Elevators have proven useful for carrying passengers between different floors in buildings. Various types of elevator systems are known.
The configuration of some low-to-midrise, light weight elevators may allow for a natural or resonant frequency associated with the system rise, moving masses, suspension termination stiffness, and the roping that supports the elevator car. In some such systems, it is possible for a passenger in the elevator car to bounce or jump in a manner that induces vertical oscillations of the elevator car. When those oscillations are at or near the natural frequency of the system, the elevator car may bounce sufficiently to activate the over speed governor resulting in an emergency stop of the elevator car. Stopping the car this way interferes with the availability of the elevator car to provide service to other passengers. Additionally, such stops often require a mechanic to visit the site to allow passengers to exit the car, to reset the governor overspeed switch and may require the safeties to be reset before placing the elevator car back into service.
An illustrative example elevator system includes an elevator car, a machine that selectively causes movement of the elevator car, and drive electronics that control the machine to control movement of the elevator car at an intended elevator car speed. The drive electronics are configured to use information regarding operation of the machine to determine whether an abnormal passenger behavior (APB) condition exists that affects movement of the elevator car. The drive electronics are configured to alter the elevator car speed when the APB condition exists.
In an example embodiment having one or more features of the elevator system of the previous paragraph, the information regarding operation of the machine comprises information regarding an electrical current of the machine.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes an inverter associated with at least one of the drive and the machine and the information regarding the electrical current of the machine comprises a difference between an expected electrical current and an actual electrical current associated with the inverter.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the difference between the expected electrical current and the actual electrical current comprises a difference in at least one of a frequency of the current, an amplitude of the current, and periodic transient current peaks.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes at least one sensor that provides an indication of a speed of movement of the elevator car and the information regarding operation of the machine comprises an output of the at least one sensor.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the at least one sensor comprises an encoder associated with the machine.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the drive is configured to use the output of the at least one sensor to determine whether the APB condition exists and the drive is configured to use the output of the at least one sensor to control operation of the machine to achieve the intended elevator car speed when the APB condition does not exist.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the APB condition includes passenger movement of at least a portion of a body of at least one passenger in the elevator car that causes oscillations of the elevator car in a vertical direction and the passenger movement comprises at least one of bouncing or jumping.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the APB condition affects movement of the elevator car by at least temporarily causing the elevator car to move at an increased speed that exceeds the intended elevator car speed and the drive is configured to alter the elevator car speed by reducing the elevator car speed below the intended elevator car speed.
In an example embodiment having one or more features of the elevator system of any of the previous paragraphs, the drive is configured to reduce the elevator car speed by reducing the elevator car speed by a first amount from the intended elevator car speed and if the APB condition affects movement of the elevator car after reducing the elevator car speed by the first amount, reduce the elevator car speed further by a second amount.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes a governor that is configured to instigate stopping the elevator car if the elevator car moves at a speed that exceeds a preselected threshold. The drive is configured to determine when the APB condition includes causing the elevator car to move at a speed that approaches the preselected threshold and reduce the elevator car speed before the APB condition includes causing the elevator car to move at a speed that reaches or exceeds the preselected threshold.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes a governor that is configured to instigate stopping the elevator car if the elevator car moves at a speed that exceeds a preselected threshold. The governor includes a centrifugal mechanism that moves in a manner that instigates stopping the elevator car, the APB is effective to cause movement of the centrifugal mechanism in the manner that instigates stopping the elevator car even though the elevator car speed does not exceed the preselected threshold, and the drive is configured to alter the speed of the elevator car to prevent the movement of the centrifugal mechanism from instigating stopping the elevator car.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes an indicator in the elevator car. The indicator is configured to provide at least one of an indication that the elevator car is moving at less than the intended elevator speed, an indication to stop the APB, an indication that authorities will be notified of the APB, and an indication that continuing the APB could result in being trapped in the elevator car.
An example embodiment having one or more features of the elevator system of any of the previous paragraphs includes a camera in the elevator car and wherein the camera captures at least one image of any passenger in the elevator car during the APB.
An illustrative example method of controlling movement of an elevator car includes controlling a machine to control movement of the elevator car at an intended elevator car speed, determining whether an abnormal passenger behavior (APB) condition exists that affects movement of the elevator car, based upon information regarding operation of the machine, and altering the elevator car speed when the APB condition exists.
In an example embodiment having one or more features of the method of the previous paragraph, the information regarding operation of the machine comprises information regarding an electrical current of the machine.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the information regarding the electrical current of the machine comprises a difference between an expected electrical current and an actual electrical current associated with an inverter associated with the machine.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the difference between the expected electrical current and the actual electrical current comprises a difference in at least one of a frequency of the current, an amplitude of the current, and periodic transient current peaks.
