1. Field of the Invention
The present invention relates to an element substrate which is resistant to operation errors caused by a noise generated based on current fluctuation, capable of stable printing, and particularly suitable for an inkjet printhead, and a printhead, head cartridge, and printing apparatus using the element substrate.
2. Description of the Related Art
An inkjet printhead is conventionally known, which discharges ink from a plurality of discharge orifices using thermal energy. To obtain a stable discharge characteristic in the printhead, it is necessary to apply a stable voltage to heaters. A printhead element substrate has a plurality of heater arrays. When all heaters of a heater array are driven simultaneously, a large current flows to the ground wirings and the driving power supply wirings for supplying power to the heaters, and the voltage considerably drops due to the wiring resistance. If the voltage applied to the heaters varies because of the voltage drop, the ink discharge amount also varies, and a stable discharge characteristic is hard to obtain. To suppress voltage drop and obtain a stable discharge characteristic, a recent printhead element substrate limits the number of heaters to be driven simultaneously. More specifically, heaters are divided into a predetermined number of blocks and sequentially driven using so-called time-divisional driving, thereby applying a stable voltage to the heaters (Japanese Patent Publication Laid-Open No. 07-68761).
As described above, when a plurality of heaters are simultaneously driven, a large current flows to the driving power supply wirings and ground wirings. In this case, a noise generated based on current fluctuation generated by inductive coupling in the TAB wirings of the printhead poses a problem. The TAB wirings are provided on one side from the viewpoint of cost reduction and manufacturing ease of the printhead. Hence, the driving power supply wirings to apply the driving voltage to the heaters on the element substrate, the ground wirings, and logic signal wirings to send a signal to a logic circuit on the element substrate are formed in parallel. Hence, the noise generated by inductive coupling is superimposed on the logic signal. This may cause operation errors of the logic circuit provided on the element substrate. To prevent this, the element substrate using time-divisional driving delays the timings of driving pulses to be applied to heaters in a selected block in the order of nsec. The current flow per unit time is reduced in this way, thereby preventing the noise generation and operation errors of the logic circuit on the element substrate.
In recent inkjet printing apparatuses, discharged ink droplets have increasingly become small for high-quality image formation. Along with improvement of image quality, the printing speed is also required to be higher. However, it is difficult to implement high-speed printing if the discharge ink droplets are small. For example, if the ink discharge amount simply decreases to ½, the number of times of ink discharge must double. Hence, the printing speed decreases to ½.
To prevent the decrease in printing speed caused by small ink droplets, it is necessary to apply the same amount of ink to a print medium in per unit time as before. The decrease in printing speed can be prevented by increasing the number of heaters arranged on the element substrate. However, if only the number of heaters is simply increased without changing their pitch, the element substrate becomes large, and the printhead incorporating the element substrate becomes bulky. The printhead scans in the inkjet printing apparatus at a high speed. Hence, a bulky printhead generates vibration and noise. A bulky printhead also increases cost. To increase the number of heaters without changing the size of the element substrate, a method for increasing the heater arrangement density has been proposed.
When the arrangement density of heaters rises, the number of heaters to be driven simultaneously also increases. When the number of heaters to be driven simultaneously also increases, the current flow per unit time to the driving power supply wirings further increases. For this reason, the conventional delay method using time-divisional driving can hardly suppress a noise generated based on current fluctuation generated by inductive coupling in the TAB wirings of the printhead.
The present invention is directed to an element substrate, and a printhead, head cartridge, and printing apparatus using the element substrate.
It is possible to provide an element substrate which has printing elements arranged at a high density and prevents operation errors of a logic circuit by suppressing a noise generated based on current fluctuation generated by the rise of a current in driving the printing elements. It is also possible to provide a printhead, head cartridge, and printing apparatus using the element substrate.
According to one aspect of the present invention, preferably, there is provided a printhead element substrate including a plurality of printing elements, and a block selection unit which divides the plurality of printing elements into a plurality of blocks and time-divisionally drives the blocks, comprising:
a plurality of input terminals which divide the plurality of printing elements included in each block into a plurality of groups and supply a driving voltage to the printing elements belonging to each group;
a delay circuit which externally receives an enable signal for enabling energization to the printing elements and generates a plurality of delayed enable signals having different delay times with respect to the enable signal; and
a wiring which supplies the enable signal and the plurality of delayed enable signals output from the delay circuit to different groups in the order of the different delay times.
