Elementary bitstream cryptographic material transport systems and methods

Information

  • Patent Grant
  • 9124773
  • Patent Number
    9,124,773
  • Date Filed
    Monday, June 16, 2014
    10 years ago
  • Date Issued
    Tuesday, September 1, 2015
    8 years ago
Abstract
Systems and methods for providing multimedia content from one process or component to another process or component over an unsecured connection are provided. One embodiment includes obtaining the cryptographic information, extracting the at least partially encrypted video data from the container file to create an elementary bitstream, enciphering the cryptographic information, inserting the cryptographic information in the elementary bitstream, providing the elementary bitstream to a video decoder, extracting the cryptographic information from the elementary bitstream at the video decoder, deciphering the cryptographic information, decrypting the elementary bitstream with the cryptographic information and decoding the elementary bitstream for rendering on a display device using the video decoder.
Description
BACKGROUND

The present invention generally relates to digital multimedia distribution systems and more specifically to digital transmission of encrypted multimedia content over an unsecured connection.


Providers of multimedia content can digitize content for distribution via digital communication networks. An important issue faced by a content distribution system is enabling only those customers that have purchased the content to play the content and compartmentalize access to all the stakeholders in the content distribution chain. One approach is to encrypt portions of the content and to issue encryption keys to authorized users that enable encrypted portions of the content to be unencrypted. Layers of keys and protection policies can be used so a single encryption key alone is insufficient for the user to access the content. In a number of systems, users purchase players that possess specified decryption capabilities. Content providers can distribute content to user's owning such a player in an encryption format supported by the player. Complying with a specified protection policy typically involves using an encryption key specified by the manufacturer of the players. In many instances the manufacturer of the players will not reveal the encryption keys used in the specified encryption scheme and likewise the content provider does not want to share the content keys to the manufacturer of the players.


Communications between components or processes of players or playback systems are typically trustworthy and secured. However, when communication or the transporting of information becomes unsecured or untrustworthy, such gaps need to be accounted for and filled. This has become more evident with advent and popularity of open multimedia frameworks. Bi-directional communication requirements and/or run time challenges and authentication requests to fill such gaps have proved to be less than adequate.


There are many ways of securing communication, including ciphering and encryption.


Ciphering is a procedure used to secure data that typically involves using a series of steps to scramble and render the data readable only to the intended audience. The procedure itself does not require an outside source, such as a key, in order to encipher or decipher the data. Rather, data can be properly deciphered by the intended audience so long as deciphering exactly follows the enciphering steps to unravel the data. Encryption is a procedure used to secure data. That typically involves the use of an external input for at least one step in the procedure, such as a key, in order to secure and/or access the data. The external data is used to intentionally manipulate at least one step in the encryption or decryption process, changing the way the data processing for encryption occurs. Generally, without the external data or a corresponding decryption key in an encryption process, a step in a corresponding decryption process cannot properly be executed and the data cannot be properly decrypted.


In the context of digital media, encoding is a procedure by which digital media is represented in a digital format. The format is typically selected to obtain specific benefits during the transportation, playback and storage of the digital media format used. For example, representing the media using fewer bits may be beneficial to transfer data in order to minimize bandwidth usage or storage space. In another example, a media player may only decode or read media in a certain format and therefore the digital media may first be in that format in order to be decoded by that media player.


Decoding is a procedure by which digital media in a format is translated into a format readable by a media player for rendering on a display device. Often, decoding may also reverse processes associated with encoding such as compression. In instances where encryption and/or enciphering have been applied to encoded media, the enciphering process or encryption process typically must be reversed before the encoded media can be decoded.


SUMMARY OF THE INVENTION

Systems and methods are described for taking cryptographic material from a container file and inserting the cryptographic material in an elementary bitstream, where the cryptographic information can then be used to decrypt the elementary bitstream for playback


A number of embodiments include obtaining the cryptographic information, extracting the at least partially encrypted video data from the container file to create an elementary bitstream, enciphering the cryptographic information, inserting the cryptographic information in the elementary bitstream, providing the elementary bitstream to a video decoder, extracting the cryptographic information from the elementary bitstream at the video decoder, deciphering the cryptographic information, decrypting the elementary bitstream with the cryptographic information and decoding the elementary bitstream for rendering on a display device using the video decoder.


In a further embodiment, the cryptographic information is obtained from the container file.


In another embodiment, the cryptographic information includes key information and information concerning at least a portion of the at least partially encrypted video data that is encrypted using the key information.


In an additional embodiment, information concerning at least a portion of the at least partially encrypted video data is a reference to a block of encrypted data within an encoded frame of video that is encrypted using the key information.


In a still further embodiment, the cryptographic information inserted in the elementary bitstream is delimited by an identifier and the cryptographic information is inserted before the at least partially encrypted video data encrypted using the key information.


In a still other embodiment, the cryptographic information is extracted using the identifier.


In a still additional embodiment, the decrypting process is performed by using the key information to identify the encrypted portion of video data and decrypting the encrypted video data using the key information.


In a yet further embodiment, cryptographic information inserted in different locations within the elementary bitstream includes different key information.


In a yet other embodiment, the at least partially encrypted video data includes frames of encoded video. In addition, the at least partially encrypted video data includes at least a portion of a plurality of the encoded frames that is encrypted.


In a yet further additional embodiment, the enciphering process and the deciphering process are synchronized such that a delay in excess of a predetermined time between enciphering and deciphering results in the cryptographic information being unrecoverable.


In a still further embodiment again, the enciphering process enciphers data by using a sequence of scrambling processes to scramble data.


In a still other embodiment again, the deciphering process deciphers data by performing the inverse sequence of scrambling processes to the sequence used to scramble the data.


Many embodiments include a demultiplexer configured to extract the at least partially encrypted video data from the container file to create an elementary bitstream, a video decoder configured to decrypt the elementary bitstream using the cryptographic information and decode the elementary bitstream for rendering on a display device. Additionally, the demultiplexer is configured to encipher the cryptographic information and insert the enciphered cryptographic information in the elementary bitstream and the decoder is configured to extract enciphered cryptographic information from an elementary bitstream and to decipher the cryptographic information.


