The present invention relates to an elevator apparatus capable of performing a rescue operation for a car which is stopped between floors.
In a conventional rescue operation device in case of failure for an elevator, when a failure occurs in an elevator controller, a brake is released by brake releasing means. As a result, a car is moved due to imbalance between the car and a counterweight. At this time, a travel distance or a speed of the car is detected. Base on results of detection, the brake is operated (for example, see Patent Document 1).
Patent Document 1: JP 2005-247512 A
Problem to be Solved by the Invention
With the conventional rescue operation device in case of failure as described above, however, a sudden acceleration state, a sudden deceleration state, and a stop state are repeated a plurality of times until the arrival of the car at a landing. Therefore, there is fear in that a passenger in the car is made uncomfortable. Moreover, the car is stopped a plurality of times until the arrival at the landing, and hence a time required to complete a rescue operation becomes disadvantageously long.
The present invention is devised to solve the problems described above, and has an object of providing an elevator apparatus capable of performing a rescue operation within a short period of time while preventing ride comfort from being deteriorated.
Means for Solving the Problems
An elevator apparatus according to the present invention includes: a car and a counterweight, each being suspended by a suspending member in a hoistway; a brake device including a brake coil for canceling braking force by excitation thereof, the brake device being for braking the car against a state of imbalance between the car and the counterweight; a speed detector for detecting a speed of the car; and a rescue operation controller for obtaining a rescue operation voltage value corresponding to a value of a voltage necessary to reduce the braking force of the brake device to move the car by using the state of the imbalance between the car and the counterweight and for applying a voltage having the rescue operation voltage value to the brake coil in response to a signal from the speed detector at a time of a rescue operation for the car.
Hereinafter, preferred embodiments of the present invention are described with reference to the drawings.
First Embodiment
The braking means 7 includes a brake wheel 8 which is rotated integrally with the drive sheave 5 and a brake device 9 for braking the rotation of the brake wheel 8. As the brake wheel 8, a brake drum, a brake disc, or the like is used. The drive sheave 5, the motor 6, and the brake wheel 8 are provided on the same shaft.
The brake device 9 includes a plurality of brake linings 10 which are moved into contact with and away from the brake wheel 8, a plurality of brake springs (not shown) for pressing the brake linings 10 against the brake wheel 8, and a plurality of electromagnetic magnets for separating the brake linings 10 away from the brake wheel 8 against the brake springs. Each of the brake magnets includes a brake coil (electromagnetic coil) 11 which is excited by energization.
A current is made to flow through the brake coils 11 to excite the electromagnetic magnets. As a result, an electromagnetic force for canceling the braking force of the brake device 9 is generated to separate the brake linings 10 from the brake wheel 8. On the other hand, by de-energizing the brake coils 11, the electromagnetic magnets are de-excited. By a spring force of the brake springs, the brake linings 10 are pressed against the brake wheel 8.
The brake device 9 brakes the car 1 against a state of imbalance between the car 1 and the counterweight 2. Moreover, the braking force of the brake device 9 is controlled by controlling a voltage applied to the brake coils 11.
A hoisting machine encoder 12 corresponding to a speed detector for generating a signal according to a rotational speed of a rotary shaft of the motor 6, that is, a rotational speed of the drive sheave 5 is provided to the hoisting machine 4. A weighing device 20 for generating a signal according to a load in the car is provided to the car 1.
In an upper part of the hoistway, a speed governor 13 is provided. The speed governor 13 includes a governor sheave 14 and a governor encoder 15 corresponding to a speed detector for generating a signal according to a rotational speed of the governor sheave 14. A governor rope 16 is looped around the governor sheave 14. Both ends of the governor rope 16 are connected to the car 1. A lower end of the governor rope 16 is looped around a tension sheave 17 provided in a lower part of the hoistway.
When the car 1 is raised or lowered, the movement is transmitted through the governor rope 16 to the governor sheave 14 to rotate the governor sheave 14 at a speed according to the speed of the car 1. As a result, the governor encoder 15 generates a signal according to the speed of the car 1.
Drive of the hoisting machine 4 is controlled by the elevator controller 18. Specifically, the ascent and descent of the car 1 is controlled by the elevator controller 18. The brake device 9 is controlled by a brake controller 19. The signals from the elevator controller 18, the weighing device 20, the hoisting machine encoder 12, and the governor encoder 15 are input to the brake controller 19.
When the car 1 is stopped between floors due to some failure, the brake controller 19 executes a rescue operation for the car 1 in response to a rescue operation command from the elevator controller 18. Specifically, the brake controller 19 functions as a rescue operation controller.