According to another aspect of the present invention, preferably, there is provided a printhead, head cartridge, and printing apparatus having the element substrate.
The invention is particularly advantageous since it is possible to provide an element substrate which has printing elements arranged at a high density and prevents operation errors of a logic circuit by suppressing a noise generated based on current fluctuation generated by the rise of a current in driving the printing elements, and a printhead, head cartridge, and printing apparatus using the element substrate.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
The embodiments of the present invention will be described next with reference to the accompanying drawings.
In this specification, the terms “print” and “printing” not only include the formation of significant information such as characters and graphics, but also broadly includes the formation of images, figures, patterns, and the like on a print medium, or the processing of the medium, regardless of whether they are significant or insignificant and whether they are so visualized as to be visually perceivable by humans.
Also, the term “print medium” not only includes a paper sheet used in common printing apparatuses, but also broadly includes materials, such as cloth, a plastic film, a metal plate, glass, ceramics, wood, and leather, capable of accepting ink.
Furthermore, the term “ink” (to be also referred to as a “liquid” hereinafter) should be extensively interpreted similar to the definition of “print” described above. That is, “ink” includes a liquid which, when applied onto a print medium, can form images, figures, patterns, and the like, can process the print medium, and can process ink (e.g., can solidify or insolubilize a coloring agent contained in ink applied to the print medium).
An “element substrate” in the description indicates not a simple substrate made of a silicon semiconductor but a substrate with elements and wirings.
The expression “on an element substrate” indicates not only “on the surface of an element substrate” but also “inside of an element substrate near its surface”. The term “built-in” in the present invention indicates not to “simply arrange separate elements on a substrate” but to “integrally form elements on an element substrate in a semiconductor circuit manufacturing process”.
[Inkjet Printing Apparatus]
Referring to
[Control Arrangement of Inkjet Printing Apparatus]
A control arrangement for executing print control of the above-described apparatus will be described next.
Referring to
The operation of the control arrangement will be described. When a print signal is input to the interface 1700, the print signal is converted into print data for printing between the gate array 1704 and the MPU 1701. The motor drivers 1706 and 1707 are driven. In addition, the printhead IJH is driven in accordance with the print data sent to the head driver 1705 so that printing is executed. An enable signal to be described later and a block control signal to control a driven block are also supplied to the printhead via the head driver.
[Head Cartridge]
Reference numeral 500 in
[Printhead]
The printhead according to the typical embodiment of the present invention will be described next.
The printhead IJH of this embodiment is a constituent element of the head cartridge IJC, as is apparent from the perspective views in
The positioning unit and electrical contacts of the carriage HC incorporated in the inkjet printing apparatus IJRA stationarily support the head cartridge IJC. The head cartridge IJC is detachable from the carriage HC.
The printhead IJH includes a printing element unit H1002, ink supply unit (print liquid supply unit) H1003, and tank holder H2000, as shown in the exploded perspective view of
An element substrate H1100 is bonded and fixed on a first plate H1200, as shown in the exploded perspective view of
The electric wiring tape H1300 applies an electrical signal for ink discharge to the first element substrate H1100 and second element substrate H1101. The electric wiring tape H1300 has electrode terminal portions electrically connected to the electric contact substrate H2200. The electric contact substrate H2200 has two opening portions to receive the first element substrate H1100 and second element substrate H1101, and electrode terminals (not shown) corresponding to the electrodes H1104 of the element substrates. The electric contact substrate H2200 also has the external signal input terminals H1301 which are provided at an end of the electric wiring tape H1300 to receive an electrical signal from the printing apparatus. The electric wiring tape H1300, first element substrate H1100, and second element substrate H1101 are electrically connected to each other.
The element substrate H1101 as an important part of the present invention will be described next in detail.
The block selection logic circuit 106 including a decoder can sequentially designate a plurality of blocks. Only a circuit arrangement for selecting one block by the decoder is shown here for illustrative convenience.