An example embodiment having one or more features of the method of any of the previous paragraphs includes determining the information regarding operation of the machine based on an output of at least one sensor that provides an indication of a speed of movement of the elevator car.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the APB condition includes passenger movement of at least a portion of a body of at least one passenger in the elevator car that causes oscillations of the elevator car in a vertical direction and the passenger movement comprises at least one of bouncing or jumping.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the APB condition affects movement of the elevator car by at least temporarily causing the elevator car to move at an increased speed that exceeds the intended elevator car speed and the method comprises altering the elevator car speed by reducing the elevator car speed below the intended elevator car speed.
In an example embodiment having one or more features of the method of any of the previous paragraphs, reducing the elevator car speed comprises reducing the elevator car speed by a first amount from the intended elevator car speed and if the APB condition affects movement of the elevator car after reducing the elevator car speed by the first amount, reducing the elevator car speed further by a second amount.
An example embodiment having one or more features of the method of any of the previous paragraphs includes determining when the APB condition includes causing the elevator car to move at a speed that approaches a preselected threshold of a governor that is configured to instigate stopping the elevator car if the elevator car moves at a speed that exceeds the preselected threshold and reducing the elevator car speed before the APB condition includes causing the elevator car to move at a speed that reaches or exceeds the preselected threshold.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the APB is effective to cause movement of a centrifugal mechanism of a governor in the manner that instigates stopping the elevator car even though the elevator car speed does not exceed a preselected threshold of the governor and the method comprises altering the speed of the elevator car to prevent the movement of the centrifugal mechanism from instigating stopping the elevator car.
An example embodiment having one or more features of the method of any of the previous paragraphs includes providing at least one of an indication that the elevator car is moving at less than the intended elevator speed, an indication to stop the APB, an indication that authorities will be notified of the APB, and an indication that continuing the APB could result in being trapped in the elevator car.
An example embodiment having one or more features of the method of any of the previous paragraphs includes obtaining at least one image of any passenger in the elevator car during the APB.
The various features and advantages of at least one disclosed example embodiment will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
Embodiments of this invention provide the ability to address potential issues introduced by abnormal passenger behavior (APB) conditions. Example embodiments include controlling movement of an elevator car in a manner that prevents an emergency stop of the elevator car that otherwise could result from an APB condition.
An elevator drive 30 controls operation of the machine 26 so that the elevator car 22 moves as needed to provide the elevator service requested by passengers. The drive 30 is schematically shown for discussion purposes. The drive 30 includes drive electronics that control the power provided to the machine 26, for example. At least one inverter 34 serves as an interface between a power source and the machine 26.
Under normal operating conditions the drive 30 uses information regarding operation of the machine to control movement of the elevator car in a generally known manner. Such information includes current associated with the inverter 34. The illustrated example includes a sensor 36 that provides an output that is indicative of a speed or position of the elevator car 22. The illustrated example includes an encoder that is part of the machine 26 as the sensor 36. The encoder output is used by the drive 30 in some examples as information regarding operation of the machine 26 for purposes of controlling elevator car movement.
The example elevator system 20 includes a governor 38 that operates in a known manner to instigate stopping the elevator car 22 if an overspeed condition occurs. The governor 38 may be located on the elevator car 22 as shown in
During a run that includes normal operation, current associated with the inverter 36 has an expected pattern over the course of the run. An example expected current trace 44 is shown in
It is possible for an APB condition to exist when at least one passenger in the elevator car 22 rhythmically bounces or jumps, causing the elevator car 22 to bounce or oscillate vertically. Such car motion caused by the APB can result in the governor 38 instigating an emergency stop of the elevator car 22 in at least one of two ways. One of those ways includes causing temporary elevator car speeds that exceed the speed threshold of the governor 38. The other way includes causing movement of the flyweights of the governor centrifugal mechanism that triggers and emergency stop even if the elevator car speed does not exceed the governor's speed threshold speed.
If an APB condition like that at 48 exists for a period of time, such as that illustrated at 50, it is possible to induce bouncing or oscillations of the elevator car 22 at or near the system natural frequency leading to increasing amplitude oscillations as shown at 52. One negative consequence of such oscillations is that the speed of movement of the elevator car 22 may exceed the intended elevator car speed 42 as shown at 54.