Moreover, at the time of the rescue operation for the car 1, the brake controller 19 obtains a rescue operation voltage value corresponding to a value of a voltage to be applied to the brake coils 11 to intermittently apply the obtained voltage to the brake coils 11. The rescue operation voltage value is a value of the voltage required to reduce the braking force of the brake device 9 to move the car 1 by using the state of imbalance between the car 1 and the counterweight 2. In other words, the rescue operation voltage value is a voltage value which is necessary and sufficient (almost minimum) to move the car 1 and is suitable for suppressing vibrations when the car 1 is moved.
Upon detection of the rescue operation command signal by the rescue operation command detecting section 21, the brake signal calculating section 24 obtains the amount of imbalance between the car 1 and the counterweight 2 based on the weighing signal from the weighing device 20 to calculate the rescue operation voltage value based on the amount of imbalance. A relation between the amount of imbalance and the rescue operation voltage value optimal for the amount of imbalance is pre-registered in the form of an expression or a table in the brake controller 19. Such a relation between the amount of imbalance and the rescue operation voltage value is obtained in advance for each elevator apparatus by calculation or experiment.
Moreover, the brake signal calculating section 24 calculates a target speed of the car 1 at the time of the rescue operation based on the rescue operation command signal. Further, the brake signal calculating section 24 compares the speed of the car 1 obtained by the speed signal processing section 23 and the target speed with each other at the time of the rescue operation. The brake signal calculating section 24 excites the brake coils 11 when the speed of the car 1 is less than the target speed and stops the excitation of the brake coils 11 when the speed of the car 1 is equal to or higher than the target speed. At this time, a value of the voltage for exciting the brake coils 11 is determined as the rescue operation voltage value.
As described above, the brake signal calculating section 24 outputs a brake control signal for turning ON/OFF an excitation voltage to each of the brake coils 11 to allow the speed of the car 1, which is obtained by the speed signal processing section 23, to follow the target speed.
Here, the brake controller 19 includes a computer including a computation processing section (CPU, and the like), a storage section (ROM, RAM, hard disk, and the like), and a signal input/output section. The functions of the brake controller 19 can be realized by computation processing performed by the computer. In the storage section of the computer, programs (software) for realizing the functions are stored. The brake controller 19 may be constituted by an electric circuit for processing analog signals.
The brake controller 19 monitors whether or not the rescue operation command has been detected (Step 51). Upon detection of the rescue operation command, the weighing signal is detected to obtain the amount of imbalance between the car 1 and the counterweight 2 (Step S2). Then, based on the amount of imbalance, a computation for obtaining the rescue operation voltage value (control pull-in voltage computation) is executed (Step S3).
When the rescue operation voltage value is determined, the application of the voltage to the brake coils 11 is started (Step S4, at a time t1 in
The operation as described above is repeated. When the car 1 is moved to a landing floor and the rescue operation command is no longer detected, the voltage applied to the brake coils 11 is removed (Step S10, at a time t2 in
Although a running time of the car 1 is illustrated shorter in
In the elevator apparatus as described above, at the time of the rescue operation for the car 1, the rescue operation voltage value corresponding to the value of the voltage which is necessary to reduce the braking force of the brake device 9 to move the car 1 by using the state of imbalance between the car 1 and the counterweight 2 is obtained. The voltage having the rescue operation voltage value is applied to the brake coils 11 according to the encoder signal. Therefore, the car 1 can be operated at a low speed to follow the target speed without repeating acceleration/deceleration and stop a plurality of times. Accordingly, the rescue operation can be performed within a short period of time while ride comfort is prevented from being deteriorated.
Moreover, at the time of the rescue operation for the car 1, the brake controller 19 obtains the amount of imbalance between the car 1 and the counterweight 2 based on the signal from the weighing device 20. Based on the amount of imbalance, the rescue operation voltage value is obtained. Therefore, the amount of cancellation of the brake, which is necessary to cause the car 1 to run by using the state of imbalance, can be easily estimated. Thus, the rescue operation with vibrations suppressed can be performed without limiting the state of imbalance with which the rescue operation is possible.
Specifically, as the amount of imbalance increases, the rescue operation voltage value is reduced. As a result, if the amount of imbalance is large, the car 1 is not started at a large acceleration rate. Therefore, the rescue operation with vibrations suppressed can be performed.
Further, at the time of the rescue operation for the car 1, the brake controller 19 excites the brake coils 11 when the speed of the car 1 is less than the target speed and stops the excitation of the brake coils 11 when the speed of the car 1 becomes equal to or higher than the target speed. Therefore, the car 1 can be caused to run to follow a safe target speed suitable for the rescue operation.
The weighing device 20 can be provided at any location as long as the signal according to the load in the car can be generated, and therefore, is not limited to that mounted to the car 1.
