Some exemplary elevator systems comprise elevator cars traveling through a hoistway. In such systems, the elevator cars comprise doors and the hoistway comprises doors at various landing zones. In operation, while moving through the hoistway, the elevator car doors remain closed until stopping at a landing zone where the elevator car doors and the hoistway doors can align and open, thus allowing passengers to enter and exit. If the elevator system malfunctions and stops between floors, a passenger in the elevator car can attempt to open the elevator car door. In another situation, the elevator system could malfunction and unlock the elevator car door as the elevator car is moving, allowing a passenger to open the elevator car door. Each of these situations risks injury to the passenger. Thus, in some instances it is desirable that the elevator car door remain closed when moving between floors and stay closed if the elevator stops outside a landing zone so that passengers cannot open the elevator car door.
While a variety of elevator car door locking systems have been made and used, it is believed that no one prior to the inventors has made or used an invention as described herein.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings. In the drawings like reference numerals identify the same elements.
The drawings are not intended to be limiting in any way, and it is contemplated that different versions may be carried out in other ways, including those not necessarily depicted in the drawings. The accompanying drawings illustrate several aspects of the present invention, and with the description serve to explain the principles of the invention. The present invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
In the illustrated version, elevator car (10) comprises a single elevator car door (14) connected to door operator (16). Door operator (16) is operable to open and close elevator door (14) by sliding elevator door (14) in first and second directions using conventional means known to those of ordinary skill in the art. In other versions, elevator car (10) comprises multiple elevator car doors (14). By way of example only, in some versions elevator car (10) comprises two doors where the doors have a center opening. Still in other versions elevator car (10) comprises two or more speed doors.
In the illustrated version, car door interlock (12) is securely attached to portions of elevator car (10) near the top of elevator car (10) above elevator car door (14). In other versions, car door interlock (12) is installed in other positions on elevator car (10). By way of example only, in some versions car door interlock (12) is securely attached to portions of elevator car (10) near the bottom of elevator car (10) below elevator car door (14). Still in other versions, car door interlock (12) can be positioned anywhere on elevator car (10) where car door interlock (12) can contact elevator car door (14), either directly or through an intervening structure, to lock and unlock elevator car door (14) as will be discussed further below.
Interlock assembly (18) and unlock zone assembly (22) are connected with control box (20) by wire harness (72) and wire harness (74) respectively. Control box (20) is connected with car operating panel (70) of elevator car (10) by wire harness (76). Door operator (16) is connected with car operating panel (70) by wire harness (78). Car operating panel (70) is connected with elevator controller (82) by wire harness (80). Thus control box (20) and door operator (16) are in communication with elevator controller (82) via car operating panel (70). In some versions, interlock assembly (18) and unlock zone assembly (22) are in communication with elevator controller (82) via control box (20) and car operating panel (70). In other versions any suitable communication connection scheme between the components can be used. By way of example only, in some versions redundant communication connections are used, e.g., where interlock assembly (18) and unlock zone assembly (20) are connected with car operating panel (70) directly in addition to indirectly via control box (20). Still in other versions various components in addition to car operating panel (70) can be directly connected to elevator controller (82).
Wire harnesses (72, 74, 76, 78, 80) allow for communications to be transmitted and received between components. In other versions, such communications between components can be accomplished by other means. By way of example only, a wireless communication system can be used. Still other communication means will be apparent to those of ordinary skill in the art based on the teachings herein.