In a further embodiment, the cryptographic information is obtained from the container file.


In another embodiment, the cryptographic information includes key information and information concerning at least a portion of the at least partially encrypted video data that is encrypted using the key information.


In an additional embodiment, the information concerning at least a portion of the at least partially encrypted video data is a reference to a block of encrypted data within an encoded frame of video that is encrypted using the key information.


In a further embodiment again, the demultiplexer is configured to insert the cryptographic information delimited by an identifier in the elementary bitstream and insert the cryptographic information before the at least partially encrypted video data encrypted using the key information.


In another embodiment again, the decoder is configured to extract the cryptographic information using the identifier.


In an additional embodiment again, the decoder is configured to decrypt the portion of the video data encrypted using the key information by identifying the encrypted portion of video data and decrypting the encrypted video data using the key information.


In a still further embodiment again, cryptographic information inserted in different locations within the elementary bitstream includes different key information.


In still another embodiment again, the at least partially encrypted video data includes frames of encoded video. Additionally, at least a portion of a plurality of the encoded frames is encrypted.


In a still additional embodiment, both the demultiplexer and the decoder are configured to be synchronized such that a delay in excess of a predetermined time between enciphering and deciphering results in the cryptographic information being unrecoverable.


In a yet further embodiment, the demultiplexer is configured to encipher data by using a sequence of scrambling processes to scramble data.


In a yet other embodiment, the decoder is configured to decipher data by performing the inverse sequence of scrambling processes to the sequence used to scramble the data.


Numerous embodiments include obtaining the cryptographic information. In addition, the cryptographic information is obtained from the container file. Also, the at least partially encrypted video data includes frames of encoded video and at least a portion of a plurality of the encoded frames is encrypted. Additionally, the cryptographic information includes key information and information concerning at least a portion of the least partially encrypted video data that is encrypted using the key information. Furthermore, the information concerning at least a portion of the at least partially encrypted video data is a reference to a block of encrypted data within an encoded frame of video that is encrypted using the key information and the cryptographic information inserted in different locations within the elementary bitstream includes different key information.


Several embodiments include extracting the at least partially encrypted video data from the container file to create an elementary bitstream. In addition, the cryptographic information inserted in the elementary bitstream is delimited by an identifier and the cryptographic information is inserted before the at least partially encrypted video data encrypted using the key information.


Many embodiments include enciphering the cryptographic information and inserting the cryptographic information in the elementary bitstream. In addition, the cryptographic information is extracted using the identifier.


A number of embodiments include providing the elementary bitstream to a video decoder, extracting the cryptographic information from the elementary bitstream at the video decoder and deciphering the cryptographic information. In addition, the enciphering process and the deciphering process are synchronized such that a delay in excess of a predetermined time between enciphering and deciphering results in the cryptographic information being unrecoverable. Also, the enciphering process enciphers data by using a sequence of scrambling processes to scramble data. Furthermore, the deciphering process deciphers data by performing the inverse sequence of scrambling processes in the sequence used to unscramble data.


Several embodiments include decrypting the elementary bitstream with the cryptographic information. In addition, the decrypting process is performed by using the key information to identify the encrypted portion of video data and decrypting the encrypted video data using the key information.


Many embodiments include decoding the elementary bitstream for rendering on a display device using the video decoder.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a graphical representation of a multimedia container file in accordance with various embodiments of the present invention.



FIG. 2 illustrates a graphical representation of a bitstream with cryptographic material in accordance with various embodiments of the present invention.



FIG. 3 is a block diagram of a multimedia cryptographic bitstream transport system in accordance with various embodiments of the present invention.



FIG. 4 is a flow diagram of a demultiplex and authentication process in accordance with various embodiments of the present invention.



FIG. 5 is a flow diagram of a decoder and decipher process in accordance with various embodiments of the present invention.



FIG. 6 is a block diagram of a multimedia cryptographic bitstream transport system in accordance with various embodiments of the present invention.



FIG. 7 is a flow diagram of a wrap key generation process in accordance with various embodiments of the present invention.



FIG. 8 is a flow diagram of a bitstream insertion process in accordance with various embodiments of the present invention.





DETAILED DESCRIPTION

Systems and methods for providing multimedia content from one process or component to another process or component over an unsecured connection are provided. In several embodiments, the transmission occurs between a demultiplexer and a decoder over an unsecured connection where traditionally such connections are secured. In many embodiments, the transmission occurs on a bi-directional communication path. Embodiments of the present invention do not secure the transmission but rather secure the data being transmitted via the unsecured connection. The transmitted data in a number of embodiments includes an encrypted multimedia bitstream and associated cryptographic material in the bitstream for transmission to a decoder for decryption. In various embodiments, a bi-directional communication path between a demultiplexer and the decoder is not used. Additionally, by allowing the decryption to occur on the decoder the bitstream is protected even if the connection is compromised and an unauthorized component or process intercepts the bitstream.


In various embodiments, frame keys are used to decrypt the bitstream. For example, in the manner described in U.S. Pat. No. 7,295,673 to Grab et al. the disclosure of which is incorporated by reference herein in its entirety. In several embodiments, the frame keys are protected by a cryptographic wrap algorithm that uses a separate series of newly generated keys. The wrapped frame keys are inserted into the encrypted bit stream for deciphering and decoding by the decoder. The cryptographic information in various embodiments includes information to decrypt a video frame or a portion of the video frame. In various embodiments, a time indicator in the form of a frame sequence is also utilized to ensure connection between the demultiplexer and decoder is not being intercepted or spied upon.


The cryptographic information inserted into the elementary bitstream can take any of a variety of forms. In many embodiments, the cryptographic information includes a frame key and/or a reference to a block of encrypted video data. In several embodiments, the cryptographic information contains an index to a frame key or a separate reference to both a frame key and an encrypted block. A number of embodiments provide for first inserting a table of possible keys and still further embodiments provide for sending multiple keys where different keys are used to encrypt different portions of the video.


