Priority of U.S. provisional patent application Ser. No. 62/011,302, filed Jun. 12, 2014, incorporated herein by reference, is hereby claimed.
None
1. Field of the Invention
The present invention pertains to a pipe elevator assembly, primarily for use in the oil and gas drilling industry. More particularly, the present invention pertains to an elevator assembly having a reversible inner insert member that permits said elevator assembly to grip and accommodate multiple different types and configurations of pipe and/or threaded connections.
2. Brief Description of the Prior Art
In the oil well drilling industry, an elevator assembly (sometimes also referred to as a “set of elevators”) is a mechanism that can be used to lift and support pipe and/or other tubular members. The elevator assembly, which is typically suspended from a rig's traveling block or other hoisting device using bails or linkages, is typically used to grip the external surface of pipe other tubular goods to be lifted within a drilling rig derrick. Once the elevator assembly is securely locked in place around the external surface of the pipe, the traveling block or other hoisting device can be raised in order to lift such pipe within a rig derrick and/or lower such pipe into a wellbore.
Although elevator assemblies come in many different shapes, sizes and configurations, one common style of elevator assembly is a latching-type elevator. Such an elevator generally comprises two opposing semi-cylindrical body members that are hingedly attached to each other; said members can be selective latched in a closed (joined) configuration, or unlatched in an open or spread apart configuration.
When unlatched, said opposing body members can be spread apart or swung open relative to each other to permit placement of such elevator body members around the outer or external surface of a section of pipe. When latched, said hinged opposing members can be temporarily locked together in mating relationship to form a ring-like load bearing structure that can be used to securely grip against the external surface of a section of pipe.
When multiple pipe sections are screwed together or otherwise joined to form an elongate pipe string, an elevator assembly can be used to grip an uppermost pipe section of the string and support the entire weight of such pipe string. In such cases, an elevator assembly typically must be capable of supporting relatively heavy loads, since such pipe strings can often be quite heavy. However, in certain instances, elevator assemblies are used to grip and support single pipe sections or very short pipe strings; in such cases, so-called single joint elevators are particularly useful for gripping and hoisting relatively light pipe sections.
Such single joint elevator assemblies, which are frequently smaller and lighter than conventional elevator assemblies, typically comprise removable components known as inserts; a separate insert is disposed on the inner surface of each opposing elevator member. Such inserts cooperate to form a desired profile that generally conforms to the shape of the outer surface of the particular section of pipe to be gripped by said elevator assembly. Further, such inserts each typically define at least one upwardly facing load-bearing shoulder or support surface designed to support the weight of a pipe section (and, more specifically, typically the lower surface of a threaded connection or threaded collar of such pipe section) to be gripped and lifted by said elevators. Elevator inserts are typically removable so that a single elevator assembly can be used with multiple sets of interchangeable inserts in order to fit many different types of pipe, or tubular goods having different outer profiles.
Thus, in order to function properly, a single set of opposing inserts must cooperate in order to closely conform to the outer surface of a particular type or style of pipe (including, without limitation, any integral threaded connection member or threaded collar). As such, a single set of inserts that conforms to one particular type of pipe section may not conform to another type of pipe section having a different outer configuration. For example, a single set of conventional elevator inserts designed for use with coupled pipe (that is, externally threaded pipe sections joined using internally threaded pipe couplings) will not work with pipe equipped with so-called premium or integrally formed threaded connections, and vice versa.
Thus, there is a need for an elevator system having interchangeable inserts. Said inserts should be quickly and efficiently removed and replaced. Further, such inserts should be compatible with multiple different styles or configurations of pipe.
In a preferred embodiment, the present invention comprises an elevator assembly (including, without limitation, as single-joint elevator assembly) having removable inner insert members. As with conventional elevator inserts, the insert members of the present invention are replaceable and can be selectively removed from elevator body members and replaced in order to accommodate various pipe sizes and configurations. However, unlike conventional elevator inserts, a single set of inner insert members of the present invention can accommodate multiple pipe sizes and/or configurations.
Each elevator insert of the present invention defines a first pipe profile in a first axial direction, and a second pipe profile in a second axial direction. Thus, when a mating pair of inserts of the present invention is installed in one direction, said inserts can accommodate one size or style of pipe (including, without limitation, one size or type of threaded connection). However, when said inserts are removed, inverted (“flipped”) and reinstalled, the same set of inserts can also accommodate a different size or style of pipe (including, without limitation, a threaded connection). By way of illustration, but not limitation, when installed in an elevator assembly in a first direction, a single set of inserts of the present invention can grip and support a section of coupled pipe (for example, 2-⅜″ 8-round tubing having threaded collars between joints). When such inserts are removed, inverted and reinstalled, the same set of inserts can also accommodate a section of pipe having premium or integrally formed threaded connections (such as, for example, so-called “CS-Hydril” threads).
The foregoing summary, as well as any detailed description of the preferred embodiment, is better understood when read in conjunction with the drawings and figures contained herein. For the purpose of illustrating the invention, the drawings and figures show certain preferred embodiments. It is understood, however, that the invention is not limited to the specific methods and devices disclosed in such drawings or figures.
Said opposing first and second members can be selectively latched in a closed (joined) configuration, or unlatched in an open configuration, using latch assembly 40. In a preferred embodiment depicted in
Still referring to
Opposing first body member 11 and second body member 12 each further comprise retainer pin receptacles 14. A retainer pin 30 is disposed through a transverse bore extending through each of said retainer pin receptacles 14. Pipe supporting insert members 20 are disposed along opposing inner arcuate surface 111 of first body member 11 and inner arcuate surface 112 of second body member 12.
