mathematical relationship between the applied electric potential (V) and the resulting surface tension (γ) can be expressed in Lippmann's Equation:
γ=γ0−0.5 cV2
where γ0 is the surface tension of the solid-liquid interface at the potential zero charge (i.e., when there is no charge at the surface of the solid), and c is the capacitance per unit area, assuming that the charge layer can be modeled as a symmetric Helmholtz capacitor. So-called electro-osmotic and electro-capillary displays have also been developed; all these types of displays rely upon the change in wetting characteristics of a liquid in the presence of an electric field. See, for example, Sheridon, N. K., “Electrocapillary Imaging Devices for Display and Data Storage”, Xerox Disclosure Journal 1979, 4, 385-386; and U.S. Pat. Nos. 5,956,005; 5,808,593; 5,757,345; 5,731,792; 5,659,330; 4,569,575; 6,603,444; and 6,449,081. A variety of displays using this principle have also been developed by Richard B. Fair and his co-workers at Duke University; see, for example, www.ee.duke.edu/Research/microfluidics.
More recently, it has been discovered that a thin dielectric layer between the electrode and the liquid in an electro-wetting apparatus (thereby forming a so-called “electro-wetting on dielectric” apparatus) can emulate the electric double layer present in conventional electro-wetting apparatus. The dielectric layer can block electron transfer while sustaining the high electric field at the interface that results in charge redistribution when a potential is applied. Using a hydrophobic dielectric and an aqueous liquid provides a large initial contact angle, and thus room for a large change in contact angle upon electro-wetting. Furthermore, by employing a dielectric layer between the liquid and electrode, virtually any kind of liquid can be used, regardless of the polarization of the interface; see Moon, H., et al., “Low voltage electrowetting-on-dielectric”, J. Appl. Phys, 2002, 92, 4080.
Researchers at Philips Research Laboratories, Eindhoven, the Netherlands, have described an electro-wetting display which is stated to be capable of video rate applications; see Nature, 425, 383 (2003) and International Applications WO 2004/068208; WO 2004/027489; and WO 03/071346. This display is of the electro-wetting on dielectric type and uses a cell having at its base a transparent electrode disposed over a white substrate. The electrode is covered by a hydrophobic dielectric layer. The cell further contains a colored (dyed) oil and water. When no voltage is applied, the colored oil wets the hydrophobic dielectric, so that the color seen is that of the oil. However, when a voltage is applied between the transparent electrode and a second electrode in contact with the water, the oil moves to a small portion of the pixel, so that in the major part of the pixel shows the white color of the substrate. An CMYK color scheme can be realized by dividing a pixel into three sub-pixels, the sub-pixels each having a white substrate, but with each sub-pixel having two oil layers of differing colors, for example cyan and magenta.
This type of display has a number of problems. The display is not bistable, since the confinement of the oil to the small portion of the pixel only lasts as long as the field is applied. While this is not a serious disadvantage when the display is used continuously to display video, there are applications where a user may wish to pause a video and examine an individual frame and, especially in portable devices, it would be advantageous if the display could be made bistable so that such examination of individual frames could be done without continuous power drain on a battery. The visibility of the oil in a small portion of the pixel reduces the contrast ratio of the display. The use of a dye dissolved in the oil may give rise to long term problems since most dyes in solution are adversely affected by long term exposure to radiation, which typically causes fading of the dye. This may be a particular problem in a display which relies upon the use of differently-colored oils, which are unlikely to fade at the same rate, so that the colors displayed may drift with time.
The present invention relates to various improvements in electro-wetting displays which can reduce or eliminate the aforementioned problems.