Turning now to the drawings, FIG. 1 represents a multimedia container file 20 including encrypted content, e.g., video. The multimedia container file includes a digital rights management portion 21 preceding associated video portions or chunks 22. The digital rights management portion includes at least one frame key 23 or an index to a frame key in a separately provided table of frame keys, which in many embodiments is encrypted in a way that only enables playback by a particular device and/or user. The digital rights management portion also points to or identifies a specified portion of or an entire video frame within the video chunk 24 that is encrypted. Without first decrypting this encrypted portion of the video chunk, the video content cannot be decoded or displayed. The multimedia container file is supplied to a demultiplexer.


The demultiplexer parses the multimedia container file and transmits portions or chunks of data, e.g., video or audio, to a decoder. However, prior to transmitting the video data, the demultiplexer incorporates or attaches cryptographic material to the video data.



FIG. 2 graphically illustrates the generated multimedia bitstream sent to the decoder. The bitstream 30 includes a header or user data 31 that includes cryptographic material 32. In accordance with many embodiments of the invention, the material includes the frame key 23 from the multimedia container file, which is encrypted using a wrap key, and wrap key information 34 to provide synchronization of the demultiplexer to the decoder in order to decipher the cryptographic material. As is discussed below, the wrap key information can take any of a variety of different forms depending upon the specific application including but not limited to information enabling synchronization of wrap key factories and/or the direct transfer of the wrap keys themselves. The associated video data 33 follows.


Referring now to FIG. 3, a demultiplexer 10 that receives a multimedia container file that includes video and audio data, portions of which are encrypted, is shown. In one embodiment, the multimedia file conforms to a specific format such as audio video interleave (AVI) or Matroska (MKV). The multimedia file is provided via a disc, flash memory device or another tangible storage medium or streamed or otherwise transmitted to the demultiplexer. The demultiplexer separates portions of the received multimedia data including but not limited to video, audio and encryption data that is supplied to an upstream digital rights management component 15. In various embodiments, the connection between the demultiplexer 10 and the digital rights management component 15 can be secure although need not be depending upon the requirements of the application. The digital rights management component 15 generates cryptographic material and the multimedia bitstream transport that is supplied to a decoder 20. In particular, the demultiplexer 10 transmits video data with cryptographic material to the decoder 20.


The connection between the demultiplexer and the decoder is typically secured. However, in the illustrated embodiment, the connection is not secured. Typically, the multimedia file is authorized and decrypted in a demultiplexer and then transmitted downstream unencrypted to the decoder via an inter-communication data channel. This however can present a security problem due to the high value of the unencrypted but still encoded bitstream that can be captured during transmission. This bitstream is considered high-value since the encoded data can be easily multiplexed back into a container for unprotected and unauthorized views and/or distribution with no loss in the quality of the data. In the illustrated embodiment, the video provided to the decoder 20 by the demultiplexer 10 is at least partially encrypted and the decoder 20 communicates with a downstream digital rights management component 25 that deciphers the cryptographic material. Utilizing the deciphered cryptographic material, the digital rights management component is able to access the encryption data and thereby decrypt and decode the video data for playback.


The general processes of the demultiplexer and the decoder are now described. In FIG. 4, the demultiplexer and authentication process is illustrated in which a multimedia container file is received and portions of which are identified or separated (101). If encryption data is identified, cryptographic packets or material are generated (102) and stored in a temporary buffer (103). However, if video data is identified (104), the cryptographic material stored in the temporary buffer is combined with the video data (105) and then transmitted to a video decoder (106). If audio data is identified (107), the audio data is transmitted (108) to the audio decoder. It should be appreciated that audio or other types of data may also include encryption data and thus associated cryptographic material is generated and combined with the associated data and transmitted to the respective decoder. Also, other types of data may be included in the container file without encryption data and thus is transmitted directly to the associated decoder.


In FIG. 5, a decoder and decipher process is illustrated in which the decoder receives video and/or audio data sent from the demultiplexer (201). The decoder deciphers the cryptographic material supplied with the associated data (202). Utilizing the deciphered material, the encrypted data is decrypted (203) and decoded (204) by the decoder for playback.


To further elaborate on the demultiplexer and decoder processes and the bitstream transport system, a more detailed representation of the demultiplexer's and decoder's associated digital rights manager along with the associated processes are illustrated in the remaining figures.


Referring to FIG. 6, the upstream digital rights manager 15 of the demultiplexer 10 includes an authentication engine 16, a bit stream inserter 17, a payload builder 18 and a wrap key factory 19. The downstream digital rights manager 25 of the decoder includes a decrypt engine 26, a bit stream decoder 27, a payload parser 28 and a wrap key factory 29. The authentication engine prepares cryptographic material utilizing the encryption data from the container file and the video data in conjunction with the payload builder 18 and the wrap key factory 19.


The payload builder 18 provides discrete units of cryptographic material in the bitstream delimited by an identifier. On the decoder, the payload parser 28 utilizes the identifiers to extract the discrete units, which are then processed by the decrypt engine 26. In many embodiments, the cryptographic material in one embodiment includes a bitstream frame header along with a cryptographic payload. The cryptographic payload, however, is not dependent on the format of the header of the elementary bitstream, e.g., MPEG-4 or H.264.


In one embodiment, the payload builder 18 inserts a reserved start code identifier along with a cryptographic payload at the front of each video chunk that is demultiplexed. By utilizing a reserved start code, the decrypt engine 26 can pass the entire video data including the inserted cryptographic material to the decoder 20 that simply discards or ignores the cryptographic material. For example, a MPEG-4 compliant decoder discards frames that contain a reserved start code identifier that is included in the bitstream. Accordingly, removal of any of the cryptographic material from the bitstream is not needed to decode the associated data.


The cryptographic payload in one embodiment includes three different packet types: a wrap key, a synchronization payload and a frame payload. The frame payload indicates that the current frame is encrypted and includes key information and a reference to at least a portion of the encoded frame that is encrypted. The frame payload can be used to decrypt the video frame. The synchronization payload is the first packet sent to synchronize the authentication engine of the demultiplexer to the decrypt engine of the decoder. This synchronization ensures that data transmitted from the demultiplexer to the decoder is not being intercepted. The wrap key includes information to unwrap or decipher the transmitted data from the demultiplexer.