Opposing first body member 11 and second body member 12 each further comprise retainer pin receptacles 14, each having a transverse bore extending therethrough. A retainer pin 30 is disposed through each of said transverse bores extending through said retainer pin receptacles 14. Pipe supporting insert members 20 are disposed along opposing inner arcuate surface 111 of first body member 11 and inner arcuate surface 112 of second body member 12.
After said spread apart opposing body members 11 and 12 are placed in a desired position relative to the external surface of a section of pipe, said opposing first and second members can be closed (again, by pivoting about hinge pin 13) and selectively latched in a closed (joined) configuration using a latch assembly 40 generally comprising safety latch 41 on clasp member 45. When oriented in a closed latched and secure configuration, lug 42 can be received by said clasp member 45 and safety latch 41.
Elevator assembly 10 also comprises lateral lifting eyelet members 15, each having an aperture 18, as well as retainer pin receptacles 14. A retainer pin 30 is disposed through a transverse bore extending through each of said retainer pin receptacles 14. Pipe supporting insert members 20 are disposed along opposing inner arcuate surface 111 of first body member 11 and inner arcuate surface 112 of second body member 12. When closed and latched, said hinged opposing members 11 and 12 can be temporarily secured together in mating relationship to form a ring-like load bearing structure that can be used to securely grip against the external surface of a section of pipe.
Still referring to
Referring to
First circumferential outer rim member 23 and first inner load shoulder surface 24 are formed at the upper end surface of insert member 20, while second circumferential outer ring member 123 and second inner load shoulder 124 are formed on the opposite lower end surface of said insert member 20 (when insert member 20 is oriented as shown in
Outer surface 21 is formed by first flange extension member 50, second flange extension member 51 and inner surface 52 extending between said first and second flange extension members. A circumferential groove or recess is formed between said first flange extension member 50 and second flange extension member 51, which cooperate to define first load shoulder 53 and second load shoulder 54 on either side of said groove or recess. At least one retention pin receiving groove 26 is formed on the upper surface of first flange extension member through first outer rim member 23.
Referring back to
Retention shoulder 6 is formed along the inner surface of body member 11. First circumferential outer rim member 23 is held in place against radial movement by said retention shoulder 6, while second circumferential outer ring member 123 is disposed on support surface 8. Cylindrical extension 34 is at least partially received within a retention pin groove 26 to prevent rotational movement of insert member 20 relative to body member 11.
In a preferred embodiment, the present invention comprises elevator assembly 10 (which can be, but is not limited to, a single-joint elevator assembly) having removable inner insert members 20. Insert members 20 of the present invention are replaceable and can be selectively removed from elevator body members and replaced in order to accommodate various pipe sizes and configurations. Unlike conventional elevator inserts, a single set of inner insert members 20 of the present invention can accommodate multiple pipe sizes and/or configurations.
Each elevator insert 20 of the present invention defines a first internal load shoulder 24 profile in a first axial direction, and a second internal load shoulder 124 profile in a second axial direction. Thus, when a mating pair of inserts 20 of the present invention is installed in one direction, first internal load shoulder profiles (which are identical or substantially similar to each other) match in a first axial direction, and second internal load shoulder profiles (which are identical or substantially similar to each other) match in a second axial direction. Said mating inserts, and their matching first load supporting shoulders, can accommodate a first size or style of pipe (including, without limitation, one size or type of threaded connection). However, when said inserts are removed, inverted (“flipped”) and reinstalled, the same set of mating inserts, and their matching first load supporting shoulders, can also accommodate a different size or style of pipe (including, without limitation, a threaded connection).
By way of illustration, but not limitation, when installed in an elevator assembly in a first direction, a single set of inserts of the present invention can grip and support a section of coupled pipe (for example, 2-⅜″ 8-round tubing having threaded collars between joints) using second internal load shoulder 124; in this configuration, said collar can be disposed on and supported by substantially flat or planar load shoulder 124 that is oriented substantially perpendicular to the longitudinal axis of a section of pipe to be gripped by said elevator assembly. When such inserts are removed, inverted and reinstalled, the same set of inserts can also accommodate a section of pipe having premium or integrally formed threaded connections (such as, for example, so-called “CS-Hydril” threads) using first internal shoulder 24; in this configuration, the tapered outer shape of said connection can be disposed on and supported by tapered load shoulder 24. It is to be observed that other load shoulder shapes, configurations or dimensions can be envisioned to accommodate and mate with other types or sizes of pipe and/or connections.
As such, a single set of elevator inserts of the present invention can be used to grip and lift multiple sections of pipe having markedly different outer profiles or threaded connections. The design of the present invention promotes efficiency and versatility of elevator assemblies equipped to use such inserts. Further, fewer total elevator inserts are required to be transported to, and stored at, drilling rigs or other installations, which can be particularly important for work sites situated in remote locations, such as offshore platforms or marine drilling vessels.
The above-described invention has a number of particular features that should preferably be employed in combination, although each is useful separately without departure from the scope of the invention. While the preferred embodiment of the present invention is shown and described herein, it will be understood that the invention may be embodied otherwise than herein specifically illustrated or described, and that certain changes in form and arrangement of parts and the specific manner of practicing the invention may be made within the underlying idea or principles of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1568198 | Tschappat | Jan 1926 | A |
2245938 | Ratigan | Jun 1941 | A |
2259054 | Young | Oct 1941 | A |
5009289 | Nance | Apr 1991 | A |
7866721 | Hollin | Jan 2011 | B2 |
8496280 | Pietras | Jul 2013 | B2 |
9175527 | McIntosh et al. | Nov 2015 | B2 |
9206655 | Sipos | Dec 2015 | B2 |
20130011221 | Mcintosh | Jan 2013 | A1 |
20150021050 | Foley | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150361737 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62011302 | Jun 2014 | US |