The object of the invention is an elevator arrangement and a method in the fabrication of an elevator, which elevator is preferably an elevator applicable to passenger transport and/or freight transport, and in which method and elevator arrangement the elevator is taken/can be taken into service use already during its construction time.
In connection with so-called jump-lifts, an elevator is taken into use already before the full length of the elevator hoistway has been completed. The elevator car moving in the bottom part of the elevator hoistway is supported and moved during the construction-time use suspended on ropes that are supported by a supporting structure in the elevator hoistway, which ropes are moved directly or indirectly with a hoisting machine. The top part of the elevator hoistway above the supporting structure is constructed at the same time as an elevator car moving in the already completed bottom part of the elevator hoistway serves people on the lower floors of the building. The hoisting machine can be supported e.g. on the aforementioned supporting structure. When the part of the elevator hoistway under construction above the supporting platform has reached a sufficient stage of readiness, it can be taken into use. In this case a lift (a so-called jump-lift) is performed, wherein the supporting structure is raised to a higher position in the elevator hoistway, thus extending the service range of the elevator car upwards. A worksite crane in use in the construction of the building can, for example, be used for the lifting. Alternatively, the supporting structure could be shifted with a hoist, which is supported on a support structure to be arranged in the hoistway above the machine room platform. When the elevator hoistway has reached its final height, the elevator is left permanently in its position, possibly however first performing some conversion procedures, e.g. by removing the elements required for jump-lifts, possibly by replacing the roping and/or by changing its route. One solution according to prior art is described in publications WO 2010100319 A1 and WO 2011048255 A1.
For enabling jump-lifts, choices have had to be made in the placement of the supporting structure and of the ropes hanging supported by it, as well as in the placement of the components that are in connection with the supporting structure, which choices differ from the component placement of a conventional elevator. For example, enabling the movability of the supporting structure has required a support means system, which takes space to a degree that reduces the freedom of placement of the other components. Likewise, enabling an increase in the length of the ropes has had to be taken into account. Generally the ropes are led to a rope supply storage via an openable clamp that is in connection with the supporting structure. Generally, there has further been a need to form the layout in such a way that safe working on the supporting structure is made possible. In addition, it has been necessary to dispose a system of means in connection with the supporting structure for moving the supporting structure. Taking into account the many exceptional issues that must be addressed has hampered the locating of the center of mass of the supporting structure in the best possible spot from the viewpoint of a jump-lift. It has been noticed that the location of the center of mass during a jump-lift is of great importance to dividing the support forces of the supporting structure when the supporting structure is supported in its position in the hoistway. Likewise, the location of the center of mass during a jump-lift is of great importance to dividing the support forces of the supporting structure during the jump-lift. Problems have also been caused by, inter alia, the fact that if the center of mass is at a distance from the center point of the hoistway, the support forces of the hoisting arrangement must also be received in the same manner eccentrically, which can impede the finding of a support point, especially in solutions in which the hoisting arrangement rests on structures of the hoistway. The location of the center of mass also otherwise affects control of the lifting of the supporting structure. The location of the center of mass affects e.g. the susceptibility of the supporting structure to lurching by affecting the lever arm lengths of the forces acting on the edge areas of the supporting structure. One factor significantly affecting the location of the center of mass is the route traveled by the ropes and the location of the rope pulley diverting the roping that is in connection with the supporting structure, which rope pulley is generally a rope pulley of the hoisting machine. During the lifting of the supporting structure, the weight of the ropes hanging supported by the supporting structure is large, in which case the effect of them on the center of mass is also great. In addition, the self-weight of the rope pulley and of a machine possibly connected to it affect the center of mass. The placement of these heavyweight structures has been difficult to implement advantageously from the viewpoint of the center of mass, which has resulted in either an eccentric center of mass or in an otherwise complex structure. Problems relating to this have arisen in particular when the elevator units are supported with roping that travels via the rope pulleys of an elevator unit. Yet another problem has been that at the end of the fabrication process of an elevator, when the elevator is converted into the final elevator, the exceptional layout during the jump-lift has generally had to be drastically changed. For example, it has often been necessary to change the location of the aforementioned rope pulley of the supporting structure. More particularly, it has been necessary to change the location of the rope pulley when it has been desired to change the suspension of the final elevator car and/or counterweight from a 2:1 lifting ratio to a 1:1 lifting ratio. A corresponding problem has become evident when changing the suspension of the compensating ropes hanging suspended from the elevator car and the counterweight.