The bit stream inserter 17 packages the cryptographic material for transport with the video data. Conversely, the bit stream decoder 27 of the decoder unpacks the cryptographic material from the bitstream. In one embodiment, frame keys are transported in the bitstream and are sent when a key index change is detected by the authentication engine of the demultiplexer. In many embodiments, the decrypt engine of the decoder stores only one frame key and thus frame encryption information sent by the demultiplexer applies to the current frame. If the decrypt engine receives a new frame key from the demultiplexer, the decrypt engine stores the new frame key and uses it to decrypt the next frame. In a number of embodiments, a key table is transmitted and stored in the decrypt engine for reference by subsequent encryption information. In several embodiments, the decoder does not enforce key rotation. In many embodiments, however, the decoder expects a new frame key after a predetermined number of frames in the sequence of frames. In this way, the decrypt engine can identify when supplied frame information is unreliable and terminate the decoding of the multimedia bitstream.


The wrap key factory 19 encrypts or wraps the cryptographic material for transport on the bitstream to the decoder. In one embodiment, the wrap key factory uses a key wrap process based on the Advanced Encryption Standard (AES) and uses the ECB Cipher Mode to provide cryptographic security for wrapping small blocks of data using chaining and cipher feedback loop. The key wrap process is stateless. A corresponding wrap key factory is included with the decoder to unwrap the cryptographic material. Synchronization with the corresponding wrap key factory 29 is used to allow unwrapping of the material without communication back to the demultiplexer (i.e., bi-directional communication) and to prevent unauthorized decoding of the content by, for example, a rogue process intercepting or copying the transmitted content.


Wrap Key Factory


In one embodiment, each of the authentication and decryption blocks (digital rights managers 15, 25) construct a series of predictable transform number sequences using a common heuristic. Subsequently, those numbers are combined with a random value for additional entropy used to contribute toward key material for wrapping keys.


A flow diagram of a wrap key generation process 300 in accordance with an embodiment of the invention is illustrated in FIG. 7. A selected heuristic (302) is combined with key material (304) to create a wrap key (306).


In accordance with various embodiments, one such heuristic (302) may combine the use of a predictable number sequence generator such that identical transform sequences can be generated by different heuristics even though no information is exchanged. If both authentication and decrypt blocks are created such that the output of the common heuristic are identical, the key material (304) generated from such heuristic will be identical. This may apply in situations where a wrapped key (306) and a selected heuristic (302) are provided. Any process for generating identical encryption keys without exchange of key material can be used as an appropriate heuristic to generate wrapping keys (306) in accordance with embodiments of the invention. Although, some information exchange to enable synchronization between the two wrap key factories can be utilized in accordance with embodiments of the invention.


The two wrap key factories use the same transform sequence. To synchronize the wrap key factories, the sender's wrap key factory selects one heuristic (302) from a predetermined set of heuristics to generate the key material for the next wrap key. The decoder factory will receive a known payload that has been encrypted with the sender's wrap key (306) generated using selected heuristic (302) from the known set of heuristics. The receiver then attempts to decrypt and verify the contents of the payload using each of the predetermined heuristics. If the material matches what is expected, then the receiver has identified the correct heuristic (302). If all the heuristics are exhausted, then this is considered a fatal error and decryption cannot continue.


Initially, the synchronization payload is used to assist the decrypt block in identifying the appropriate transform sequence quickly. Once the decrypt block locates the proper heuristic (302), the decrypt block wrap key factory utilizes that transform sequence for all subsequent transforms. In several embodiments, once a heuristic has exhausted all values, that heuristic will deterministically choose the next heuristic to use.


Run time synchronization is maintained through monotonically incrementing a wrap number that is incremented for each wrap key generated. If an error occurs using a particular wrap key (i.e. unallowable data present in the cryptographic payload), the wrap key factory will regenerate a new wrap key and subsequently increment the wrap number. In one embodiment, the frame payload received by the decrypt block contains a wrap number element. On the decrypt block, this wrap number element is compared with the internal wrap number of the decrypt block to determine if the current wrap key needs to be skipped. In one embodiment, the wrap key includes data fed into a cryptographic digest. The resulting bytes from the digest are then used to create an AES key. A new wrap key will be generated for each payload that is wrapped.


Bitstream Data Insertion


A flow diagram of a bitstream insertion process 400 utilized with respect to video data extracted from an AVI container in accordance with an embodiment of the invention is illustrated in FIG. 8. In the demultiplexer, a caller begins extraction (402) of a relevant AVI chunk and requests (404) the DRM for the maximum expected bitstream payload. The demultiplexer then uses the information from the DRM to allocate (406) space in a buffer and passes (408) the buffer to the DRM. Next on the DRM, the video DD info is cached (410). The video DD info may be a data segment in a file container describing the data contained in a single block of container data, such as all of the video frame data in a single AVI chunk. Encrypted frames may have a DD info which contains information relating to the security features of the frame. The MPEG4 reserved start code is inserted (412) into the buffer and then the cryptographic payload header is inserted (414) into the buffer. A decision (416) is then made as to whether the chunk is the first frame. If the chunk is the first frame, then a Sync( ) payload is inserted (418) and a FrameInfo( ) payload is inserted (420). The Sync( ) payload may include the wrap key synchronization payload to synchronize the wrap keys. The FrameInfo( ) payload may include the cryptographic offset and length of information relating to data security in the video data, possibly as part of the DD Info data. If the chunk is not the first frame, then only the FrameInfo( ) payload is inserted (420). Then, a decision (422) is made as to whether the key index is greater than the current key index. If the key index is greater than the current key index, a FrameKey( ) payload is inserted (424) in the buffer and then the number of bytes inserted into the buffer is returned (426) to the caller by the DRM. The FrameKey( ) payload may include the payload containing the next frame key. If the key index is not lower than the current key index, then the DRM returns (426) the number of bytes inserted in the buffer to the caller. Next, the demultiplexer, is ready to extract (428) the AVI chunk. Through this process, DD info awareness occurs before the demultiplexer extracts the video chunk into the buffer for transmission to the decoder.


