The invention describes an element equipped along the wind turbine blade root, permitting blade hoisting without deforming the circular shape of the blade root and dispensing with the use of two cranes. The method to follow for hoisting and securing the blade to the hub is likewise described.
The wind rotor is understood as the assembly of components of the wind turbine rotating outside the nacelle. These components are the blades, hub and blade pitch control mechanism. From a design and manufacturing standpoint, each component is considered to be an independent element that must subsequently be assembled. In large wind turbines, the most complex joint to establish is between the blade root and hub, whose joint is in turn aligned with the fixed/mobile track unit and bearings that make up the blade pitch control mechanism.
Large size wind turbine blades are hoisted up and assembled on the wind turbine using hoisting methods that normally require two cranes. One of the cranes of superior height than the hub's height and the other one of smaller size to properly guide hoisting from the area at the tip of the blade.
The main difficulty of these hoisting methods lies in the unions between the lifting slings, or hoisting cables, and the hoisting points on the blade root. These hoisting points must withstand a significant load corresponding to the largest part of the weight of the blade. Further, the inserts in the blade root cannot be used for securing the slings, since, in the last stage of blade-to-hub assembly, the hub-fastening long bolts must be previously fit into the inserts. On the other hand, given that the blades are made of pieces of low thickness composite material, designing a mechanical joint between the hoisting points and the laminate without damaging the structure of the blade by deforming the initial circular shape, is complicated.
The closest state of the art corresponds to different ways of fastening the hoisting slings with the union points directly applied to the blade root as can clearly be seen in the drawings of patents DE 1995516 and EP 1101936. The solutions shown by these patents are intended for small-sized blades, since as the size of the blade increases, numerous points in the process become even more complicated: the deformation endured by the blade structure under its own weight during hoisting causes the blade root to ovalize and lose the tolerances necessary to readily align all the blade root inserts with the blade bearing holes (those corresponding to the hub) without difficulty. The present invention is directed to avoid the use of two cranes, thus minimizing costs derived from renting, achieving a hoisting method that merely requires lifting points on the hub and anchor points on the ground. Similar to patent P200603165 held by the same applicant. Thus, the invention keeps the hub-fastening long bolts and in turn incorporates elements that prevent the circular section of the blade root from deforming.
The final edge of the blade root is made of several metal inserts embedded or stuck to a laminate of composite material. These inserts represent the union points with the wind turbine hub. A bearing consisting of a fixed track and a mobile track is screwed down to the wind turbine hub. Prior to carrying out the joint between the blade and hub, a long bolt is inserted into each insert so that this bolt can subsequently go through the mobile track on the hub bearing and, with the aid of a nut and its corresponding washer, complete a pre-loaded joint. With the final hub-fastening bolts inserted in the insert orifices, the inserts in the blade root cannot be used for securing them to the elements that, directly or indirectly, are fastened to the slings lifted to hoist the blade.
One object of the invention is the modification of certain inserts in the blade root, replacing them with inserts having the same characteristics although slightly shorter, and a intermediate piece positioned between these inserts and the blade bearing's mobile track.
In a second practical embodiment, certain inserts at the blade root are modified by machining their walls so that they may be screwed into a intermediate piece that will be adjusted between the inserts and the blade bearing's mobile track. Thus, the bolt used in the final assembly could be a normal bolt dispensing with the need to include a double threaded bolt with an intermediate threading to secure the intermediate piece.
Another object of the invention is to provide the intermediate piece am with elements to fasten the sling which will be pulled to hoist the blade, and braces that safeguard the slender shape of the blade root from deformation during hoisting from the full structural weight of the blade.
Another object of the invention is to hoist the blade by lifting from points located outside the root inserts and that these cross tools are sufficiently is rigid to protect the circumference formed at the end of the blade in the root area from damage and, likewise, to replace the braces mentioned in the preceding paragraph.
These and further advantages shall be better understood with the following detailed description based on the attached drawings.
As shown in
Section BB′ is shown with further detail in
In order to secure the intermediate piece (3) to the insert (9′) having the shorter length during transport and storage, a short bolt (10) is used. In addition, the intermediate piece (3) has a gap (12) to include a hoisting point fastening element and a strut (13) to prevent ovalization of the blade root and give rigidity to the assembly.
As shown in
Once the appropriate number of intermediate pieces (3) to fit onto the root of the blade (1) has been established, the unit as a whole should appear as shown in
When the blade has been hoisted and secured to the hub, the unit appears as in
If, instead of the shortened insert (9′), a threaded insert (9″) is used, this creates the aforementioned second embodiment,
Using the invented tool, the inserts (9′) (9″) on the root of the blade (1) are thus adapted to fit the bolts (17) (17′) for fastening to the hub, hence the blade can be hoisted both horizontally, which occurs in the first hoisting stage, as well as vertically, posture adopted during the second hoisting stage.
The hoisting method is described in the group of figures forming
The sequence of the assembly from the ground is as follows:
The blade is extended horizontally at the base of the tower with the root close to the tower.
The blade dismounting sequence is the inversion of these same steps.
Number | Date | Country | Kind |
---|---|---|---|
P201000042 | Jan 2010 | ES | national |
P201000330 | Mar 2010 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2010/000533 | 12/30/2010 | WO | 00 | 7/9/2012 |