The presently disclosed embodiments generally relate to elevator systems and more specifically, to an elevator brake assembly.
Elevators are presently provided with a plurality of braking devices which are designed for use in normal operation of the elevator, as for example to hold the elevator car in place when it stops at a landing; and which are designed for use in emergency situations such as stopping the elevator car and/or counterweight from rapidly descending into the hoistway pit.
Electromechanical brakes are generally designed and installed in two sets controlled by a single coil. Each set of brakes has equal torque and are applied simultaneously. For multiple segment brake assemblies (i.e. more than two brake sets), multiple brake coils are required to provide flexibility in the timing of the application of the brakes. As a result, the increased number of coils increases the cost of the elevator system. There is therefore a need for a more cost effective solution for multiple segment brake assemblies.
In one aspect an elevator brake assembly is provided. The elevator brake assembly includes an asymmetrical brake including at least three brake segments, and a brake activating device operably coupled to the asymmetrical brake. The brake activating device includes a first activation element and a second activation element, wherein the first activation element is configured to activate one of the at least three brake segments, and the second activation element is configured to activate the remaining of the at least three brake segments. In any embodiment, the first activation element comprises a first coil and the second activation element includes a second coil.
In one embodiment the at least three brake segments are located adjacent to one another and circumferentially disposed around a plate. In another embodiment, the at least three brake segments include a first brake segment and a second brake segment circumferentially disposed around a third brake segment. In another embodiment, the at least three brake segments include a first brake segment positioned adjacent to a second brake segment; the first activation element is positioned adjacent to the first brake segment and the second brake segment, a third brake segment positioned adjacent to the first activation element and the second activation element is positioned adjacent to the third brake segment.
In any embodiment, the at least three brake segments further include a plurality of brake applying portions, wherein a respective one of the plurality of brake applying portions is disposed on each of the at least three brake segments. In an embodiment, the plurality of brake applying portions includes a plurality of shoes.
In one aspect, an elevator system is provided. The elevator system includes a machine housing, a rotatable output shaft mounted in said machine housing, a sheave mounted on said output shaft and rotatable therewith, and a brake assembly configured for braking said output shaft. The brake assembly includes an asymmetrical brake including at least three brake segments, and a brake activating device operably coupled to the asymmetrical brake, the brake activating device comprising a first activation element and a second activation element, wherein the first activation element is configured to activate one of the at least three brake segments, and the second activation element is configured to activate the remaining of the at least three brake segments. In an embodiment, the first activation element includes a first coil and the second activation element includes a second coil.
In an embodiment, the asymmetrical brake includes at least three brake segments located adjacent to one another and circumferentially disposed around a plate. In another embodiment, the asymmetrical brake includes a first brake segment and a second brake segment circumferentially disposed around a third brake segment. In another embodiment, the asymmetrical brake includes a first brake segment positioned adjacent to a second brake segment; the first activation element is positioned adjacent to the first brake segment and the second brake segment, a third brake segment positioned adjacent to the first activation element, and the second activation element is positioned adjacent to the third brake segment.
In any embodiment of the elevator system, the asymmetrical brake further includes a plurality of brake applying portions, wherein a respective one of the plurality of brake applying portions is disposed on each of the at least three brake segments. In an embodiment, the plurality of brake applying portions includes a plurality of shoes
Other embodiments are also disclosed.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
The brake assembly 30 further includes a brake activating device 42 operably coupled to the asymmetric brake 32. The brake activating device 42 includes a first activation element, such as a first coil 44 configured to activate one of the at least three brake segments (e.g. a brake segment 38), and a second activation element, such as a second coil 46 configured to activate the remaining of the at least three brake segments (e.g. brake segments 34 and 36).
The brake assembly 30, as shown in the embodiment of
During operation, the brake activating device 42 may independently de-energize the first activation element 44 and/or second activation element 46 to increase flexibility of the timing and braking torque applied to the shaft 24 or disk 28. For example, in situations where the elevator car 12 is empty and moving in a downward direction, the brake activating device 42 may de-energize the first activation element 44 and the second activation element 46 to apply all of the at least three brake segments 34, 36, and 38.
In a situation where the elevator car 12 is empty and moving in an upward direction, the brake activating device 42 may sequentially activate the asymmetric brake 30 by first de-energizing the second activation element coil 46 to apply all but one of the brake segments (e.g. brake segments 34 and 36); then, after a time delay, de-energizing the first activation element 44 to apply one of the brake segments (e.g. brake segment 38).
In a situation where the elevator car 12 is balanced and moving in either the up or down direction, the brake activating device 42 may sequentially activate the asymmetric brake 30 by first de-energizing the first activation element 44 to apply the third brake segment 38; then, after a time delay, de-energizing second activation element 46 to apply the first brake segment 34 and second brake segment 36.
It will be appreciated that the brake assembly 30 includes an asymmetrical brake 32 including at least three brake segments operably coupled to a brake activating device configured to independently operate the at least three brake segments to selectively apply different brake torques to the shaft 24 or disk 28 to improve stopping performance.
While the present disclosure has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the present disclosure are desired to be protected.
This application is a divisional of U.S. patent application Ser. No. 15/261,722, filed Sep. 9, 2016, the entire contents of which are incorporated herein by reference, which claims the benefit of U.S. Provisional Application No. 62/216,482, filed Sep. 10, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62216482 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15261722 | Sep 2016 | US |
Child | 17368141 | US |