In various embodiments, bitstream data insertion occurs in the authentication block of the demultiplexer. The digital rights manager in one embodiment first receives the container's encryption data and temporarily stores or caches the information. The cached encryption data contains the information for the next video chunk. From this information, the digital rights manager can determine the proper bitstream payload to insert, if any. To reduce memory copies, the digital rights manager inserts the bitstream payload before extracting the chunk from the container.


Based on the cached encryption data chunk, the digital rights manager can detect frame key changes. If the frame key index has not changed since the last cached encryption data, no key material is sent. In one embodiment, the encryption data is always transported if there is cached encryption data in the digital rights manager. On the first payload, there will be a synchronization payload to allow the decrypt block to synchronize the wrap sequence. The frame information payloads in one embodiment follow the synchronization payload. It should be appreciated that not all payloads are required to appear in each decrypt block. Furthermore, the processes similar to those described above with reference to FIG. 8 can also be used with respect to other container formats including but not limited to MKV container files.


Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method of playing back encrypted video on a playback device, where at least partially encrypted video data is contained within a container file and can be used to create an elementary bitstream using cryptographic information, which can be used to decrypt the at least partially encrypted video data, the method comprising: extracting at least partially encrypted video data from a container file to create an at least partially encrypted elementary bitstream using a processor configured by a demultiplexer process;obtaining cryptographic information using the processor configured by the demultiplexer process, where the cryptographic information comprises: key information; anda reference to a block of encrypted data within an encoded frame of video in the encrypted video data that is encrypted using the key information;enciphering the cryptographic information using the processor configured by the demultiplexer process;inserting the cryptographic information in the elementary bitstream using the processor configured by the demultiplexer process, where the cryptographic information is delimited by an identifier;providing the elementary bitstream in which the enciphered cryptographic information is inserted to a video decoder process using the processor configured by the demultiplexer process;extracting the cryptographic information from the elementary bitstream using a processor configured by a video decoder process;deciphering the enciphered cryptographic information using the processor configured by the video decoder process;decrypting the elementary bitstream with the cryptographic information using the processor configured by the video decoder process; anddecoding the decrypted elementary bitstream for rendering on a display device using the processor configured by the video decoder process.
  • 2. The method of claim 1, wherein the cryptographic information is obtained from the container file.
  • 3. The method of claim 1, wherein the cryptographic information is inserted before the at least partially encrypted video data encrypted using the key information.
  • 4. The method of claim 3, wherein the cryptographic information is extracted using the identifier.
  • 5. The method of claim 4, wherein the decrypting process is performed by using the key information to identify the encrypted portion of video data and decrypting the encrypted video data using the key information.
  • 6. The method of claim 5, wherein cryptographic information inserted in different locations within the elementary bitstream includes different key information.
  • 7. The method of claim 1, wherein the at least partially encrypted video data comprises: frames of encoded video;wherein at least a portion of a plurality of the encoded frames is encrypted.
  • 8. The method of claim 1, wherein the enciphering process and the deciphering process are synchronized such that a delay in excess of a predetermined time between enciphering and deciphering results in the cryptographic information being unrecoverable.
  • 9. The method of claim 8, wherein the enciphering process enciphers data by using a sequence of scrambling processes to scramble data.
  • 10. The method of claim 9, wherein the deciphering process deciphers data by performing the inverse sequence of scrambling processes to the sequence used to scramble the data.
  • 11. A system for playback of encrypted video, where at least partially encrypted video data is contained within a container file and can be used to create an elementary bitstream using cryptographic information, which can be used to decrypt the at least partially encrypted video data, comprising: a demultiplexer configured to extract at least partially encrypted video data from a container file containing at least partially encrypted video data to create an at least partially encrypted elementary bitstream; anda video decoder configured to decrypt the elementary bitstream using the cryptographic information and decode the decrypted elementary bitstream for rendering on a display device;wherein the demultiplexer is configured to obtain cryptographic information, encipher the cryptographic information, and insert the enciphered cryptographic information into the elementary bitstream, where the cryptographic information is delimited by an identifier and the cryptographic information comprises: key information; anda reference to a block of encrypted data within an encoded frame of video in the encrypted video that data is encrypted using the key information; andwherein the decoder is configured to extract enciphered cryptographic information from an elementary bitstream in which the enciphered cryptographic information is inserted, to decipher the cryptographic information, to decrypt the elementary bitstream using the cryptographic information, and to decode the decrypted elementary bitstream for rendering on a display device.
  • 12. The system of claim 11, wherein the cryptographic information is obtained from the container file.
  • 13. The system of claim 11, wherein the demultiplexer is further configured to: insert the cryptographic information before the at least partially encrypted video data encrypted using the key information.
  • 14. The system of claim 13, wherein the decoder is configured to extract the cryptographic information using the identifier.
  • 15. The system of claim 14, wherein the decoder is configured to decrypt the portion of the video data encrypted using the key information by identifying the encrypted portion of video data and decrypting the encrypted video data using the key information.
  • 16. The system of claim 15, wherein cryptographic information inserted in different locations within the elementary bitstream includes different key information.
  • 17. The system of claim 11, wherein the at least partially encrypted video data comprises: frames of encoded video;wherein the at least a portion of a plurality of the encoded frames is encrypted.
  • 18. The system of claim 11, wherein both the demultiplexer and the decoder are configured to be synchronized such that a delay in excess of a predetermined time between enciphering and deciphering results in the cryptographic information being unrecoverable.
  • 19. The system of claim 18, wherein the demultiplexer is configured to encipher data by using a sequence of scrambling processes to scramble data.
  • 20. The system of claim 19, wherein the decoder is configured to decipher data by performing the inverse sequence of scrambling processes to the sequence used to scramble the data.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation application of U.S. application Ser. No. 12/946,631 filed Nov. 15, 2010 entitled “Elementary Bitstream Cryptographic Material Transport Systems and Methods” which claims priority to U.S. Provisional Patent Application No. 61/266,982, filed Dec. 4, 2009, the disclosure of which is incorporated herein by reference.

