The invention relates to an electromagnetic opening/closing device such as an electromagnetic relay or the like.
For example, Japanese Patent Application Publication No. 2009-230921 (hereafter called “Document 1”) discloses an electromagnetic opening/closing device as a prior art. In the device described in Document 1, a relay unit (an electromagnetic relay) is put in a case made from synthetic resin, and a pair of main terminals and a pair of coil terminals are protruded from the case. The pair of main terminals is connected to contacts of the relay unit, and the pair of coil terminals is connected to a coil for an electromagnet of the relay unit. In addition, the pair of main terminals is connected to a power supply line from a power supply to a load(s). The relay unit (the electromagnetic opening/closing device) is turned on when an excitation current flows between the pair of coil terminals, while the relay unit (the device) is turned off when no excitation current flows between the pair of coil terminals. That is, the electromagnetic opening/closing device is turned on, thereby closing the power supply line from the power supply to the load, while the device is turned off, thereby opening the power supply line.
In such electromagnetic opening/closing devices, the conduction between contacts (a stationary contact and a moving contact) may be impaired due to surface oxidation thereof, or the stationary contact and the moving contact may be welded to each other due to arc. Conventionally, apparatuses equipped with such an electromagnetic opening/closing device require to detect various malfunction generated in the device.
The present invention has been achieved in view of the above circumstances, and an object thereof is to perform self-checking on the presence or absence of malfunction to give a notification to an exterior.
The present invention is an electromagnetic opening/closing device that comprises a stationary contact (10) and a moving contact (11), and is configured to open or close the stationary contact (10) and the moving contact (11) in accordance with an exterior command for opening or closing the stationary contact (10) and the moving contact (11). The electromagnetic opening/closing device comprises a detector (5), a determination unit (6) and an output unit (8). The detector (5) is configured to detect an opened or closed state of the stationary contact (10) and the moving contact (11). The determination unit (6) is configured to determine presence or absence of malfunction (of the stationary contact and the moving contact) based on the opened or closed state of the stationary contact (10) and the moving contact (11) detected through the detector (5) and an opened or closed state of the stationary contact (10) and the moving contact (11) corresponding to the exterior command. The output unit (8) is configured to supply an exterior with a determination result by the determination unit (6).
In an embodiment, the determination unit (6) is configured to determine that closing malfunction occurs between the stationary contact (10) and the moving contact (11) if a state of the stationary contact (10) and the moving contact (11) detected through the detector is the opened state when the exterior command is a close control signal for closing the stationary contact (10) and the moving contact (11).
In an embodiment, the determination unit (6) is configured to determine that opening malfunction occurs between the stationary contact (10) and the moving contact (11) if a state of the stationary contact (10) and the moving contact (11) detected through the detector is the closed state when the exterior command is an open control signal for opening the stationary contact (10) and the moving contact (11).
In an embodiment, the output unit (8) is configured to output a signal as the determination result indicating a type of the malfunction.
In an embodiment, the electromagnetic opening/closing device further comprises auxiliary contacts linked with opening or closing of the stationary contact (10) and the moving contact (11). The detector is configured to detect the opened or closed state of the stationary contact (10) and the moving contact (11) based on an opened or closed state of the auxiliary contacts.
In an embodiment, the device further comprises an electromagnet (20, 22) configured to allow the moving contact (11) to come into contact with or separate from the stationary contact (10) by electromagnetic force. The detector (5) comprises a detection coil (53) configured to have impedance varying in response to excitation of the electromagnet (20, 22). The detector is configured to detect opening or closing of the stationary contact (10) and the moving contact (11) based on a change in the impedance of the detection coil (53).
In an embodiment, the electromagnetic opening/closing device comprises a drive unit (2) configured to move the moving contact (11). The detector (5) is configured to detect the opened or closed state of the stationary contact (10) and the moving contact (11) based on a movement of the moving contact (11) through the drive unit (2).
In an embodiment, the detector (5) is configured to detect the opened or closed state of the stationary contact (10) and the moving contact (11) based on a voltage applied across the stationary contact (10) and the moving contact (11).