The governor 38 has a preselected threshold speed shown at 62 in
Even if the speed of the elevator car 22 does not exceed the governor threshold 62, some APB conditions may result in an undesirable emergency stop. It is possible for the elevator car 22 to bounce because of the APB and for the bouncing frequency to overlap with the natural frequency of the elevator system. When such overlap is coupled with the response sensitivity of the centrifugal mechanism of the governor 38 having a similar inherent natural frequency the flyweights of the centrifugal mechanism may bounce radially outward in response to the APB. When such bouncing continues the radially outward movement of the flyweights will increase until the flyweights move sufficiently to actuate the overspeed switch instigating an emergency stop.
The drive 30 is configured to determine when an APB condition exists that affects the movement of the elevator car 22 like that represented in
In the illustrated example, the drive 30 reduces the elevator car speed by approximately 10% of the contract speed or intended elevator car speed 42. For example, when the intended or contract speed is one meter per second, the drive 30 reduces that speed by 0.1 meters per second during an APB condition. For elevator car speed of 2 meters per second or 1.5 meters per second, a speed reduction of 0.1 meters per second or 0.2 meters per second, for example, is effective to avoid adverse consequences associated with the APB condition. Such a reduction in speed of the elevator car is typically not noticeable by passengers in the elevator car 22 but is enough to prevent the governor from reacting when not desired. In some embodiments, the speed reduction may be greater than or less than 10%. In some embodiments, rather than a specific percentage reduction, the speed reduction may be a certain velocity such as 0.5 meters per second. In one embodiment, the speed reduction may be greater than or less than 0.5 meters per second.
In the illustrated example, a single change in elevator car speed is effective to address the APB situation. In some embodiments the drive 30 reduces the car speed in steps or stages. For example, the drive reduces the car speed by a first amount, such as 5%, and continues to monitor if the APB has potential to interfere with normal operation. If the APB condition does not subside or worsens, the drive 30 further reduces the car speed by a second, larger amount, such as 10%. One feature of this approach is that it allows for smaller decreases in car speed to alleviate concerns associated with APB under some circumstances.
Altering movement of the elevator car 22 by slowing it down will also address an APB situation that induces bouncing of the centrifugal mechanism flyweights of the governor 38 even if the overall car speed would not exceed the threshold 62. Such APB-induced bouncing in the governor's centrifugal mechanism depends in part on the speed of the elevator car and a reduced speed is effective to reduce the extent of radially outward movement of the flyweights so they do not move far enough to impact the overspeed switch. The same control strategy represented in
The drive 30 is configured to recognize an APB condition based upon information regarding operation of the machine 26. In some embodiments, the drive 30 uses information from the output of the sensor 36, such as the encoder, to detect bouncing or vertical oscillations of the elevator car 22. Other sensors whose outputs are correlated with car motion behavior can be utilized to provide the needed information.
In other embodiments, the drive 30 utilizes information regarding current associated with the inverter 34, for example, to detect bouncing or oscillation of the elevator car 22.
In some embodiments, the drive 30 is configured to use a combination of information regarding the current associated with the inverter 34 and the output of the encoder 42 for determining when an APB condition exists.
The example elevator system 20 includes an indicator 90 in the elevator car 22 to provide an indication to passengers during or regarding an APB condition. For example, the indicator 90 provides an indication that the elevator car 22 is intentionally moving slower, which may address any concerns of a passenger noticing that the elevator car 22 has slowed down. In another example, the indicator 90 provides an indication to stop the behavior that is causing the APB condition. For example, the indicator 90 may flash a warning and provide an audible message that says stop bouncing the elevator car to deter further inappropriate behavior, such as jumping or bouncing, within the elevator car 22. The indicator 90 in some embodiments provides a warning that authorities are being notified of the behavior and that continued inappropriate behavior could result in potential entrapment in the elevator car 22.
In some embodiments, the indicator 90 is provided on the car operating panel within the elevator car 22. In other embodiments, the indicator 90 comprises a display screen within the elevator car 22.
The illustrated example includes a camera 92 inside the elevator car 22. During APB conditions the camera 92 obtains an image or video of any passenger engaging in the APB for reporting information to appropriate authorities regarding the incident.