US Referenced Citations (221)
Number Name Date Kind
5361332 Yoshida et al. Nov 1994 A
5404436 Hamilton Apr 1995 A
5502766 Boebert et al. Mar 1996 A
5509070 Schull Apr 1996 A
5715403 Stefik Feb 1998 A
5754648 Ryan et al. May 1998 A
5805700 Nardone et al. Sep 1998 A
5892900 Ginter et al. Apr 1999 A
5999812 Himsworth Dec 1999 A
6031622 Ristow et al. Feb 2000 A
6044469 Horstmann Mar 2000 A
6141754 Choy Oct 2000 A
6155840 Sallette Dec 2000 A
6175921 Rosen Jan 2001 B1
6195388 Choi et al. Feb 2001 B1
6282653 Berstis et al. Aug 2001 B1
6289450 Pensak et al. Sep 2001 B1
6449719 Baker Sep 2002 B1
6466671 Maillard et al. Oct 2002 B1
6510513 Danieli Jan 2003 B1
6658056 Duruöz et al. Dec 2003 B1
6807306 Girgensohn et al. Oct 2004 B1
6810389 Meyer Oct 2004 B1
6859496 Boroczky et al. Feb 2005 B1
6956901 Boroczky et al. Oct 2005 B2
6965993 Baker Nov 2005 B2
7007170 Morten Feb 2006 B2
7043473 Rassool et al. May 2006 B1
7150045 Koelle et al. Dec 2006 B2
7151832 Fetkovich et al. Dec 2006 B1
7151833 Candelore et al. Dec 2006 B2
7165175 Kollmyer et al. Jan 2007 B1
7185363 Narin et al. Feb 2007 B1
7242772 Tehranchi Jul 2007 B1
7328345 Morten et al. Feb 2008 B2
7349886 Morten et al. Mar 2008 B2
7356143 Morten Apr 2008 B2
7376831 Kollmyer et al. May 2008 B2
7406174 Palmer Jul 2008 B2
7472280 Giobbi Dec 2008 B2
7478325 Foehr Jan 2009 B2
7484103 Woo et al. Jan 2009 B2
7526450 Hughes et al. Apr 2009 B2
7594271 Zhuk et al. Sep 2009 B2
7640435 Morten Dec 2009 B2
7747853 Candelore Jun 2010 B2
7817608 Rassool et al. Oct 2010 B2
7991156 Miller Aug 2011 B1
8023562 Zheludkov et al. Sep 2011 B2
8046453 Olaiya Oct 2011 B2
8054880 Yu et al. Nov 2011 B2
8201264 Grab et al. Jun 2012 B2
8225061 Greenebaum Jul 2012 B2
8233768 Soroushian et al. Jul 2012 B2
8249168 Graves Aug 2012 B2
8261356 Choi et al. Sep 2012 B2
8270473 Chen et al. Sep 2012 B2
8270819 Vannier Sep 2012 B2
8289338 Priyadarshi et al. Oct 2012 B2
8291460 Peacock Oct 2012 B1
8311115 Gu et al. Nov 2012 B2
8321556 Chatterjee et al. Nov 2012 B1
8386621 Park Feb 2013 B2
8412841 Swaminathan et al. Apr 2013 B1
8456380 Pagan Jun 2013 B2
8472792 Butt Jun 2013 B2
8515265 Kwon et al. Aug 2013 B2
8781122 Chan et al. Jul 2014 B2
8909922 Kiefer et al. Dec 2014 B2
8918636 Kiefer et al. Dec 2014 B2
20010046299 Wasilewski et al. Nov 2001 A1
20020051494 Yamaguchi et al. May 2002 A1
20020110193 Yoo et al. Aug 2002 A1
20030001964 Masukura et al. Jan 2003 A1
20030002578 Tsukagoshi et al. Jan 2003 A1
20030021296 Wee et al. Jan 2003 A1
20030035488 Barrau Feb 2003 A1
20030035545 Jiang Feb 2003 A1
20030035546 Jiang et al. Feb 2003 A1
20030041257 Wee et al. Feb 2003 A1
20030093799 Kauffman et al. May 2003 A1
20030152370 Otomo et al. Aug 2003 A1
20030163824 Gordon et al. Aug 2003 A1
20030174844 Candelore Sep 2003 A1
20030185542 McVeigh et al. Oct 2003 A1
20030231863 Eerenberg et al. Dec 2003 A1
20030231867 Gates et al. Dec 2003 A1
20030233464 Walpole et al. Dec 2003 A1
20030236836 Borthwick Dec 2003 A1
20030236907 Stewart et al. Dec 2003 A1
20040081333 Grab et al. Apr 2004 A1
20040105549 Suzuki et al. Jun 2004 A1
20040136698 Mock Jul 2004 A1
20040139335 Diamand et al. Jul 2004 A1
20040158878 Ratnakar et al. Aug 2004 A1
20040202320 Amini et al. Oct 2004 A1
20040255115 DeMello et al. Dec 2004 A1
20050038826 Bae et al. Feb 2005 A1
20050071280 Irwin et al. Mar 2005 A1
20050114896 Hug May 2005 A1
20050193070 Brown et al. Sep 2005 A1
20050193322 Lamkin et al. Sep 2005 A1
20050204289 Mohammed et al. Sep 2005 A1
20050207442 Zoest et al. Sep 2005 A1
20050207578 Matsuyama et al. Sep 2005 A1
20050273695 Schnurr Dec 2005 A1
20050275656 Corbin et al. Dec 2005 A1
20060036549 Wu Feb 2006 A1
20060052095 Vazvan Mar 2006 A1
20060053080 Edmonson et al. Mar 2006 A1
20060064605 Giobbi Mar 2006 A1
20060078301 Ikeda et al. Apr 2006 A1
20060129909 Butt et al. Jun 2006 A1
20060173887 Breitfeld et al. Aug 2006 A1
20060245727 Nakano et al. Nov 2006 A1
20060259588 Lerman et al. Nov 2006 A1
20060263056 Lin et al. Nov 2006 A1
20070031110 Rijckaert Feb 2007 A1
20070047901 Ando et al. Mar 2007 A1
20070083617 Chakrabarti et al. Apr 2007 A1
20070086528 Mauchly et al. Apr 2007 A1
20070136817 Nguyen Jun 2007 A1
20070140647 Kusunoki et al. Jun 2007 A1
20070154165 Hemmeryckx-Deleersnijder et al. Jul 2007 A1
20070168541 Gupta et al. Jul 2007 A1
20070168542 Gupta et al. Jul 2007 A1
20070180125 Knowles et al. Aug 2007 A1
20070192810 Pritchett et al. Aug 2007 A1
20070239839 Buday et al. Oct 2007 A1
20070255940 Ueno Nov 2007 A1
20070277234 Bessonov et al. Nov 2007 A1
20070292107 Yahata et al. Dec 2007 A1
20080120389 Bassali et al. May 2008 A1
20080126248 Lee et al. May 2008 A1
20080137736 Richardson et al. Jun 2008 A1
20080192818 DiPietro et al. Aug 2008 A1
20080195744 Bowra et al. Aug 2008 A1
20080256105 Nogawa et al. Oct 2008 A1
20080263354 Beuque et al. Oct 2008 A1
20080279535 Haque et al. Nov 2008 A1
20080310454 Bellwood et al. Dec 2008 A1
20080310496 Fang Dec 2008 A1
20090031220 Tranchant et al. Jan 2009 A1
20090048852 Burns et al. Feb 2009 A1
20090055546 Jung et al. Feb 2009 A1
20090060452 Chaudhri Mar 2009 A1