An aim of the invention is to solve the aforementioned problems of prior-art solutions. A further aim is to solve the problems disclosed in the description of the invention below. The aim is thus to produce an improved construction-time elevator arrangement and an improved method in the fabrication of an elevator. Some embodiments, inter alia, are disclosed with which it is possible to influence more freely the position of the center of mass of a supporting structure. In this way better control of the lifting of the supporting structure is achieved. During the time when the supporting structure is stationary and during a lift, distribution of the support forces can be made to be more even than before. With the solution it is also possible to form a simpler layout of a jump-lift than earlier. For example, it is possible to form the layout of a jump-lift to be such that the diverting pulley of the supporting structure is not inclined with respect to the direction of the wall of the elevator car/elevator hoistway. Some embodiments, inter alia, are disclosed with which it is possible to change the suspension of the final elevator car and/or counterweight from a 2:1 lifting ratio to a 1:1 lifting ratio simply.
The elevator arrangement according to the invention comprises an elevator hoistway, one or more elevator units to be moved in the elevator hoistway, said unit(s) including at least an elevator car, and possibly also a counterweight, roping connected to an elevator unit, which roping comprises a plurality of ropes, a moveable supporting structure in the elevator hoistway for supporting the aforementioned one or more elevator units below it via the aforementioned roping, and a rope pulley or rope pulley stack of the supporting structure in connection with the supporting structure, around which rope pulley or rope pulley stack the aforementioned roping travels, and from which the roping travels down to an elevator unit. The roping travels from the aforementioned rope pulley or rope pulley stack of the supporting structure down to an elevator unit, in connection with which is a first rope pulley or rope pulley stack and a second rope pulley or rope pulley stack, which are disposed non-coaxially in relation to each other, their rotation axes being separate from each other in the lateral direction, and the first part of the ropes of the roping traveling from the aforementioned rope pulley or rope pulley stack of the supporting structure down to the elevator unit travels to the elevator unit, to the first rope pulley or rope pulley stack that is in connection with the elevator unit, under the pulley or stack, and onwards back up to a rope anchorage arrangement, and the second part to the second rope pulley or rope pulley stack that is in connection with the elevator unit in question, under the pulley or stack, and onwards back up to a rope anchorage arrangement. In this way, one or more of the aforementioned advantages are achieved. In this case, among other things, the roping can be led to travel from the rope pulley or rope pulley stack of the supporting structure to an elevator unit, closer to the center point of the elevator unit than before. In this way, also, the aforementioned rope pulley or rope pulley stack of the supporting structure can be disposed closer in the lateral direction to the center point of the supporting structure than before. Thus the later conversion of the suspension to a 1:1 lifting ratio also becomes easier.
In one preferred embodiment the elevator arrangement comprises elevator units to be moved in an elevator hoistway, said unit(s) including an elevator car and a counterweight, and the aforementioned roping connecting the aforementioned elevator car and aforementioned counterweight, and that the aforementioned roping on the first side of the rope pulley travels down to one of the aforementioned elevator units, and the roping on the second side of the rope pulley or rope pulley stack travels down to the other of the aforementioned elevator units, and that the roping on the first and/or second side of the rope pulley or rope pulley stack of the supporting structure travels down to an elevator unit, in connection with which is a first rope pulley or rope pulley stack and a second rope pulley or rope pulley stack, which are disposed non-coaxially in relation to each other, their rotation axes being separate from each other in the lateral direction, and that the first part of the ropes of the roping traveling from the rope pulley or rope pulley stack down to the elevator unit in question travels to the elevator unit, to the first rope pulley or rope pulley stack that is in connection with the elevator unit, under the pulley or stack, and onwards back up to a rope anchorage arrangement, and the second part to the second rope pulley or rope pulley stack that is in connection with the elevator unit in question, under the pulley or stack, and onwards back up to a rope anchorage arrangement. In this way the aforementioned advantages are achieved in connection with an elevator having a counterweight.
In one preferred embodiment the elevator arrangement comprises the aforementioned rope pulleys/rope pulley stacks that are fixed to the roof of the elevator car and are disposed non-coaxially in relation to each other, and/or the rope pulleys/rope pulley stacks that are fixed to the counterweight, to the top of it, and are disposed non-coaxially in relation to each other.
