The present invention relates to a metal element, which is configured to be engaged with or disengaged from another element by moving a slider, and to a slide fastener.
Conventionally, an element is disclosed, in which a rib is provided on an inner surface of a front end wall of an engaging concave portion formed in an engaging head thereof in order to obtain a strong engagement strength capable of withstanding an external force, such as a crosswise force or a puncturing force (Patent Literature 1).
Patent Literature 1: Japanese Utility Model Publication No. H1-22505
However, since the element described in Patent Literature 1 is provided with the rib on the inner surface of the front end wall of the engaging concave portion, there is a possibility that when, as shown in FIG. 7 of Patent Literature 1, an engaging convex portion of an element on one side climbs over a front end wall of an engaging concave portion of an element on the other side and then engages with the engaging concave portion, the engaging convex portion of the element on the one side interferes with a rib provided on the front end wall of the engaging concave portion of the element on the other side, thereby making a sliding property poor.
An object of the present invention is to provide an element and a slide fastener, which have an improved puncture strength while maintaining a sliding property when engaging elements with each other.
An element according to one embodiment of the present invention includes:
a head having an engaging convex portion protruding from one surface thereof and an engaging concave portion formed on a back side of the engaging convex portion on the other surface; and
a pair of leg portions extending from the head,
wherein a protrusion is formed on a side of the engaging concave portion close to the leg portions to protrude inward of the engaging concave portion.
In the element according to one embodiment of the present invention,
a maximum width Wp of the protrusion as measured on a surface and a maximum width Wbox of the engaging concave portion as measured on the surface satisfy a following equation (1):
20%≤Wp/Wbox≤55% (1)
wherein the surface refers to a surface of the element, on which the engaging concave portion is formed.
In the element according to one embodiment of the present invention,
a maximum height Hp of the protrusion as measured from a surface and a maximum height Hbox of the engaging concave portion as measured from the surface satisfy a following equation (2):
5%≤Hp/Hbox≤15% (2)
wherein the surface refers to a surface of the element, on which the engaging concave portion is formed.
In the element according to one embodiment of the present invention,
an allowable relative rotation angle α between the engaging convex portion and the engaging concave portion in an engaged state satisfies a following equation (3):
−30°≤α≤30° (3)
wherein α is 0° when distal ends of the heads of two engaged elements are parallel with each other.
A slide fastener according to one embodiment of the present invention includes:
a pair of fastener tapes;
a plurality of the above-described elements each fixed on the pair of fastener tapes; and
at least one slider configured to engage or disengage the elements with or from each other when the elements pass therethrough.
In the element and the slide fastener according to one embodiment of the present invention, it is possible to improve a puncture strength while maintaining the sliding property when engaging elements with each other.
Hereinafter, an element 10 and a slide fastener 1 according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The slide fastener 1 illustrated in the present embodiment includes a fastener chain 2 including a first fastener stringer 3L, which has a plurality of first elements 10L fixed on an edge portion 5L of a first fastener tape 4L thereof, and a second fastener stringer 3R, which has a plurality of second elements 10R fixed on an edge portion 5R of a second fastener tape 4R thereof; and a first slider 7 and a second slider 8 configured to slide along the left and right elements 10L, 10R and thus to engage or disengage the left and right elements 10L, 10R with or from each other.
The fastener chain 2 consists of a pair of fastener stringers 3L, 3R. The fastener stringers 3L, 3R have a pair of fastener tapes 4L, 4R and a plurality of elements 10L, 10R fixed on the respective edge portions 5L, 5R of a pair of fastener tapes 4L, 4R at a predetermined pitch. The elements 10L, 10R are arranged to oppose each other.
Also, the first slider 7 and the second slider 8 are inserted through each of the elements 10L, 10R oriented to directions opposite to each other in the forward and rearward direction. That is, the fastener chain 2 of the present embodiment is configured as a two-side-opening type, in which the fastener chain 2 can be opened or closed in the forward and rearward direction. On the other hand, the fastener chain 2 is not limited to the two-side opening type, but may be a one-side-opening type.
In the slide fastener 1 shown in
Herein, the forward and rearward direction (F-B direction) is a moving direction of the slider 7 and is also a tape length direction of the fastener tapes 4L, 4R. The left and right direction (L-R direction) as shown by the arrows L, R is a width direction of the fastener tapes 4L, 4R and is also a direction perpendicular to the forward and rearward direction. Also, the left and right direction (L-R direction) is also a direction of a rotation axis of a pull 71 of the slider 7. In addition, an upward and downward direction (U-D direction) not shown in the drawings, which is perpendicular to the paper surface, is a direction perpendicular to tape surfaces of the fastener tapes 4L, 4R.
The element 10 is a metal product manufactured by press working or the like and is used in the slide fastener 1 as shown in
The head 11 is provided with an engaging convex portion 13 protruding from one surface thereof and an engaging concave portion 14 formed on the other surface. On a surface 10a of a distal end 11a of the head 11, an inclined portion 15 is formed to facilitate engagement with another element 10 opposing thereto when the element 10 is engaged from the side of the engaging concave portion 14. The inclined portion 15 is formed such that the distal end of the head 11 on the side of the engaging concave portion 14 is chamfered.