20090066839 Jung et al. Mar 2009 A1
20090097644 Haruki Apr 2009 A1
20090132599 Soroushian et al. May 2009 A1
20090132721 Soroushian et al. May 2009 A1
20090132824 Terada et al. May 2009 A1
20090150557 Wormley et al. Jun 2009 A1
20090169181 Priyadarshi et al. Jul 2009 A1
20090201988 Gazier et al. Aug 2009 A1
20090226148 Nesvadba et al. Sep 2009 A1
20090290706 Amini et al. Nov 2009 A1
20090290708 Schneider Nov 2009 A1
20090293116 DeMello Nov 2009 A1
20090303241 Priyadarshi et al. Dec 2009 A1
20090307258 Priyadarshi et al. Dec 2009 A1
20090307267 Chen et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090328124 Khouzam et al. Dec 2009 A1
20090328228 Schnell Dec 2009 A1
20100040351 Toma et al. Feb 2010 A1
20100074324 Qian et al. Mar 2010 A1
20100083322 Rouse Apr 2010 A1
20100095121 Shetty et al. Apr 2010 A1
20100107260 Orrell et al. Apr 2010 A1
20100111192 Graves May 2010 A1
20100158109 Dahlby et al. Jun 2010 A1
20100186092 Takechi et al. Jul 2010 A1
20100189183 Gu et al. Jul 2010 A1
20100228795 Hahn Sep 2010 A1
20100235472 Sood et al. Sep 2010 A1
20110047209 Lindholm et al. Feb 2011 A1
20110066673 Outlaw Mar 2011 A1
20110080940 Bocharov et al. Apr 2011 A1
20110082924 Gopalakrishnan Apr 2011 A1
20110126191 Hughes et al. May 2011 A1
20110135090 Chan et al. Jun 2011 A1
20110142415 Rhyu Jun 2011 A1
20110145726 Wei et al. Jun 2011 A1
20110149753 Bapst et al. Jun 2011 A1
20110150100 Abadir Jun 2011 A1
20110153785 Minborg et al. Jun 2011 A1
20110197237 Turner Aug 2011 A1
20110225315 Wexler et al. Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110239078 Luby et al. Sep 2011 A1
20110246657 Glow Oct 2011 A1
20110246659 Bouazizi Oct 2011 A1
20110268178 Park Nov 2011 A1
20110302319 Ha et al. Dec 2011 A1
20110305273 He et al. Dec 2011 A1
20110314176 Frojdh et al. Dec 2011 A1
20120023251 Pyle et al. Jan 2012 A1
20120093214 Urbach Apr 2012 A1
20120170642 Braness et al. Jul 2012 A1
20120170643 Soroushian et al. Jul 2012 A1
20120170906 Soroushian et al. Jul 2012 A1
20120170915 Braness et al. Jul 2012 A1
20120173751 Braness et al. Jul 2012 A1
20120179834 Schaar et al. Jul 2012 A1
20120254455 Adimatyam et al. Oct 2012 A1
20120260277 Kosciewicz Oct 2012 A1
20120278496 Hsu Nov 2012 A1
20120307883 Graves Dec 2012 A1
20120311094 Biderman et al. Dec 2012 A1
20130019107 Grab et al. Jan 2013 A1
20130044821 Braness et al. Feb 2013 A1
20130046902 Villegas Nuñez et al. Feb 2013 A1
20130061040 Kiefer et al. Mar 2013 A1
20130061045 Kiefer et al. Mar 2013 A1
20130166765 Kaufman Jun 2013 A1
20130166906 Swaminathan et al. Jun 2013 A1
20140101722 Moore Apr 2014 A1
20140189065 Schaar et al. Jul 2014 A1
20140201382 Shivadas et al. Jul 2014 A1
20150139419 Kiefer et al. May 2015 A1
Foreign Referenced Citations (21)
Number Date Country
813167 Dec 1997 EP
936812 Aug 1999 EP
2005080204 Mar 2005 JP
2006524007 Oct 2006 JP
2007174375 Jul 2007 JP
2008235999 Oct 2008 JP
0165762 Sep 2001 WO
0237210 May 2002 WO
02054196 Jul 2002 WO
2004102571 Nov 2004 WO
2008010275 Jan 2008 WO
2009065137 May 2009 WO
2010060106 May 2010 WO
2010122447 Oct 2010 WO
2011068668 Jun 2011 WO
2011103364 Aug 2011 WO
2012094171 Jul 2012 WO
2012094181 Jul 2012 WO
2012094189 Jul 2012 WO
2013032518 Mar 2013 WO
2013032518 Sep 2013 WO
Non-Patent Literature Citations (62)
Entry
“IBM Closes Cryptolopes Unit,” Dec. 17, 2007, CNET News, Retrieved from http://news.cnet.com/IBM-closes-Cryptolopes-unit/2100-1001—3206465.html, 3 pages.
“Information Technology—Coding of Audio Visual Objects—Part 2: Visual” International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724.
Cloakware Corporation, “Protecting Digital Content Using Cloakware Code Transformation Technology”, Version 1.2, May 2002, pp. 1-10.
European Search Report for Application 11855103.5, Search Completed Jun. 26, 2014, 9 pages.
European Search Report for Application 11855237.1, Search Completed Jun. 25, 2014, 9 pages.
International Search Report and Written Opinion for International Application PCT/US2011/066927, International Filing Date Dec. 22, 2011, Report Completed Apr. 3, 2012, Mailed Apr. 20, 2012, 14 pages.
International Search Report and Written Opinion for International Application PCT/US2011/067167, International Filing Date Dec. 23, 2011, Report Completed Jun. 19, 2012, Mailed Jul. 2, 2012, 11 pages.
International Search Report and Written Opinion for International Application PCT/US2011/068276, International Filing Date Dec. 31, 2011, Report Completed Jun. 19, 2013, Mailed Jul. 8, 2013, 24 pages.
International Search Report for International Application No. PCT/US2005/025845, International Filing Date Jul. 21, 2005, Report Completed Feb. 5, 2007, Mailed May 10, 2007, 3 pages.
International Search Report for International Application No. PCT/US2007/063950 filed Mar. 14, 2007, report completed Feb. 19, 2008, Mailed Mar. 19, 2008, 3 pgs.
Written Opinion for International Application No. PCT/US2005/025845, International Filing Date Jul. 21, 2005, Report Completed Feb. 5, 2007, Mailed May 10, 2007, 5 pages.
Written Opinion for International Application No. PCT/US2007/063950, International Filing Date Mar. 14, 2007, Report Completed Mar. 1, 2008, Mailed Mar. 19, 2008, 6 pages.
