This invention generally relates to an elevator with an extendable sill that bridges an operating gap between an elevator car and a landing. More particularly, this invention relates to a sill that extends outwardly underneath an elevator door to engage a landing structure.
Elevator cars move upwardly and downwardly within a hoistway between landings. Sufficient running clearance must be maintained between the exterior of the elevator car and the hoistway walls to allow the car to move quickly and efficiently within the hoistway. If the running clearance is minimized, ride quality is decreased and car guidance system component wear is increased. If the running clearance is maximized, ride quality is improved but a large operating gap between the elevator car and a landing is created, which is undesirable.
One solution has been to use a pendulum car system. The pendulum car operates with an increased running clearance between the car and the hoistway walls, which provides a softer ride and decreases guidance system component wear. When the car reaches the selected landing, the car swings closer to the landing to reduce the operating gap between the car and the landing. One problem with this solution is that the lateral movement of the car creates occupant ride quality issues. Another disadvantage with this system is that a large amount of energy is required to move the car in a lateral direction. Further, if the system fails there is still a large gap between the car and the landing.
This invention provides an improved arrangement for bridging the operating gap between an elevator and landing while still maintaining sufficient running clearance and avoiding the other difficulties mentioned above.
In general terms, this invention is an extendable sill that bridges the operating gap between an elevator car and a landing. The sill extends outwardly from underneath an elevator car to contact a landing structure, such as a landing sill. A locking mechanism secures the sill to the landing structure preferably before elevator and landing doors open.
In one example, the locking mechanism includes an actuator that drives an engagement arm having a hook portion on one end. A pin is mounted to the landing structure. As the sill moves towards the landing structure, the actuator moves the hook portion into engagement with the pin. When a command is received to move to a different landing, the actuator releases the hook portion from the pin and the sill is returned to a retracted position.
Another example of a locking mechanism utilizes an electromagnet and solenoid actuator. The solenoid moves the electromagnet into contact with a magnetic target positioned on a hoistway wall. Optionally, solenoids with locking elements could also be used to hold the car in place within the hoistway.
In another example, the sill is moved horizontally and vertically to adjust for misalignment between an elevator car floor and the landing. The sill can be mounted to extend along a linear path and can be mounted to rotate downwardly from a position above the landing structure into engagement with the landing structure.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
As seen in
The elevator car 30 includes an elevator door assembly 34 that moves between open and closed positions. When the elevator car 30 stops at one of the landings 24 to load or unload passengers or cargo, the elevator door assembly 34 aligns with a landing door assembly 36. A sill 38, supported by the elevator car 30, extends outwardly from the car 30 toward the landing door assembly 36 to bridge the operating gap 26 between the elevator door assembly 34 and the landing 24. The sill 38 extends out from underneath the elevator door assembly 34 and moves along a linear path to engage a landing structure 40, such as a landing sill. The sill 38 in this example comprises a plate member that presents a continuous unbroken surface such that there are no gaps between the elevator 34 and landing 36 doors.
As shown in
A door moving mechanism 50 includes an interlock to open and close the car 34a, 34b and landing 36a, 36b doors together once the sill 38 is extended and locked into place. Any type of door moving mechanism and interlock as known in the art could be used. Further, the operation of door moving mechanisms and interlocks are well known and will not be discussed in detail.
When the elevator doors 34a, 34b are in a closed position, the seal 46 is compressed between the doors 34a, 34b and the car frame 44, and the sill 38 is in a fully retracted position underneath the doors 34a, 34b. This compressive force is applied due the configuration of the tracks 42. The tracks 42 include a first portion 42a that is generally straight and a second portion 42b that is non-parallel to the first portion 42a. The second portion 42b is preferably curved, such that the doors 34a, 34b are drawn inwardly against the car frame 44 to compress the seal 46. The seal 46 and associated track configuration in one example are described in greater detail in co-pending application entitled “Elevator Door Assembly With Compression Seal,” herein incorporated by reference.
Once the car 30 is at the landing and the elevator doors 34a, 34b are aligned with the landing doors 36a, 36b, the sill 38 begins to extend outwardly from underneath the doors 34a, 34b toward the landing structure 40, as shown in
In one example, door movement is dependent on the sill position. Once the sill 38 connects to the landing structure 40, the door operator or moving mechanism 50 is enabled for moving the doors to the open position. The sill 38 is locked across the door threshold and both the elevator doors 34a, 34b and landing doors 36a, 36b open, as shown in
An example of a locking mechanism for locking the sill 38 to the landing structure 40 is shown generally at 52 in
This locking mechanism 52 operates in a manner similar to that of a sliding door locker. While a pair of locking mechanisms 52 is shown in
An example of an actuator and locking mechanism 63 is shown in
Another example of an actuator 56 is shown in
A return mechanism 90 for the actuator 56 shown in
The extendable sill 38 can also be used to accommodate misalignment between the elevator car 30 and the landing 24. As shown in
In another example, see
Another example of an actuator and locking mechanism 110 is shown in FIGS. 15A-C. The actuator and locking mechanism 110 includes a solenoid 112 with an extendable rod 114. Mounted for movement with a distal end of the rod 14 are locking elements 116. When the car 30 lines up with the landing 24, the solenoid 112 pushes the rod 114 into a hole 118 formed with the hoistway wall 32. The locking elements 116 extend outwardly from the rod 114 to hold the rod 114 in place. The locking elements 116 can be spring-loaded to retract and latch automatically upon the rod 114 being inserted through the hole 118. The retraction operation could pull on an extension release while retracting the rod 114, in a manner similar to a ratchet release.
Another example of an actuator and locking mechanism 120 is shown in FIGS. 16A-C. The actuator and locking mechanism 120 includes a first solenoid 122, a second solenoid 124, and a coupler 126 interconnecting the first 122 and second 124 solenoids. The first solenoid 122 includes a first shaft 128 with a locking element 130 mounted on a distal end. The second solenoid 124 includes a second shaft 132 that drives the coupler 126. The coupler 126 is mounted on the first shaft 128.
When the car 30 lines up with the landing 24, the first solenoid 122 pushes the first shaft 128 and locking element 130 through a hole 134 formed in the hoistway wall 32. A sensor (not shown) identifies when the shaft 128 reaches the end position. Then, the second solenoid 124 rotates the first shaft 128 via the coupler 126, which turns the locking element 130 ninety degrees (90°) to prevent removal of the first shaft 128 and locking element 130 from retracting from the hole 134, and to lock the car 30 in place. The first solenoid 122 will attempt to retract prior to releasing the door moving mechanism 50.
In each of the embodiments discussed above, the actuators and associated locking mechanisms could be located above, below, and/or on the sides of the elevator car. Further, the sill 38 can be moved by the same actuator as the locking mechanism or could be controlled by a separate actuator.
The unique, extendable sill 38 allows for quicker installation of the car assembly and provides more running clearance, which results in a softer ride and decreased guidance system component wear. Further, because the running clearance is greater, the gaps to the landing sills are also increased, which decreases aerodynamic pulse events generated as the elevator moves past landings. An additional benefit includes the opportunity to use a simplified door moving mechanism and interlock that does not require high accuracy vanes that restrict the amount of float that the guidance system can use. The subject invention can also be used with less initial landing alignment accuracy because the sill can be extended and adjusted without introducing a step at the landing sill to accommodate slight misalignments between the car and the landing. This decreases sensor and drive systems needs and improves landing speed.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/29827 | 9/18/2003 | WO | 1/20/2006 |