In one preferred embodiment the roping on the first side of the aforementioned rope pulley or rope pulley stack of the support structure travels down to an elevator unit in the manner defined above, which elevator unit is a counterweight, and the aforementioned rope anchorage arrangement, to which the roping back upwards from the first and from the second rope pulley or rope pulley stack travels, is openable, and the roping travels via it to the rope supply storage. In this way the roping can be simply, from the viewpoint of space usage, guided to the rope supply storage, because the counterweight is disposed at the edge of the hoistway and there are no elevator components (such as a machine) at the point of it that would be in the way of the ropes being guided to the storage.
In one preferred embodiment the roping travels up to an openable rope anchorage arrangement in a first half of the elevator hoistway, preferably on a first side of the elevator car, and the roping from the rope anchorage arrangement is guided to travel down to a rope supply storage in the second half of the elevator hoistway, preferably on the second side of the elevator car.
In this way the downward-pulling force exerted on the supporting structure by the roping can be evened out on the opposite sides of the supporting structure.
In one preferred embodiment the rope anchorage arrangement for fixing the parts of the roping that are on the first side of the aforementioned rope pulley and/or the rope anchorage arrangement for fixing the parts of the roping that are on the second side of the aforementioned rope pulley is in connection with the supporting structure or in the proximity of it.
In one preferred embodiment the roping travels from the supporting structure straight down to at least one or more of the aforementioned elevator units essentially at the center point of the vertical projection of the elevator unit, preferably the roping travels from the supporting structure straight down to each elevator unit essentially at the center point of the vertical projection of the elevator unit. Thus the centricity of the suspension is simple to arrange already during construction-time use, as well as after the conversion. More particularly, changing the suspension to a 1:1 suspension ratio is simple with only small modifications to the elevator structures.
In one preferred embodiment the elevator arrangement possesses one or more of the following features
A second elevator system according to the concept of the invention comprises an elevator hoistway, one or more elevator units to be moved in the elevator hoistway, said unit(s) including at least an elevator car, and possibly also a counterweight, and a moveable supporting structure in the elevator hoistway for supporting the aforementioned one or more elevator units below it, roping connected to the aforementioned one or more elevator units and hanging suspended from the aforementioned one or more elevator units, which roping comprises a plurality of ropes, a rope pulley or rope pulley stack supported to rotate below the aforementioned one or more elevator units, around which rope pulley or rope pulley stack the aforementioned roping travels, and from which the roping travels up to one or more elevator units. The roping travels from the rope pulley or rope pulley stack supported to rotate below the aforementioned one or more elevator units up to an elevator unit, in connection with which is a first rope pulley or rope pulley stack and a second rope pulley or rope pulley stack, which are disposed non-coaxially in relation to each other, their rotation axes being separate from each other in the lateral direction, and that the first part of the ropes of the roping traveling from the aforementioned rope pulley or rope pulley stack supported to rotate below the elevator unit up to the elevator unit travels to the elevator unit, to the first rope pulley or rope pulley stack that is in connection with the elevator unit, over the pulley or stack, and onwards back down to a rope anchorage arrangement, and the second part to the second rope pulley or rope pulley stack that is in connection with the elevator unit in question, over the pulley or stack, and onwards back down to a rope anchorage arrangement. In this way the concept of the invention can be applied to compensating roping. In this way advantages corresponding to those disclosed earlier in connection with suspension roping are achieved. More particularly the later conversion of the suspension ratio of the compensating rope to a 1:1 suspension is facilitated.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the roping travels as a dense bundle from the rope pulley or rope pulley stack of the supporting structure to the first and second rope pulleys/rope pulley stacks of an elevator unit, which pulleys/stacks divide the first and second part of the roping to be conducted away from each other. In this way guiding the roping concentrically to the elevator unit becomes easier. Likewise, forming the suspension between an elevator unit and the roping symmetrically becomes easier.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the aforementioned first and second rope pulleys/rope pulley stacks of an elevator unit are arranged to guide the first and the second part traveling close to each other from the rope pulley or rope pulley stack to the first and to the second rope pulleys/rope pulley stacks of the elevator unit to be conducted away from each other, in which case the first and the second part travel away (up or down) from the rope pulleys/rope pulley stacks of the elevator unit at a distance from each other. In this way guiding the roping concentrically to the elevator unit becomes easier. Likewise, forming the suspension between an elevator unit and the roping symmetrically becomes easier. Also in this way it is simple to configure the forces exerted on the supporting structure by the rope anchorage arrangements to be symmetrical, e.g. around a center line of the supporting structure.