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs.
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, 13 pages.
“IBM Spearheading Intellectual Property Protection Technology for Information on the Internet; Cryptolope Containers Have Arrived”, May 1, 1996, Business Wire, Retrieved from http://www.thefreelibrary.com/IBM+Spearheading+Intellectual+Property+Protection+Technology+for...-a018239381, 6 pages.
“Informationweek: Front End: Daily Dose, Internet on Wheels”, Jul. 20, 1999, 3 pages.
“Netflix turns on subtitles for PC, Mac streaming”, 3 pages.
“Supported Media Formats”, Supported Media Formats, Android Developers, Nov. 27, 2013, 3 pages.
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, 3 pages.
“Transcoding Best Practices”, From movideo, Nov. 27, 2013, 5 pgs.
“Using HTTP Live Streaming”, iOS Developer Library, Retrieved from: http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple—ref/doc/uid/TP40008332-CH102-SW1, 10 pages.
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 24-25, 2011, 12 pages.
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2012, pp. 1-9.
Author Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, 1999-9, pp. 1-22.
Author Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., Publication date unknown, 15 pages.
Author Unknown, “Tunneling QuickTime RTSP and RTP over HTTP”, Published by Apple Computer, Inc.: 1999 (month unknown), 6 pages.
Blasiak, Darek, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pages.
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 17, 2010, 14 pages.
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pages.
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 15 pages.
Inlet Technologies, “Adaptive Delivery to iDevices”, 2 pages.
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2 pages.
Inlet Technologies, “HTTP versus RTMP”, 3 pages.
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2 pages.
Kim, Kyuheon, “MPEG-2 ES/PES/TS/PSI”, Kyung-Hee University, Oct. 4, 2010, 66 pages.
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 58 pages.
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 20 pages.
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, source and date unknown, 42 pages.
MSDN, “Adaptive streaming, Expression Studio 2.0”, 2 pages.
Nelson, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, Printed from http://www.dogma.net/markn/articles/arith/art1.htm; Printed Jul. 2, 2003, 12 pages.
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pages.
Nelson, Michael, “IBM's Cryptolopes,” Complex Objects in Digital Libraries Course, Spring 2001, Retrieved from http://www.cs.odu.edu/˜mln/teaching/unc/inls210/?method=display&pkg—name=cryptolopes.pkg&element—name=cryptolopes.ppt, 12 pages.
Noé, Alexander, “Matroska File Format (under construction!)”, Jun. 24, 2007, XP002617671, Retrieved from the Internet: URL:http://web.archive.org/web/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], pp. 1-51.
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pages.
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pages.
Pantos, “HTTP Live Streaming: draft-pantos-http-live-streaming-06”, Published by the Internet Engineering Task Force (IETF), Mar. 31, 2011, 24 pages.
Phamdo, “Theory of Data Compression”, printed from http://www.data-compression.com/theory.html on Oct. 10, 2003, 12 pages.
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pages.
Schulzrinne, H. et al., “Real Time Streaming Protocol 2.0 (RTSP): draft-ietfmmusic-rfc2326bis-27”, MMUSIC Working Group of the Internet Engineering Task Force (IETF), Mar. 9, 2011, 296 pages.
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pages.
Wu, Feng et al., “Next Generation Mobile Multimedia Communications: Media Codec and Media Transport Perspectives”, In China Communications, Oct. 2006, pp. 30-44.
Zambelli, Alex, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009, 17 pages.
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pages.
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2011/068276, International Filing Date Dec. 31, 2011, Issue Date Mar. 4, 2014, 23 pages.
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, 1 page.
Microsoft, Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, 2 pages.
Microsoft, Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, 2 pages.
The Official Microsoft IIS Site, Smooth Streaming Client, 4 pages.
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 16 pages.
International Search Report and Written Opinion for International Application No. PCT/US2010/56733, International Filing Date Nov. 15, 2010, Completed Jan. 3, 2011, Mailed Jan. 14, 2011, 9 pgs.
Supplementary European Search Report for Application No. EP 10834935, International Filing Date Nov. 15, 2010, Completed May 27, 2014, 9 pgs.
Related Publications (1)
Number Date Country
20140376720 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61266982 Dec 2009 US
Continuations (1)
Number Date Country
Parent 12946631 Nov 2010 US
Child 14306146 US