In one aspect, this invention provides a display comprising:
The term “light-transmissive” is used herein to mean that the second fluid must transmit sufficient light to enable an observer, viewing the movement of the first fluid through the second fluid, to see this movement. (In the case of displays intended for machine reading at non-optical wavelengths, the term “light-transmissive” must of course be understood to mean transmissive of the wavelength(s) of electromagnetic radiation at which the display is read, and other terms used below referring to light should be construed accordingly.) Typically, the light-transmissive second fluid will be transparent, but we do not exclude the possibility that some color might be present in the second fluid to adjust the colors displayed. For example, many people prefer a “white” with a slightly blue hue over a strictly neutral white, so that, for example, in a display of the type described below with reference to
For convenience, this display may hereinafter be called the “concealment member display” of the present invention. In such a display, the substrate may comprise a dielectric surface adjacent the first fluid, and/or may comprise a colored or reflective layer. In one preferred form of such a display, the substrate has a substantially planar surface and the concealment member includes a substantially planar section extending substantially parallel to, but spaced from, the substantially planar surface of the substrate.
In another aspect, this invention provides a display comprising:
For convenience, this display may hereinafter be called the “color shifting display” of the present invention. In such a display, the first fluid may be capable of assuming a third position in which it covers both the first and second portions of the display.
In a color shifting display, the substrate may have more than two portions of differing colors. For example, the substrate may have a third portion having an optical characteristic differing from the first, second and third optical characteristics, and the display may further comprise a third electrode adjacent the third portion of the substrate, such that by controlling the potentials applied to the first, second and third electrodes, the first fluid can be made to assume a third position, wherein the first fluid substantially covers at least one of the first and second portions of the substrate, leaving the third portion uncovered. For example, the first, second and third portions of the substrate may be red, green and blue, or yellow, cyan and magenta in any arrangement. Further, the substrate may have a fourth portion having an optical characteristic differing from the first, second and third optical characteristics and from the optical characteristic of the third portion of the substrate, and the display may further comprise a fourth electrode adjacent the fourth portion of the substrate, such that by controlling the potentials applied to the first, second, third and fourth electrodes, the first fluid can be made to assume a fourth position, wherein the first fluid substantially covers at least one of the first, second and third portions of the substrate, leaving the fourth portion uncovered. For example, the first, second, third and fourth portions of the substrate may be red, green, blue and black, or yellow, cyan, magenta and black, in any arrangement.
In a color shifting display of the invention typically the first and second (and third and fourth, if present) portions of the substrate will be coplanar. These portions may assume various geometric forms. For example, these portions may have substantially the form of equilateral triangles. Alternatively, the first and second portions may have substantially the form of circles, the substantially circular first and second portions being connected by a neck section having a width smaller than the diameter of each substantially circular portion. An electrode may be disposed on or adjacent this neck section.
In another aspect, this invention provides a display comprising:
a light-transmissive second fluid immiscible with the first fluid and disposed within the chamber;
For convenience, this display may hereinafter be called the “microcell display” of the present invention. In such a display, the substrate may comprise a dielectric surface adjacent the first fluid, and/or may comprise a colored or reflective layer. The display may further comprise an insulator block disposed adjacent the junction between the second substrate surface and a sidewall surface of the chamber, with the third electrode passing through the insulator block.
In another aspect, this invention provides a display comprising:
For convenience, this display may hereinafter be called the “conductive via display” of the present invention. In such a display, the conductive vias may be arranged in a two-dimensional array. Also, the fluid may be aqueous, the exposed surface hydrophobic and the cap members formed of a hydrophilic material.
In another aspect, this invention provides a display comprising:
For convenience, this display may hereinafter be called the “pigment/nanoparticle display” of the present invention. It should be noted that, in any of the displays of the present invention, when a colored fluid is required, the color of such a fluid may be provided by any one or more of pigment particles, nanoparticles and quantum dots. (For background information on quantum dots see, for example, Wang et al, “Electrochromic Nanocrystal Quantum Dots,” Science Magazine, vol. 291, Mar. 23, 2001, pp. 2390-2392; Murray, C. B., et al., “Synthesis and Characterization of Nearly Monodisperse CdE (E=S, Se, Te) Semiconductor Nanocrystallites”, J. Am. Chem. Soc., 115(19), 8709 (1993); and Huang, J., et al., “Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks”, Appl. Phys. Lett., 70, 2335 (1997).) Quantum dots may be particularly advantageous since they may be stimulated into emission by the electrical potentials used to control the fluids.