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the roping travels via an openable rope anchorage arrangement to a rope supply storage, such as e.g. to a rope reel.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the roping on the first side of the aforementioned rope pulley or rope pulley stack travels to an elevator unit, which is a counterweight, and on the second side to an elevator unit, which is an elevator car.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the elevator arrangement comprises means for lifting the supporting structure upwards in the elevator hoistway, which means preferably comprise a movable support structure to be supported in the elevator hoistway for taking support from the hoistway or from a structure fixed to the hoistway. The centricity of the center of mass in connection with this type of hoisting arrangement is particularly advantageous, inter alia because the structures of the elevator hoistway supporting the hoisting means are thus evenly loaded. For example, if the hoisting means take the support force needed for lifting from the guide rails, the even loading prevents buckling of the guide rail lines.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the aforementioned means for lifting the supporting structure upwards in the elevator hoistway are arranged to pull the supporting structure higher up in the elevator hoistway from above, preferably via a flexible member such as a rope, chain or belt.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the first and the second part are guided to travel from the aforementioned rope pulley or rope pulley stack between the aforementioned first and second rope pulleys/rope pulley stacks. In this way the roping can be guided to the elevator unit as a dense bundle. More particularly, guiding the roping very concentrically to the elevator unit becomes possible.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the axes of the aforementioned first and second rope pulley/rope pulley stacks that are disposed non-coaxially in relation to each other are parallel or are at an angle of at most 45 degrees with respect to each other. In this way guiding the roping concentrically, or at least rather concentrically, to the elevator unit becomes possible and the structure is compact.
In any whatsoever of the preferred embodiments of an elevator arrangement described above the axes of the aforementioned first and second rope pulleys/rope pulley stacks that are disposed non-coaxially in relation to each other are at essentially the same height as each other.
In any whatsoever of the preferred embodiments of the elevator arrangement described above, the supporting structure comprises means for the vertical support of the supporting structure in its position in the elevator hoistway, which means can be moved between a state supporting the supporting structure in its position in the vertical direction and a state not supporting it in its position in the vertical direction. In this way displacement of the supporting structure in jump-lifts becomes possible.
In the method according to the invention in the fabrication of an elevator, an elevator arrangement is formed, which is according to any of those described above, and in the method these phases are performed
In one preferred embodiment in the method after phase b has been performed one or more times, e.g. when a phase cycle comprising the aforementioned phases a, b and c has been performed one or more times, the suspension of the aforementioned elevator unit/elevator units, in connection with which are the aforementioned non-coaxial first and second rope pulley/rope pulley stack, in such a way that the lifting ratio of the elevator unit or of both the elevator units in question is 1:1. In this way the elevator can be converted to possess simple roping that is better suited to the final elevator, e.g. to a high-rise elevator. A construction-time elevator can thus be converted into the final elevator.
In one preferred embodiment in the method after phase b has been performed one or more times, e.g. when a phase cycle comprising the aforementioned phases a, b and c has been performed one or more times, the suspension of the aforementioned elevator unit/elevator units is changed by replacing the roping with new roping.
In one preferred embodiment in the method rope for the lifting of phase b is released from the rope storage, to which the roping travels via an openable rope anchorage arrangement.
The elevator is most preferably an elevator applicable to the transporting of people and/or of freight, which elevator is installed in a building, inside the cross-section of the building, to travel in a vertical direction, or at least in an essentially vertical direction, preferably on the basis of landing calls and/or car calls. The elevator car preferably has an interior space, which is suited to receive a passenger or a number of passengers. The elevator preferably comprises at least two, preferably more, floor landings to be served. Some inventive embodiments are also presented in the descriptive section and in the drawings of the present application. The inventive content of the application can also be defined differently than in the claims presented below. The inventive content may also consist of several separate inventions, especially if the invention is considered in the light of expressions or implicit sub-tasks or from the point of view of advantages or categories of advantages achieved. In this case, some of the attributes contained in the claims below may be superfluous from the point of view of separate inventive concepts. The features of the various embodiments of the invention can be applied within the framework of the basic inventive concept in conjunction with other embodiments.