In the present example, car operating panel (70) is accessible to a passenger and is operable to receive a variety of instructions from a passenger. Still in other versions, car operating panel (70) is shielded from access by a passenger. In the present example, the instructions from the passenger are relayed to other components. For example, in some instances car operating panel (70) sends instructions to elevator controller (82) specifying a particular floor to which the passenger wishes to travel. In some instances, car operating panel (70) sends instructions to door operator (16) requesting that elevator car door (14) remain open. In some instances, car operating panel (70) sends instructions to door operator (16) requesting that elevator car door (14) be closed. In the present example, car operating panel (70) is configured to interface with control box (20) of car door interlock (18) regarding actions requested by the passenger as these actions relate to control of elevator car door (14). For instance, where a passenger request would require elevator car door (14) to be locked or unlocked, control box (20) determines if certain conditions are met such that the passenger's request can be accommodated. If such conditions are met, then control box (20) communicates with interlock assembly (18) to lock or unlock elevator car door (14). In some versions, the information received at car operating panel (70) regarding a passenger request that impacts the operation of elevator car door (14) is relayed directly to elevator controller (82), and elevator controller (82) determines if certain conditions are met such that the passenger's request can be accommodated. In such versions, if such conditions are met, then elevator controller (82) communicates with control box (20), which further communicates with interlock assembly (18) to lock or unlock elevator car door (14). By way of example only, in some versions the conditions considered for locking and unlocking elevator car door (14) comprise: first, whether or not elevator car (10) is moving, and second, whether or not elevator car is located at a designated landing zone. The conditions would be considered met in this example when the elevator car (10) was not moving and was located at a designated landing zone.
In the illustrated version, unlock zone assembly (22) comprises one or more landing zone sensors (26). Landing zone sensors (26) are operable to detect when elevator car (10) is positioned at a designated landing zone within hoistway (2). In one version, landing zone sensors (26) comprise two Reed switches, of course other suitable sensors as would be apparent to one of ordinary skill in the art in view of the teachings herein can be used. In the illustrated version, one or more landing zone magnets (28) are positioned within hoistway (2) at or near designated landing zones and landing zone sensors (26) are capable of detecting landing zone magnets (28). In one version, landing zone magnets (28) are positioned on a leveling vane such that when landing zone sensors (26) and landing zone magnets (28) are aligned, elevator car (10) is positioned properly within a landing zone. Any suitable number of landing zone sensors (26) and any suitable number of landing zone magnets (28) can be used. In other versions, detection schemes other than, or in addition to, magnetic sensors and magnets can be used to detect landing zones. By way of example only, in some other versions optical sensors can be used to identify certain markings that can be located at the landing zones. Still other detection schemes for identifying landing zones will be apparent to those of ordinary skill in the art based on the teachings herein. Once unlock zone assembly (22) establishes that elevator car (10) is in a landing zone and communicates that elevator car (10) is located in a landing zone to control box (20), then control box (20) communicates to interlock assembly (18) indicating that interlock assembly (18) can unlock elevator car door (14) to allow elevator car door (14) to open, assuming that other required conditions are met (e.g., elevator car (10) is not moving). In some versions, one or more programmable interface controllers (PICs) can be configured to monitor each of landing zone sensors (26) to ensure proper operation of car door interlock (12).
Assembly housing (24) can be constructed of plastic, metal, a metal-alloy, or any other suitable material. Assembly housing (24) can be integrally formed or may be constructed by securing separately formed pieces with glue, screws, bolts, etc. A portion of assembly housing (24) is removably attached so as to allow a user to open assembly housing (24) to access components contained inside, or in the alternative, assembly housing (24) may be hermetically sealed. Assembly housing (24) may be removably attached to car header (64) atop elevator car door (14).
Sensor board (38) is contained inside assembly housing (24) and is removably attached to assembly housing (24). Sensor board (38) is in communication with solenoid up sensor (54) and solenoid down sensor (60). Sensor board is in communication with door closed sensor (58) and door partially opened sensor (56). Door closed sensor (58) is configured to detect whether elevator car door (14) is in a closed position. Door partially opened sensor (56) is configured to detect if elevator car door (14) is opened approximately 2-4 inches, but may be configured to detect a variable range or any suitable range of opening positions for elevator car door (14). Solenoid up sensor (54) is configured to determine if lock pin (48) is in a retracted position and solenoid down sensor (60) is configured to detect whether lock pin (48) is in an extended position in relation to solenoid (46). Each of solenoid up sensor (54), solenoid down sensor (60), door closed sensor (58), and door partially opened sensor (56) can comprise different sensors such as, for example, a magnetic or an optical sensor. While in the present example multiple sensors are used to detect parameters, in some other versions, a single sensor can be configured to detect multiple parameters and perform substantially the same functions of solenoid up sensor (54), solenoid down sensor (60), door closed sensor (58), and door partially opened sensor (56). As shown in
Referring again to
Solenoid (46) comprises a bi-stable solenoid operable to be energized to lift/unlock lock pin (48) or energized to drop/extend lock pin (48). Solenoid (46) comprises a generally cylindrical or rectangular shape and is in communication with lock pin (48). Lock pin (48) is positioned within solenoid (46) or is positioned close enough such that a magnetic field produced by solenoid (46) is operable to control the movement of lock pin (48). A magnetic field is produced by a pair of adjustably controllable field effect transistors (FETs) for coils of each solenoid (46). The two field effect transistors per coil of each solenoid (46) may be used to control the magnetic field produced by solenoid (46). However, any suitable number of FETs may be used to control the magnetic field produced by solenoid (46).