The engaging convex portion 13 is formed to be tapered such that a circumferential length thereof becomes shorter as it further protrudes. The engaging concave portion 14 is formed such that the back side of the engaging convex portion 13 is hollowed. Also, the engaging concave portion 14 is formed to be tapered such that a circumferential length thereof becomes shorter as it goes inward. A protrusion 16 is formed on a side of the engaging concave portion 14 close to the leg portions 12. The protrusion 16 is formed to be inclined inward of the engaging concave portion 14 to correspond to the engaging concave portion 14 which is formed to be tapered.
A maximum width Wp of the protrusion 16 as measured on the surface 10a and a maximum width Wbox of the engaging concave portion 14 as measured on the surface 10a satisfy a following equation (1). Here, the surface 10a refers to a surface of the element 10, on which the engaging concave portion 14 is formed.
20%≤Wp/Wbox≤55% (1)
Here, Wp is the maximum width of the protrusion 16 as measured on the surface 10a, and Wbox is the maximum width of the engaging concave portion 14 as measured on the surface 10a.
Further, a maximum height Hp of the protrusion 16 as measured from the surface 10a and a maximum height Hbox of the engaging concave portion 14 as measured from the surface 10a satisfy a following equation (2). Here, the surface 10a refers to a surface of the element 10, on which the engaging concave portion 14 is formed.
5%≤Hp/Hbox≤15% (2)
Here, Hp is the maximum height of the protrusion 16 as measured from the surface 10a of the engaging concave portion 14 close to the leg portions 12; and Hbox is the maximum height of the engaging concave portion 14 as measured from the surface 10a of the engaging concave portion 14 close to the leg portions 12.
Further, it is more preferable that following equations (1′) and (2′) are satisfied.
24%≤Wp/Wbox≤52% (1′)
5.2%≤Hp/Hbox≤11.5% (2′)
The leg portions 12 includes two leg portions 12 extending from the head 11 such that an attachment portion 17, into which the edge portion 5 of the fastener tape 4 is to be fitted, is interposed therebetween. The element 10 is configured to be attached to the fastener tape 4 by fitting the edge portion 5 of the fastener tape 4 into the attachment portion 17 and crimping the two leg portions 12.
As shown in
The element rows 10L′, 10R′ according to the present embodiment are engaged with each other by moving the slider 7 (see
Thereafter, the engaging convex portion 13L of the left element 10L is inserted into the engaging concave portion 14R of the right element 10R. The engaging convex portion 13L of the left element 10L enters the engaging concave portion 14R of the right element 10R along a surface thereof opposite to the protrusion 16R. Finally, the left element 10L and the right element 10R are engaged with each other. On the other hand, when a right element 10R is engaged with a left element 10L, it may be deemed such that the left and right sides are in reverse. This operation is repeated for the left elements 10L and the right elements 10R, thereby achieving engagement of the element rows 10L′, 10R′.
Since the engaging convex portion 13L of the left element 10L enters the engaging concave portion 14R of the right element 10R along a surface thereof opposite to the protrusion 16R, the protrusion 16R does not interfere with the engaging convex portion 13L, thereby the slider 7 can smoothly slide and also the element rows 10L′, 10R′ can be accurately engaged with each other.
The left element 10L and the right element 10R according to the present embodiment are formed to be rotatable relative to each other by a predetermined angle in an engaged state. As shown in
−30°≤α≤30° (3)
Here, α is 0° when the distal ends 11a of the heads of the two engaged elements 10 are parallel with each other.
Also, it is preferable that a following equation (3′) is satisfied, and it is more preferable that a following equation (3″) is satisfied.
−25°≤α≤25° (3′)
−20°≤α≤20° (3″)
Since the left element 10L and the right element 10R can be rotated relative to each other up to the allowable angle, the slide fastener 1 in which these elements 10 are attached can be easily deformed and thus can be used for many types of products.
When a puncturing force is applied to the left element 10L and the right element 10R in the engaged state, the left element 10L and the right element 10R rotate relative to each other to intersect with each other as shown in
In the element 10 of the second embodiment, two protrusions 16 are formed in the engaging concave portion 14 to be spaced from each other. In this case, a width Wp of the protrusions 16 is a distance from the left side of the left protrusion 16 on the surface 10a to the right side of the right protrusion 16 on the surface 10a. A maximum width Wp of the protrusions 16 as measured on the surface 10a and a maximum width Wbox of the engaging concave portion 14 as measured on the surface 10a satisfy the above equation (1). Also, a maximum height Hp of the protrusions 16 as measured from the surface 10a and a maximum height Hbox of the engaging concave portion 14 as measured from the surface 10a satisfy the above equation (2).
Further, even if the protrusions 16 are formed to be spaced from each other, the relative rotation angle with respect to the engaging convex portion 13 does not change and thus the above equation (3) is satisfied. In addition, it is more preferable that the above equations (1′) and (2′) are satisfied. Alternatively, three or more protrusions 16 may be provided. In this case, a width Wp of the protrusions 16 is a distance from the left side of the most left protrusion 16 on the surface 10a to the right side of the most right protrusion 16 on the surface 10a. Further, in this case, a height Hp of the protrusions 16 is a height of the protrusions 16 at both ends as measured from the surface 10a.