This invention also provides a display comprising:
For convenience, this display may hereinafter be called the “dual colored fluid display” of the present invention. In such a display, the first fluid may comprise an oil and the second fluid be aqueous. The display may further comprise first and second dielectric layers disposed between the first and second electrodes respectively and the fluids.
Finally, this invention provides a display comprising:
In such a display, restriction of the movement of the first fluid between the first and second areas allows the quantity of fluid, and hence the thickness of the layer of first fluid, in the second area to be controlled, thus allowing for variation in color intensity (i.e., gray scale) even though the second fluid covers the whole of the first area. This is an important advantage in as much as conventional electrowetting displays are monochrome; the fluid either occupies the second area or the first area, and if the latter all the available fluid covers the first area with a layer which can only have one thickness.
The means used to restrict the movement of the first fluid between the second and first areas may be mechanical; for example, the restricting means may comprise a barrier surrounding the second area. Such a barrier may be provided with a capillary passage therethrough, this passage possibly having a surface energy intermediate hydrophobic and hydrophilic. Alternatively, the restricting means may be provided by the physical characteristics of the first fluid itself, for example, the first fluid may have a yield stress or be shear thinning, so that control of the movement of the first fluid can be accomplished by the manner in the which the electric potentials are applied thereto. Other restricting means will be apparent to those skilled in the art.
As already mentioned, this invention has several different aspects. These various aspects will be described separately below, but it should be understood that a single display may make use of multiple aspects of the invention. For example, a microcell display of the invention might use a first fluid colored with pigment particles or nanoparticles in accordance with the pigment/nanoparticle aspect of the invention.
In the present displays, the first (moving) fluid is typically an oil, while the second fluid is typically aqueous. For ease of comprehension, the description below may use the terms “oil” and “water” instead of first and second fluids, but these terms “oil” and “water” should not be construed in a limitative sense.
Firstly, as already mentioned, the present invention provides a concealment member display having a concealment member for concealing the oil when an electric field is applied; the present invention also provides a method for operating such a display. A specific concealment member display of the invention is illustrated in
It will be apparent that the contrast ratio of the pixel can be altered by varying the color of the visible surface of the concealment member 112 (i.e., the surface remote from the dielectric layer 106). For example, making this visible surface white will increase the brightness of the white state of the pixel (as illustrated in
Numerous variations of the display shown in
It is also possible to produce bistable electro-wetting displays. Most prior art electro-wetting displays are only monostable because only the state in which no electric field is being applied is stable; the other state (similar to that shown in
In the condition shown in
If dyes are used to color the oil layer 108 and the aqueous layer 110′ in the display of
The first stable state of the microcell shown in
It will be appreciated that, in addition to the embodiments described above with reference to
In such displays, the second color shifting display of the present invention shown in
The display shown in
Although the circular portions 602 and 604 are shown as the same size in
A plurality of spaced conductive vias 704 extend through the substrate 702, and terminate adjacent the exposed upper surface thereof. Each via 704 is capped by a thin cap member 706 in the form of a hydrophilic coating covering the end of the conductive via 704 adjacent the exposed upper surface of the substrate 702. Although only three vias 704 arranged in a line are shown in
An aqueous working fluid, illustrated as a drop 708, rests upon the exposed surface of the substrate 702. In the absence of any voltage on any of the vias 704, the drop 708 will not wet the hydrophobic surface of the substrate 702, but will “ball up” around the cap member 706 of one of the vias 704 (this is not the situation illustrated in
To move the drop 708 to a different position, a voltage may be applied to (say) the center and left vias 704. This renders the portion of the exposed surface of the substrate 702 between these vias less hydrophobic, and consequently the drop will flow on to the less hydrophobic portion of the surface, thus assuming the form 708′ shown in
As already indicated, this invention also extends to the use of pigments and nanoparticles as coloring agents in electro-wetting displays. Although electro-wetting displays have hitherto used dyes dissolved in the oil and/or aqueous phases, dyes in solution are notoriously susceptible to the long term effects of electromagnetic radiation, especially ultra-violet radiation, which tends to cause fading and/or discoloration of the dyes, and such effects may limit the operating lifetime of electro-wetting displays. Replacement of dissolved dyes with pigments or nanoparticles provides useful increases in the operating lifetime. The use of pigments or nanoparticles also allows for control of the surface properties of the pigments or nanoparticles, for example, by the formation of charged or chargeable groups, or polymers, thereon (see, for example, U.S. Published Patent Application No. 2002/0185378).