Second Embodiment
Next,
The brake signal calculating section 24 gradually increases the value of the voltage to be applied to the brake coils 11 while monitoring the starting of the car 1 at the time of the rescue operation for the car 1. The value of the voltage when the car 1 is started is used as the rescue operation voltage value. The remaining configuration is the same as that of the first embodiment.
The brake controller 19 monitors whether or not the rescue operation command has been detected (Step S1). Upon detection of the rescue operation command, an initial voltage is applied to the brake coils 11 (Step S11, at a time t4 in
The brake controller 19 gradually increases the voltage applied to the brake coils 11 until the car 1 is started (Step S14). Then, when the starting of the car 1 is detected (at a time t5 in
Upon determination of the rescue operation voltage value, it is confirmed whether or not the rescue operation command has been detected (Step S6). If the rescue operation command has been detected, the speed V of the car 1 is compared with the target speed V0 (Step S7). If the speed of the car 1 is less than the target speed, the brake coils 11 are excited (Step S8). If the speed of the car 1 is equal to or higher than the target speed, the excitation of the brake coils 11 is stopped (Step S9).
The operation as described above is repeated. When the car 1 is moved to a landing floor and the rescue operation command is no longer detected, the voltage applied to the brake coils 11 is removed (Step S10, at a time t6 in
In the elevator apparatus as described above, the rescue operation voltage value can be determined without using the weighing device 20. Thus, the rescue operation with vibrations suppressed can be performed without limiting the state of imbalance with which the rescue operation is possible.
Third Embodiment
Next,
More specifically, the brake controller 19 applies the voltage to the brake coils 11 with a predetermined cycle within a time period in which the speed of the car 1 is higher than the target speed and the brake command is OFF. An application time and a cycle of application of the voltage in the time period in which the brake command is OFF are set sufficiently shorter than an average length of the time period in which the brake command is OFF. The remaining structure is the same as that of the first or second embodiment.
In the elevator apparatus as described above, a reduction of the current flowing through the brake coils 11 is delayed in the time period in which the brake command is OFF. Therefore, a sudden increase of a brake torque can be prevented to further suppress the vibrations at the time of the rescue operation.
Fourth Embodiment
Next,
In this example, when the speed of the car 1 becomes higher than the target speed, the brake controller 19 sets the voltage, at which the brake coils 11 are excited, to less than 50% and equal to or larger than 20% of the rescue operation voltage value. The remaining structure is the same as that of the first or second embodiment.
In the elevator apparatus as described above, a reduction of the current flowing through the brake coils 11 is delayed in the time period in which the brake command is OFF. Therefore, a sudden increase of a brake torque can be prevented to further suppress the vibrations at the time of the rescue operation.
Although the brake device 9 including two sets of the brake linings 10 and the brake coils 11 is described in the above-mentioned example, the number of sets of the brake linings 10 and the brake coils 11 may be one or equal to or larger than three.
Moreover, although the brake device 9 is provided to the hoisting machine 4 in the above-mentioned example, the brake device 9 is not limited thereto. For example, the brake device 9 may be, for example, a car brake mounted to the car 1, a rope brake for gripping the main rope 3, or the like.
Further, although the brake controller 19 also serves as the rescue operation controller in the above-mentioned example, the rescue operation controller may be provided independently of the brake controller 19 for controlling the brake device 9 at the time of a normal operation.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/064581 | 7/25/2007 | WO | 00 | 12/15/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/013821 | 1/29/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4220222 | Kamaike et al. | Sep 1980 | A |
6196355 | Fargo et al. | Mar 2001 | B1 |
6264005 | Kang et al. | Jul 2001 | B1 |
6269910 | Fargo et al. | Aug 2001 | B1 |
6311801 | Takagi et al. | Nov 2001 | B1 |
6557670 | Wang | May 2003 | B2 |
6827182 | Araki | Dec 2004 | B2 |
7434664 | Helstrom | Oct 2008 | B2 |
7549515 | Tegtmeier et al. | Jun 2009 | B2 |
7686139 | Kondo et al. | Mar 2010 | B2 |
7918321 | Sakurai | Apr 2011 | B2 |
7921969 | Stolt et al. | Apr 2011 | B2 |
7931127 | Kondo et al. | Apr 2011 | B2 |
7938231 | Ueda et al. | May 2011 | B2 |
Number | Date | Country |
---|---|---|
54 33454 | Mar 1979 | JP |
60 148879 | Aug 1985 | JP |
4 96675 | Mar 1992 | JP |
6 227771 | Aug 1994 | JP |
2001 16881 | Jan 2001 | JP |
2004 231355 | Aug 2004 | JP |
2005 247512 | Sep 2005 | JP |
2006 160441 | Jun 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20100170751 A1 | Jul 2010 | US |