The invention will now be described mainly in connection with its preferred embodiments, with reference to the attached drawings, wherein
In the embodiment presented the aforementioned first and second rope pulleys/rope pulley stacks 5a, 5b are fixed to the elevator car 1, to the top of it (to the roof) and correspondingly the first and second rope pulleys/rope pulley stacks 5a, 5b of the counterweight 2 are fixed to the counterweight 2, to the top of it.
For enabling the supply of the additional rope needed for the jump-lift, the roping R travels on a first or on a second side of the aforementioned rope pulley or rope pulley stack 4 to a rope anchorage arrangement, which is openable, and the roping travels via it to the rope supply storage, from where the rope can be supplied without break into the elevator system. In the solution presented, this is implemented on the counterweight 2 side.
As is seen from
The elevator units preferably travel on guide rails (not presented). There are preferably two guide rails per each elevator unit and the guide rail plane determined by the guide rail pair of the counterweight is preferably in the same direction as the wide side of the counterweight and the guide rail plane determined by the guide rail pair of the elevator car is preferably in the same direction as the wall of the elevator car, in
Described above are the passage of the roping suspending the elevator units and also the operation and placement of the first and of the second rope pulleys/rope pulley stacks. The compensating roping of an elevator can, however, be arranged in a corresponding manner, in which case the difference to what has been described earlier is that the rope arrangement, i.e. the roping and the rope pulleys guiding the roping, are upside-down, acting below the elevator units. In this case the elevator arrangement comprises an elevator hoistway S, one or more elevator units 1, 2 to be moved in the elevator hoistway S, said unit(s) including at least an elevator car 1, and possibly also a counterweight 2, a moveable supporting structure 3 in the elevator hoistway S for supporting the one or more elevator units 1, 2 below it, and roping C connected to the aforementioned one or more elevator units 1, 2 and hanging suspended from the aforementioned one or more elevator units 1, 2, which roping comprises a plurality of ropes, and a rope pulley or rope pulley stack 4′ supported to rotate below the aforementioned one or more elevator units 1, 2, around which rope pulley or rope pulley stack the aforementioned roping C travels, and from which the roping C travels up to an elevator unit 1, 2. The roping C travels from the rope pulley or rope pulley stack 4′ up to an elevator unit 1, 2, in connection with which is a first rope pulley or rope pulley stack 5a′ and a second rope pulley or rope pulley stack 5b′, which are disposed non-coaxially in relation to each other, their rotation axes X1, X2 being separate from each other in the lateral direction, and in that the first part a′ of the ropes of the roping C traveling from the aforementioned rope pulley or rope pulley stack 4′ up to the elevator unit 1, 2 travels to the elevator unit 1, 2, to the first rope pulley or rope pulley stack 5a′ that is in connection with the elevator unit 1, 2, over the pulley or stack, and onwards back down to a rope anchorage arrangement 6a′, and the second part b′ to the second rope pulley or rope pulley stack 5a′ that is in connection with the elevator unit in question, over the pulley or stack, and onwards back down to a rope anchorage arrangement 6b′.
The supporting structure 3 is movable, i.e. the elevator arrangement (most preferably the supporting structure 3 itself, as is presented in the figures) comprises support means for the vertical support of the supporting structure 3 in its position in the elevator hoistway S, which means can be moved between a state supporting the supporting structure 3 in its position in the vertical direction and a state not supporting it in its position in the vertical direction. In the aforementioned state not supporting it in position the means do not hamper the vertical displacement of the supporting structure 3 in the hoistway. The support means can be implemented in many different ways, e.g. in some manner according to prior art. As presented in
For enabling a jump lift, the elevator arrangement comprises means (not presented) for lifting the supporting structure upwards in the elevator hoistway. These means preferably comprise a movable support structure in the elevator hoistway, said structure to be supported in the elevator hoistway in the manner described above. The aforementioned means for lifting the supporting structure 3 upwards in the elevator hoistway are preferably such that they are arranged to pull the supporting structure higher up in the elevator hoistway from above, preferably via a flexible member such as a rope, chain or belt.