When a plurality of blocks exist, input terminals VH1 and VH2 to input a power supply voltage and the input terminal HE to input a heat enable signal are commonly connected to the plurality of blocks.
An HE (Heat Enable) 1 signal enables a specific control gate of the control gate group 104 for a predetermined period. An HE2 signal is obtained by delaying the HE1 signal using the delay circuit 101. An HE3 signal is obtained by delaying the HE2 signal using the delay circuit 101. An HE4 signal is obtained by delaying the HE3 signal using the delay circuit 101. The input terminal VH1 is a bundle of driving power supply wirings to supply a driving voltage to the heater group 102-1. The input terminal VH2 is a bundle of driving power supply wirings to supply a driving voltage to the heater group 102-2. An electrode terminal GNDH1 is a bundle of ground wirings of the heater group 102-1. An electrode terminal GNDH2 is a bundle of ground wirings of the heater group 102-2.
Referring to
According to this embodiment, the heaters of the heater group 102-1 which receives the driving voltage from the input terminal VH1 and the heaters of the heater group 102-2 which receives the driving voltage from the input terminal VH2 are alternately driven in the order of the delay times of the heat enable signal. That is, in this embodiment, the current that flows in driving the heaters never flows to a single input terminal continuously; it alternately flows to the input terminals VH1 and VH2.
Of the heat enable signals distributed to the input terminals VH1 and VH2 at the node 109, the heat enable signal on the side of the input terminal VH2 is delayed by a delay circuit 107. An HE1 signal enables a specific gate of the gate group 104 for a predetermined period. An HE2 signal is obtained by delaying the HE1 signal using the delay circuit 107. An HE3 signal is obtained by delaying the HE1 signal by a delay circuit 101 for delaying the enable signal. An HE4 signal is obtained by delaying the HE2 signal using the delay circuit 101.
Referring to
According to this embodiment, the heaters of the heater group 102-1 which receives the driving voltage from the input terminal VH1 and the heaters of the heater group 102-2 which receives the driving voltage from the input terminal VH2 are alternately driven in the order of the delay times. That is, in this embodiment, the current that flows in driving the heaters never flows to a single input terminal continuously; it alternately flows to the input terminals VH1 and VH2. In this embodiment, the number of heaters on the side of the input terminal VH1 equals that on the side of the input terminal VH2. Hence, the signal line of the heat enable signal is branched at the node 109 so that the divided lines have the same or almost equal lengths on the sides of the input terminals VH1 and VH2. This makes it possible to drive the heaters sequentially at a predetermined time interval without any influence of the difference in wiring length.
In the first and second embodiments, the heaters which receive the driving voltage from the input terminal VH1 and those which receive driving voltage from the input terminal VH2 are alternately driven. Hence, a delay time Δt2 for each of the input terminals VH1 and VH2 is twice the delay time Δt1.
According to the first and second embodiments, it is possible to halve the rise of the current flowing to a driving power supply wiring on the TAB wiring without changing the total delay time.
In both embodiments, the element substrate has the two input terminals to supply the driving voltage to the heater. The element substrate may have a plurality of input terminals (three or more terminals).
In both embodiments, each of the heater groups which receive the driving signals delayed by the delay circuit in a predetermined number of steps includes two heaters. However, the number of heaters included in each heater group may be 1 or 3 or more.
In both embodiments, the element substrate uses heaters as printing elements. The element substrate may use, e.g., piezoelectric elements as printing elements.
In the present invention, the number of heaters to be driven in one block is not limited. It is therefore possible to obtain optimum conditions by combining the delay time, the number of blocks, the number of heaters to be driven in one block, and the like in an element substrate with heaters being arranged at a high density.
As described above, even when the number of heaters to be driven increases, the present invention allows to suppress the rise of a current flowing to an input terminal for supplying a driving voltage to the heaters. Hence, it is possible to prevent noise generation on TAB electric wirings due to the rise of a current flowing to driving power supply wirings and prevent operation errors of a logic circuit.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-296944, filed Oct. 31, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-296944 | Oct 2006 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11867976 | Oct 2007 | US |
Child | 12828626 | US |