The electromagnetic opening/closing device of the present invention can perform self-checking on the presence or absence of malfunction to give a notification to the exterior.
Preferred embodiments of the invention will now be described in further details. Other features and advantages of the present invention will become better understood with regard to the following detailed description and accompanying drawings where:
The drive unit 2 is formed of an excitation coil 20, the movable shaft 21, a stationary core 22, a movable core 23, a cap 24, yokes 25, 26 and the like. The cap 24 is formed of nonmagnetic material in the shape of a circular tube with a bottom. The movable core 23 is put in the cap 24 on a bottom side thereof (the second side of the first direction), while the stationary core 22 is put in the cap 24 on an opening side thereof (the first side of the first direction) and the stationary core 22 is fixed to the cap 24. The movable shaft 21 penetrates a hollow space of the stationary core 22 so that it is free to move in the hollow space. The movable core 23 is fixed to an end (a lower part) of the movable shaft 21 on the second side of the first direction. A return spring (not illustrated) is arranged between the stationary core 22 and the movable core 23 in order to elastically bias the movable core 23 in a direction separated from the stationary core 22 (toward the second side of the first direction). In addition, a contact pressure spring (not shown) is arranged between the stationary core 22 and the moving contact 11 in order to elastically bias the moving contact 11 in a direction approached to the stationary contacts 10 (toward the first side of the first direction). A coil bobbin (not shown) made from insulating material is disposed outside the cap 24, and the excitation coil 20 is wound around the coil bobbin. The yokes 25, 26 are disposed outside the excitation coil 20. The excitation coil 20 and the yokes 25, 26 constitute a magnetic circuit. The yoke 26 is shaped like a flat plate, and is arranged between the excitation coil 20 and the sealing container 12.
When no excitation current flows through the excitation coil 20, the movable core 23 is elastically biased with the return spring to move toward the second side of the first direction (downward) and thereby the movable shaft 21 and the moving contact 11 move toward the second side of the first direction (downward) as well. As a result, the moving contact 11 is separated from the stationary contacts 10 and the contact unit 1 is opened. On the other hand, when an excitation current flows through the excitation coil 20, the movable core 23 moves in the direction approached to the stationary core 22 (toward the first side of the first direction) by electromagnetic force acting between the stationary core 22 and the movable core 23. The movable shaft 21 and the moving contact 11 accordingly move toward the first side of the first direction (upward) as well. As a result, the moving contact 11 comes into contact with the stationary contacts 10, and the contact unit 1 is closed. That is, the excitation coil 20 and the stationary core 22 constitute an electromagnet, and the movable core 23 is moved by the electromagnetic force from the electromagnet.
The control unit 3 is configured to control the drive unit 2 in accordance with a control signal (an exterior command) input from an exterior to the input unit 4. That is, the control unit 3 supplies an excitation current to the excitation coil 20 of the drive unit 2 to close the contact unit 1 if the input unit 4 receives a close (ON) control signal for closing the stationary contacts 10 and the moving contact 11, and also stops supplying the excitation current to the excitation coil 20 to open the contact unit 1 if the input unit 4 receives a close (OFF) control signal for opening the stationary contacts 10 and the moving contact 11. The control signal is a DC voltage signal of which level varies between HIGH and LOW. The high level signal is the close (ON) control signal, and the low level signal is the open (OFF) control signal (see
The detector 5 is configured to detect an opened or closed state of the stationary contacts 10 and the moving contact 11 (the contact unit 1). In the embodiment, the electromagnetic opening/closing device A1 includes auxiliary contacts 50 configured to be opened or closed in synchronization with opening or closing of the contact unit 1. The detector 5 is configured to detect an opened or closed state of the contact unit 1 based on an opened or closed state of the auxiliary contacts 50. In the embodiment, a detection result on the opened or closed state of the contact unit 1 is supplied to the malfunction determination unit 6 as a DC voltage signal (hereinafter called a “contact detecting signal”) of which level is high in the closed (ON) state and low in the opened (OFF) state.