Alternatively, the element 10 according to the present embodiment may be provided with a protruding portion on a side of the engaging concave portion 14 close to the distal end 11a, in addition to the side of the engaging concave portion 14 close to the leg portions 12.
As described above, the element 10 according to the present embodiment includes the head 11 having the engaging convex portion 13 protruding from one surface thereof and the engaging concave portion 14 formed on the back side of the engaging convex portion 13 on the other surface; and the pair of leg portions 12 extending from the head 11, wherein the protrusion 16 is formed on the side of the engaging concave portion 14 close to the leg portions 12 to protrude inward of the engaging concave portion 14. Therefore, it is possible to improve the puncture strength while maintaining the sliding property when engaging the elements 10 with each other.
Also, in the element 10 according to the present embodiment, a maximum width Wp of the protrusion 16 as measured on the surface 10a and a maximum width Wbox of the engaging concave portion 14 as measured on the surface 10a satisfy the following equation (1).
20%≤Wp/Wbox≤55% (1)
Here, the surface 10a refers to a surface of the element 10, on which the engaging concave portion 14 is formed.
Therefore, it is possible to further improve the puncture strength while maintaining the sliding property when engaging the elements 10 with each other.
Further, in the element 10 according to the present embodiment, a maximum height Hp of the protrusion 16 as measured from the surface 10a and a maximum height Hbox of the engaging concave portion 14 as measured from the surface 10a satisfy the following equation (2).
5%≤Hp/Hbox≤15% (2)
Here, the surface 10a refers to a surface of the element 10, on which the engaging concave portion 14 is formed.
Therefore, it is possible to further improve the puncture strength while maintaining the sliding property when engaging the elements 10 with each other.
Also, in the element 10 according to the present embodiment, an allowable relative rotation angle α between the engaging convex portion 13 and the engaging concave portion 14 in the engaged state satisfies the following equation (3).
−30°≤α≤30° (3)
Here, α is 0° when the distal ends 11a of the heads of the two engaged elements 10 are parallel with each other.
Therefore, the slide fastener 1 employing the element 10 can be easily deformed and thus can be used for many types of products.
Further, the slide fastener 1 according to the present embodiment includes the pair of fastener tapes 4; the plurality of the above-described elements 10 each fixed on the pair of fastener tapes 4; and at least one slider 7 configured to engage or disengage the elements 10 with or from each other when the elements 10 pass therethrough. Therefore, according to the slide fastener 1, it is possible to improve the puncture strength while maintaining the sliding property when engaging the elements 10 with each other.
Although various embodiments of the present invention have been described, the present invention is not limited to the foregoing embodiments, and accordingly, any other embodiments constructed by appropriately combining configurations of the foregoing embodiments are intended to be encompassed by the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/029458 | 8/6/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/031239 | 2/13/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1610839 | Winterhalter | Dec 1926 | A |
1692196 | Blair | Nov 1928 | A |
1745116 | Pipes | Jan 1930 | A |
1864614 | Poux | Jun 1932 | A |
2067735 | Silberman | Jan 1937 | A |
2353106 | Winterhalter | Jul 1944 | A |
2628400 | Firing | Feb 1953 | A |
2727290 | Alberto | Dec 1955 | A |
2731671 | Zimmerman | Jan 1956 | A |
4236683 | Moertel | Dec 1980 | A |
4418449 | Heimberger | Dec 1983 | A |
4651388 | Horikawa | Mar 1987 | A |
4654388 | Horikawa et al. | Mar 1987 | A |
5394593 | Aoki | Mar 1995 | A |
9101182 | Kozato | Aug 2015 | B2 |
20080209695 | Matsui | Sep 2008 | A1 |
20080313867 | Morioka | Dec 2008 | A1 |
20090013505 | Hasegawa | Jan 2009 | A1 |
20110010899 | Kozato | Jan 2011 | A1 |
20120036685 | Wang | Feb 2012 | A1 |
20130007993 | Kozato | Jan 2013 | A1 |
20130133161 | Ren | May 2013 | A1 |
20140182092 | Seki | Jul 2014 | A1 |
20160015133 | Chung | Jan 2016 | A1 |
20190269207 | Kumei | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
355 045 | Nov 1928 | BE |
S61-052912 | Apr 1986 | JP |
H01-22505 | Jul 1989 | JP |
H06-217810 | Aug 1994 | JP |
2011135699 | Nov 2011 | WO |
Entry |
---|
International Search Report, PCT Application No. PCT/JP2018/029458, dated Oct. 23, 2018. |
Written Opinion, PCT Application No. PCT/JP2018/029458, dated Oct. 23, 2018. |
Supplementary European Search Report, European Patent Application No. 18929776.5, dated Feb. 17, 2022. |
English Translation of the Written Opinion of the International Searching Authority, PCT Patent Application No. PCT/JP2018/029458, dated Oct. 23, 2018. |
Number | Date | Country | |
---|---|---|---|
20210307458 A1 | Oct 2021 | US |