Numerous changes and modifications can be made in the preferred embodiments of the present invention already described without departing from the spirit and scope of the invention. Accordingly, the whole of the foregoing description is to be construed in an illustrative and not in a limitative sense.
This application is a continuation-in-part of application Ser. No. 10/711,802 filed Oct. 6, 2004 (Publication No. 2005/0151709, now U.S. Pat. No. 7,420,549), which itself claims benefit of Application Ser. No. 60/481,482, filed Oct. 8, 2003. The entire contents of the aforementioned applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3668106 | Ota | Jun 1972 | A |
3756693 | Ota | Sep 1973 | A |
3767392 | Ota | Oct 1973 | A |
3792308 | Ota | Feb 1974 | A |
3870517 | Ota et al. | Mar 1975 | A |
3892568 | Ota | Jul 1975 | A |
3909116 | Kohashi | Sep 1975 | A |
4079368 | DiStefano | Mar 1978 | A |
4418346 | Batchelder | Nov 1983 | A |
4569575 | Le Pesant et al. | Feb 1986 | A |
4838660 | Fergason | Jun 1989 | A |
5659330 | Sheridon | Aug 1997 | A |
5717283 | Biegelsen et al. | Feb 1998 | A |
5731792 | Sheridon | Mar 1998 | A |
5745094 | Gordon, II et al. | Apr 1998 | A |
5757345 | Sheridon | May 1998 | A |
5760761 | Sheridon | Jun 1998 | A |
5777782 | Sheridon | Jul 1998 | A |
5808593 | Sheridon | Sep 1998 | A |
5808783 | Crowley | Sep 1998 | A |
5872552 | Gordon, II et al. | Feb 1999 | A |
5930026 | Jacobson et al. | Jul 1999 | A |
5956005 | Sheridon | Sep 1999 | A |
5961804 | Jacobson et al. | Oct 1999 | A |
6017584 | Albert et al. | Jan 2000 | A |
6054071 | Mikkelsen, Jr. | Apr 2000 | A |
6055091 | Sheridon et al. | Apr 2000 | A |
6067185 | Albert et al. | May 2000 | A |
6097531 | Sheridon | Aug 2000 | A |
6118426 | Albert et al. | Sep 2000 | A |
6120588 | Jacobson | Sep 2000 | A |
6120839 | Comiskey et al. | Sep 2000 | A |
6124851 | Jacobson | Sep 2000 | A |
6128124 | Silverman | Oct 2000 | A |
6130773 | Jacobson et al. | Oct 2000 | A |
6130774 | Albert et al. | Oct 2000 | A |
6137467 | Sheridon et al. | Oct 2000 | A |
6144361 | Gordon, II et al. | Nov 2000 | A |
6147791 | Sheridon | Nov 2000 | A |
6172798 | Albert et al. | Jan 2001 | B1 |
6177921 | Comiskey et al. | Jan 2001 | B1 |
6184856 | Gordon, II et al. | Feb 2001 | B1 |
6225971 | Gordon, II et al. | May 2001 | B1 |
6232950 | Albert et al. | May 2001 | B1 |
6241921 | Jacobson et al. | Jun 2001 | B1 |
6249271 | Albert et al. | Jun 2001 | B1 |
6252564 | Albert et al. | Jun 2001 | B1 |
6262706 | Albert et al. | Jul 2001 | B1 |
6262833 | Loxley et al. | Jul 2001 | B1 |
6271823 | Gordon, II et al. | Aug 2001 | B1 |
6300932 | Albert | Oct 2001 | B1 |
6301038 | Fitzmaurice et al. | Oct 2001 | B1 |
6312304 | Duthaler et al. | Nov 2001 | B1 |
6312971 | Amundson et al. | Nov 2001 | B1 |
6323989 | Jacobson et al. | Nov 2001 | B1 |