As shown in
The malfunction determination unit 6 is configured to determine the presence or absence of malfunction based on: an opened or closed state of the stationary contacts 10 and the moving contact 11, detected through the detector 5; and an opened or closed state of the stationary contacts 10 and the moving contact 11, corresponding to an exterior command. In the embodiment, the malfunction determination unit 6 is configured: to compare a control signal (a close or open control signal) and a contact detecting signal; and then to determine the absence of malfunction (contact failure) when both signals are high level signals (closed states) or low level signals (opened states) and also to determine the presence of malfunction when one of the signals is a high level signal and the other is a low level signal. The determination result of the malfunction determination unit 6 is then supplied to the control unit 3. The control unit 3 allows the output unit 8 to output a high level signal as a detection signal when the determination result from the malfunction determination unit 6 represents the absence of malfunction, and also to output a low level signal as a (malfunction) detection signal when the determination result represents the presence of malfunction. The control unit 3, the input unit 4, the malfunction determination unit 6, the storage unit 7 and the output unit 8 may be each formed of their own individual hardware (circuits), or formed of one microcomputer and various software.
A certain time is required for a period of time from a point in time when a control signal is input to the input unit 4 to a point in time when the drive unit 2 drives the contact unit 1 and an opened or closed state of the contact unit 1 is switched. In an electromagnetic relay (the electromagnetic opening/closing device), typically the time required to close contacts is called an operating time, and the time required to open the contacts is called a recovery time. That is, an error may occur in the determination of the presence or absence of malfunction if the malfunction determination unit 6 compares the control signal and the contact detecting signal before the elapse of the operating time or the recovery time. It is therefore desirable that the malfunction determination unit 6 be prohibited from determining the presence or absence of malfunction during the operating time or the recovery time.
Therefore, the malfunction determination unit 6 in the embodiment is formed of an exclusive OR circuit 60 and an OR circuit 61 as shown in
The determination process by the malfunction determination unit 6 is explained in detail with reference to
However, at time t2, the mask signal is a high level (ON) signal, and accordingly the output of the OR circuit 61, namely the malfunction detecting signal is kept high (normality) even if logical values of the control signal and the contact detecting signal are different from each other (see
When the mask signal goes low at time t3, the malfunction detecting signal is kept high if the logical values of the control signal and the contact detecting signal coincide with high level (see
Alternatively, as shown in
When the mask signal goes low at time t3, the malfunction detecting signal is kept high if the logical values of the control signal and the contact detecting signal coincide with low level. On the other hand, if the logical values are different from each other such that the control signal is a low level signal and the contact detecting signal is a high level signal, the malfunction detecting signal goes low (see
As mentioned above, the electromagnetic opening/closing device A1 in the present embodiment includes: the detector 5 configured to detect an opened or closed state of the contact unit 1; the malfunction determination unit 6 configured to determine the presence or absence of malfunction based on an opened or closed state of the contact unit 1 detected through the detector 5 and an opened or closed state of the contact unit 1 corresponding to an exterior command; and the output unit 8 configured to supply an exterior with a determination result by the malfunction determination unit 6. The electromagnetic opening/closing device A1 can therefore perform self-checking on the presence or absence of malfunction to give a notification to the exterior. As a result, it is possible to easily monitor the malfunction (failure) of the electromagnetic opening/closing device A1 without detecting the malfunction of the contact unit 1 through an apparatus (an external apparatus) equipped with the electromagnetic opening/closing device A1 like conventional apparatuses.
In a modified embodiment, the electromagnetic opening/closing device A1 is provided with a serial communication unit 9 configured to interface the control unit 3 with an external communication as shown in
The auxiliary contacts 50 are not limited to the reed switch. In an example, as shown in
An electromagnetic opening/closing device A2 in the present embodiment has the same fundamental construction as embodiment 1, hence like kind elements are assigned the same reference numerals as depicted in embodiment 1, and illustrations and description of the configuration are omitted.