In the method according to the invention in the fabrication of an elevator an elevator arrangement is formed, in which the rope pulleys or rope pulley stacks of at least one elevator unit divide the roping R and/or C in the manner presented above, and in the method these phases are performed
Thus the service range of the elevator car 1 is changed in steps to reach higher up in the elevator hoistway. After phase b has been performed one or more times, e.g. when a phase cycle comprising the aforementioned phases a, b and c has been performed one or more times, the suspension of the aforementioned elevator unit/elevator units, in connection with which are the aforementioned non-coaxial rope pulleys, is changed in such a way that the lifting ratio of the elevator unit (1 or 2) in question or of both the elevator units 1, 2 in question is 1:1. In this case new roping can be installed to replace the roping R in question or otherwise the roping R can be truncated near the elevator unit. In the change of suspension, the roping is fixed by its end to the elevator unit for achieving 1:1 suspension. Corresponding procedures can be performed for the compensating roping C. Rope for the lifting of phase b is released from the rope storage 20; 20′, to which the roping R; C travels via an openable rope anchorage arrangement (6a, 6b; 6a′, 6b′). Such a change in the lifting ratio is not, however, necessary. It is advantageous to implement the change in the lifting ratio in possible compensating ropes C in a corresponding manner.
Distribution of the rope bundle on a side of both elevator units can be utilized for achieving more centric distribution, as is presented in connection with the embodiment of
The aforementioned ropes of the roping R; C can be e.g. round in cross-sectional shape or can be other than round in cross-sectional shape. For example, they can be metal ropes or belts according to prior art. The elevator arrangement preferably forms the final elevator arrangement of the building as a conclusion of the method. The elevator arrangement is preferably inside a building, e.g. inside a high-rise building. Its lifting height is preferably in the final phase of the method over 100 meters, possibly considerably more, such as over 200 meters or even over 400 meters.
It is obvious to the person skilled in the art that in developing the technology the basic concept of the invention can be implemented in many different ways. The invention and the embodiments of it are not therefore limited to the examples described above, but instead they may be varied within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20125548 | May 2012 | FI | national |
This application is a continuation of PCT International Application No. PCT/FI2013/050445 which has an International filing date of Apr. 22, 2013, and which claims priority to Finnish patent application number 20125548 filed May 23, 2012, the entire contents of both which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3101130 | Bianca | Aug 1963 | A |
3851736 | Westlake | Dec 1974 | A |
5000292 | Chapelain | Mar 1991 | A |
6471012 | Faletto | Oct 2002 | B2 |
6598707 | Nakagaki | Jul 2003 | B2 |
7156209 | Koeppe, Jr. | Jan 2007 | B2 |
7293631 | Ishii | Nov 2007 | B2 |
7549514 | Heggli | Jun 2009 | B2 |
9321612 | Fargo | Apr 2016 | B2 |
9371212 | Yapar | Jun 2016 | B2 |
9487378 | Lin | Nov 2016 | B2 |
20040108170 | Kocher | Jun 2004 | A1 |
20080121468 | Fischer | May 2008 | A1 |
20090101448 | Korkeakangas | Apr 2009 | A1 |
20090114487 | Bjorni | May 2009 | A1 |
20090127033 | Korkeakangas | May 2009 | A1 |
20100163347 | Van Der Meijden et al. | Jul 2010 | A1 |
20120085594 | Wright | Apr 2012 | A1 |
20120291395 | Plathin | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
20070994 | Jun 2009 | FI |
20090512 | Dec 2009 | FI |
H03256986 | Nov 1991 | JP |
WO-0050328 | Aug 2000 | WO |
WO-2009034224 | Mar 2009 | WO |
WO-2010100319 | Sep 2010 | WO |
WO-2011048255 | Apr 2011 | WO |
Entry |
---|
International Search Report PCT/ISA/210 for International Application No. PCT/FI2013/050445 dated Sep. 18, 2013. |
Finnish Search Report for Application No. FI20125548 dated Feb. 12, 2013. |
Written Opinion of the International Searching Authority PCT/ISA/237 for International Application No. PCT/FI2013/050445 dated Sep. 18, 2013. |
Number | Date | Country | |
---|---|---|---|
20150034425 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI2013/050445 | Apr 2013 | US |
Child | 14518397 | US |