6327072 | Comiskey et al. | Dec 2001 | B1 |
6376828 | Comiskey | Apr 2002 | B1 |
6377387 | Duthaler et al. | Apr 2002 | B1 |
6392785 | Albert et al. | May 2002 | B1 |
6392786 | Albert | May 2002 | B1 |
6413790 | Duthaler et al. | Jul 2002 | B1 |
6422687 | Jacobson | Jul 2002 | B1 |
6445374 | Albert et al. | Sep 2002 | B2 |
6445489 | Jacobson et al. | Sep 2002 | B1 |
6449081 | Onuki et al. | Sep 2002 | B1 |
6459418 | Comiskey et al. | Oct 2002 | B1 |
6473072 | Comiskey et al. | Oct 2002 | B1 |
6480182 | Turner et al. | Nov 2002 | B2 |
6498114 | Amundson et al. | Dec 2002 | B1 |
6504524 | Gates et al. | Jan 2003 | B1 |
6506438 | Duthaler et al. | Jan 2003 | B2 |
6512354 | Jacobson et al. | Jan 2003 | B2 |
6515649 | Albert et al. | Feb 2003 | B1 |
6518949 | Drzaic | Feb 2003 | B2 |
6521489 | Duthaler et al. | Feb 2003 | B2 |
6531997 | Gates et al. | Mar 2003 | B1 |
6535197 | Comiskey et al. | Mar 2003 | B1 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6545291 | Amundson et al. | Apr 2003 | B1 |
6580545 | Morrison et al. | Jun 2003 | B2 |
6603444 | Kawanami et al. | Aug 2003 | B1 |
6639578 | Comiskey et al. | Oct 2003 | B1 |
6639580 | Kishi et al. | Oct 2003 | B1 |
6652075 | Jacobson | Nov 2003 | B2 |
6657772 | Loxley | Dec 2003 | B2 |
6664944 | Albert et al. | Dec 2003 | B1 |
D485294 | Albert | Jan 2004 | S |
6672921 | Liang et al. | Jan 2004 | B1 |
6680725 | Jacobson | Jan 2004 | B1 |
6683333 | Kazlas et al. | Jan 2004 | B2 |
6693620 | Herb et al. | Feb 2004 | B1 |
6704133 | Gates et al. | Mar 2004 | B2 |
6710540 | Albert et al. | Mar 2004 | B1 |
6721083 | Jacobson et al. | Apr 2004 | B2 |
6724519 | Morrison et al. | Apr 2004 | B1 |
6727881 | Albert et al. | Apr 2004 | B1 |
6738050 | Comiskey et al. | May 2004 | B2 |
6750473 | Amundson et al. | Jun 2004 | B2 |
6753999 | Zehner et al. | Jun 2004 | B2 |
6788449 | Liang et al. | Sep 2004 | B2 |
6816147 | Albert | Nov 2004 | B2 |
6819471 | Amundson et al. | Nov 2004 | B2 |
6822782 | Pratt et al. | Nov 2004 | B2 |
6825068 | Denis et al. | Nov 2004 | B2 |
6825829 | Albert et al. | Nov 2004 | B1 |
6825970 | Goenaga et al. | Nov 2004 | B2 |
6831769 | Holman et al. | Dec 2004 | B2 |
6839158 | Albert et al. | Jan 2005 | B2 |
6842167 | Albert et al. | Jan 2005 | B2 |
6842279 | Amundson | Jan 2005 | B2 |
6842657 | Drzaic et al. | Jan 2005 | B1 |
6864875 | Drzaic et al. | Mar 2005 | B2 |
6865010 | Duthaler et al. | Mar 2005 | B2 |
6866760 | Paolini Jr. et al. | Mar 2005 | B2 |
6870657 | Fitzmaurice et al. | Mar 2005 | B1 |
6870661 | Pullen et al. | Mar 2005 | B2 |
6900851 | Morrison et al. | May 2005 | B2 |
6906851 | Yuasa | Jun 2005 | B2 |
6922276 | Zhang et al. | Jul 2005 | B2 |
6950220 | Abramson et al. | Sep 2005 | B2 |
6958848 | Cao et al. | Oct 2005 | B2 |
6961167 | Prins et al. | Nov 2005 | B2 |
6967640 | Albert et al. | Nov 2005 | B2 |