As shown in
The detector 5 has, for example, an LC oscillator circuit formed of a parallel circuit of the detection coil 53 and a capacitor (not shown). When the movable core 23 made of metal approaches the detection coil 53 of the LC oscillator circuit, an eddy-current loss caused by electromagnetic induction occurs, thereby changing an effective resistance value (conductance) of the detection coil 53. If the conductance of the detection coil 53 changes, an oscillation condition of the LC oscillator circuit changes as well. Accordingly, from an oscillation state of the LC oscillator circuit, the oscillation of the oscillator circuit is stopped, or the oscillation amplitude is attenuated by a prescribed value or more. The detector 5 can therefore determine that the movable core 23 is approaching the coil, or the contact unit 1 is opened as a result of the cessation of oscillation of the LC oscillator circuit or the attenuation of the prescribed value or more in oscillation amplitude (see
In a modified embodiment, as shown in
In the aforementioned detection method, the high frequency electric current needs to be continuously supplied to the detection coil 53 of the detector 5, thereby increasing power consumption in the detector 5. In order to suppress the increase of the power consumption in the detector 5, desirably the following detection method is adapted to the example.
The time constant of the LC oscillator circuit is in proportion to the conductance of the detection coil 53, and accordingly the detection method utilizes the time constant which increases as the conductance increases. For example, when a constant voltage is applied across the detection coil 53, a rise time of a voltage V across the detection coil 53 becomes slower as the LC oscillator circuit has a larger time constant.
The detector 5 can determine opening or closing of the contact unit 1 to detect an opened or closed state thereof, by periodically applying a pulse voltage across the detection coil 53 while detecting a rise time Ton, Toff during which the voltage V across the detection coil 53 exceeds a predetermined reference value Vth (see
An electromagnetic opening/closing device A3 in the present embodiment has the same fundamental construction as embodiment 1, hence like kind elements are assigned the same reference numerals as depicted in embodiment 1, and illustrations and description of the configuration are omitted.
A detector 5 in the present embodiment is configured to detect a movement of a movable core 23 through a magnetic sensor 55 with a Hall effect sensor. For example, as shown in
An electromagnetic opening/closing device A4 in the present embodiment has the same fundamental construction as embodiment 1, hence like kind elements are assigned the same reference numerals as depicted in embodiment 1, and illustrations and description of the configuration are omitted.
In the present embodiment, a detector 5 is configured to detect an opened or closed state of a contact unit 1 based on a voltage applied across the contact unit 1 (hereinafter called a “contact voltage”). As shown in
The voltage detector 56 has a detection resistor (not shown) connected between a pair of stationary contacts 10, and is configured to detect the contact voltage by a voltage drop generated across the detection resistor. The isolation unit 57 is formed of a photo coupler and the like, and a detection result (the contact voltage) of the voltage detector 56 is supplied to the voltage comparator 58 via the isolation unit. An absolute value of the contact voltage is a relatively high voltage value V1 when the contact unit 1 is opened, while the absolute value of the contact voltage is a relatively low voltage (a voltage value approximating to zero) VO when the contact unit 1 is closed (see
In the embodiment, the resistor for detecting the contact voltage consumes little power, and it is accordingly possible to suppress the increase of power consumption in the detector 5 in comparison with embodiment 2 in which the high frequency electric current is supplied to the detection coil 53.
When the contact voltage is detected through the detection resistor, a leakage current may flow from an electrical circuit 100 to the detection resistor. In order to avoid the occurrence of such a leakage current, it is preferable that the detector 5 detect the contact voltage of the contact unit 1 in a non-contact fashion. For example, a magnetic field generated around the contact unit 1 may be detected with a Hall effect sensor when an electric current flows through the electrical circuit 100 via the contact unit 1. That is, it is possible to indirectly detect the contact voltage based on intensity of the magnetic field, because the intensity of the magnetic field generated around the contact unit 1 is in proportion to the amount of the electric current flowing through the electrical circuit, and the amount of the electric current is in proportion to the contact voltage supposing the contact resistance of the contact unit 1 is constant.
Although the present invention has been described with reference to certain preferred embodiments, numerous modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of this invention, namely claims.
Number | Date | Country | Kind |
---|---|---|---|
2011-063235 | Mar 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/055789 | 3/7/2012 | WO | 00 | 8/30/2013 |