Embodiments of this invention provide the ability to avoid adverse consequences associated with APB conditions, such as those that may occur when a passenger jumps or bounces within an elevator car. By being able to address such situations, embodiments of this invention avoid unnecessary and undesirable emergency stop situations, which enhances more consistent elevator service availability and avoids costs associated with rescuing trapped passengers and returning elevator cars back to normal operation after an emergency stop.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1950150 | Norton et al. | Mar 1934 | A |
3315767 | Walter | Apr 1967 | A |
3638762 | Johns | Feb 1972 | A |
4094385 | Maeda et al. | Jun 1978 | A |
4457405 | Johns | Jul 1984 | A |
4923055 | Holland | May 1990 | A |
5538106 | McHugh et al. | Jul 1996 | A |
5651427 | Kulak et al. | Jul 1997 | A |
5651428 | Ahigian et al. | Jul 1997 | A |
5718055 | Pierce et al. | Feb 1998 | A |
5732796 | Ahigian et al. | Mar 1998 | A |
5959266 | Uchiumi | Sep 1999 | A |
6089355 | Seki et al. | Jul 2000 | A |
6173813 | Rebillard et al. | Jan 2001 | B1 |
6446759 | Kulak et al. | Sep 2002 | B1 |
6474448 | Zappa | Nov 2002 | B1 |
7147084 | Jahkonen | Dec 2006 | B2 |
7252179 | Oberleitner | Aug 2007 | B2 |
7350623 | Kinoshita et al. | Apr 2008 | B2 |
7398862 | Dziwak | Jul 2008 | B2 |
7650971 | Pillin et al. | Jan 2010 | B2 |
8939262 | Schienda et al. | Jan 2015 | B2 |
9260275 | Reuter et al. | Feb 2016 | B2 |
9302886 | Tantis et al. | Apr 2016 | B2 |
9637350 | Mittermayr | May 2017 | B2 |
9656835 | Kitazawa | May 2017 | B2 |
9663329 | Zappa | May 2017 | B2 |
9834413 | Mittermayr | Dec 2017 | B2 |
9845224 | Rasanen et al. | Dec 2017 | B2 |
10196237 | Kattainen | Feb 2019 | B2 |
20010003319 | Itoh et al. | Jun 2001 | A1 |
20120000729 | Marvin et al. | Jan 2012 | A1 |
20120000732 | Draper et al. | Jan 2012 | A1 |
20160145074 | Kattainen | May 2016 | A1 |
20170190547 | Dharmaraj | Jul 2017 | A1 |
20180079621 | Fauconnet et al. | Mar 2018 | A1 |
20180118514 | Bruno | May 2018 | A1 |
20180229972 | Kulak et al. | Aug 2018 | A1 |
20180265334 | Kulak et al. | Sep 2018 | A1 |
20190337765 | Wang et al. | Nov 2019 | A1 |
20190337767 | Tracey et al. | Nov 2019 | A1 |
20190337768 | Kulak et al. | Nov 2019 | A1 |
20190337769 | Khzouz et al. | Nov 2019 | A1 |
20200115192 | Montigny et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
201610675 | Oct 2010 | CN |
204057608 | Dec 2014 | CN |
204369335 | Jun 2015 | CN |
103693538 | Jul 2015 | CN |
104773637 | Jul 2015 | CN |
103693539 | Nov 2015 | CN |
103803389 | Nov 2015 | CN |
104176604 | Mar 2016 | CN |
104444734 | Mar 2016 | CN |
105645239 | Jun 2016 | CN |
105936467 | Sep 2016 | CN |
106006324 | Oct 2016 | CN |
106044504 | Oct 2016 | CN |
106081819 | Nov 2016 | CN |
106081820 | Nov 2016 | CN |
106395582 | Feb 2017 | CN |
107176530 | Sep 2017 | CN |
107614412 | Jan 2018 | CN |
2426076 | Mar 2012 | EP |
3048075 | Mar 2018 | EP |
415931 | Sep 1934 | GB |
2358623 | Aug 2001 | GB |
H0812228 | Jan 1996 | JP |
H10203742 | Aug 1998 | JP |
2005008371 | Jan 2005 | JP |
WO2011104818 | Sep 2011 | JP |
2005008371 | Jan 2013 | JP |
2005077808 | Aug 2005 | WO |
2006080094 | Aug 2006 | WO |
2011104818 | Sep 2011 | WO |
2011137545 | Nov 2011 | WO |
2014122358 | Aug 2014 | WO |
2016085678 | Jun 2016 | WO |
2016176033 | Nov 2016 | WO |
2017023927 | Feb 2017 | WO |
2017187560 | Nov 2017 | WO |
Entry |
---|
Extended European Search Report for Application No. EP 19 17 2084 dated Mar. 8, 2020. |
Extended European Search Report for Application No. EP 19 17 2026 dated Sep. 5, 2019. |
Extended European Search Report for Application No. EP 19 17 2105 dated Sep. 27, 2019. |
Extended European Search Report for Application No. EP 19 17 2040 dated Sep. 23, 2019. |
The Extended European Search Report for EP Application No. 19172106.7, dated Jan. 31, 2020. |
Number | Date | Country | |
---|---|---|---|
20190337759 A1 | Nov 2019 | US |