7030412 | Drzaic et al. | Apr 2006 | B1 |
7193625 | Danner et al. | Mar 2007 | B2 |
7359108 | Hayes et al. | Apr 2008 | B2 |
20020060321 | Kazlas et al. | May 2002 | A1 |
20020063661 | Comiskey et al. | May 2002 | A1 |
20020090980 | Wilcox et al. | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020130832 | Baucom et al. | Sep 2002 | A1 |
20020180687 | Webber | Dec 2002 | A1 |
20020185378 | Honeyman et al. | Dec 2002 | A1 |
20030011560 | Albert et al. | Jan 2003 | A1 |
20030035198 | Liang et al. | Feb 2003 | A1 |
20030102858 | Jacobson et al. | Jun 2003 | A1 |
20030132908 | Herb et al. | Jul 2003 | A1 |
20030137521 | Zehner et al. | Jul 2003 | A1 |
20030151702 | Morrison et al. | Aug 2003 | A1 |
20030222315 | Amundson et al. | Dec 2003 | A1 |
20040014265 | Kazlas et al. | Jan 2004 | A1 |
20040027327 | LeCain et al. | Feb 2004 | A1 |
20040075634 | Gates | Apr 2004 | A1 |
20040094422 | Pullen et al. | May 2004 | A1 |
20040105036 | Danner et al. | Jun 2004 | A1 |
20040112750 | Jacobson et al. | Jun 2004 | A1 |
20040119681 | Albert et al. | Jun 2004 | A1 |
20040136048 | Arango et al. | Jul 2004 | A1 |
20040155857 | Duthaler et al. | Aug 2004 | A1 |
20040180476 | Kazlas et al. | Sep 2004 | A1 |
20040190114 | Jacobson et al. | Sep 2004 | A1 |
20040196215 | Duthaler et al. | Oct 2004 | A1 |
20040226820 | Webber et al. | Nov 2004 | A1 |
20040239614 | Amundson et al. | Dec 2004 | A1 |
20040252360 | Webber et al. | Dec 2004 | A1 |
20040257635 | Paolini, Jr. et al. | Dec 2004 | A1 |
20040263947 | Drzaic et al. | Dec 2004 | A1 |
20050000813 | Pullen et al. | Jan 2005 | A1 |
20050001812 | Amundson et al. | Jan 2005 | A1 |
20050007336 | Albert et al. | Jan 2005 | A1 |
20050007653 | Honeyman et al. | Jan 2005 | A1 |
20050012980 | Wilcox et al. | Jan 2005 | A1 |
20050017944 | Albert | Jan 2005 | A1 |
20050018273 | Honeyman et al. | Jan 2005 | A1 |
20050024353 | Amundson et al. | Feb 2005 | A1 |
20050035941 | Albert et al. | Feb 2005 | A1 |
20050041004 | Gates et al. | Feb 2005 | A1 |
20050062714 | Zehner et al. | Mar 2005 | A1 |
20050067656 | Denis et al. | Mar 2005 | A1 |
20050099672 | Jacobson et al. | May 2005 | A1 |
20050104804 | Feenstra et al. | May 2005 | A1 |
20050122563 | Honeyman et al. | Jun 2005 | A1 |
20070127108 | Hayes et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1 145 072 | May 2003 | EP |
11038336 | Feb 1999 | JP |
2001042794 | Feb 2001 | JP |
WO 0005704 | Feb 2000 | WO |
WO 0036560 | Jun 2000 | WO |
WO 0038000 | Jun 2000 | WO |
WO 0067110 | Nov 2000 | WO |
WO 0107961 | Feb 2001 | WO |
WO 2004027489 | Apr 2004 | WO |
WO 2004068208 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090046082 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60481482 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10711802 | Oct 2004 | US |
Child | 12202307 | US |