Solenoid (46) is configured to actuate lock pin (48) in first and second directions thereby moving lock pin (48) to either a retracted position or an extended position. Lock pin (48) is generally cylindrical in shape, but may be any suitable shape so as to prevent the opening of elevator car door (14) once lock pin (48) engages car header (64). In an extended position, lock pin (48) engages car header (64) to form a lock, thus preventing elevator car door (14) from opening. In a retracted position, lock pin (48) is configured to retract into solenoid (46) and no longer engage car header (64), thus allowing elevator car door (14) to slide from a closed position to an open position or from an open position to a closed position.
In the illustrated version, gate switch top contact arm (50) is positioned in assembly housing (24). Gate switch top contact arm (50) comprises a cantilevered arm removably attached to assembly housing (24) at a hinge but any suitable means of attachment may be used. Further, gate switch top contact arm (50) is in communication with solenoid (46) and is in further communication with solenoid up sensor (54) and solenoid down sensor (60) on sensor board (38). Gate switch top contact arm (50) has an open position as shown in
In the illustrated version, gate switch bottom contact arm (52) is positioned in assembly housing (24) and positioned below gate switch top contact arm (50). Gate switch bottom contact arm (52) is configured to have an open position as shown in
In the illustrated version, door closed sensor (58) and door partially opened sensor (56) comprise two magnetic sensors, but any suitable number, type, or configuration of sensors may be used. Door closed sensor (58) and door partially opened sensor (56) are positioned parallel to the path of movement of elevator car door (14) such that door closed sensor (58) and door partially opened sensor (56), in conjunction, are able to determine whether elevator car door (14) is fully closed or partially opened by detecting door position magnets (36), which are located on car header (64) and move with elevator car door (14) as it opens and closes. For instance, if elevator car door (14) is fully closed, then door closed sensor (58) will be triggered; if elevator car door (14) is partially opened, then only door partially opened sensor (56) will be triggered or neither door closed sensor (58) nor door partially opened sensor (56) will be triggered. Once door closed sensor (58) detects that elevator car door (14) is closed, door closed sensor (58) communicates to solenoid (46) to extend lock pin (48), thus locking elevator car door (14). In one version, in the event that either door closed sensor (58) or door partially closed sensor (56) malfunctions, elevator car (10) is signaled to advance to the next landing zone and halt.
Referring to
Interlock roller (32) and gate switch bottom contact arm (52) are positioned such that interlock roller (32) exerts an upward force on gate switch bottom contact arm (52) as elevator car door (14) moves from an open to a closed position. When elevator car door (14) is fully closed, the upward force of interlock roller (32) on gate switch bottom contact arm (52) actuates the cantilevered gate switch bottom contact arm (52) to shift it upward to a closed position. When elevator car door (14) is partially open, the upward force of interlock roller (32) on gate switch bottom contact arm (52) actuates gate switch bottom contact arm (52) upward part way to a partially opened position. When elevator car door (14) opens such that neither door closed sensor (58) nor door partially opened sensor (56) are triggered, interlock roller (32) no longer exerts an upward force on gate switch bottom contact arm (52) such that gate switch bottom contact arm (52) moves to an open position. In the present example, gate switch contact arm (52) includes downward extending fin (53) that contacts interlock roller (32) when elevator car door (14) is sufficiently open such that neither door closed sensor (58) nor door partially opened sensor (56) detect door position magnets (36). When interlock roller (32) contacts fin (53), gate switch contact arm (52) pivots upward at the fin (53) side and downward at the opposite side thus moving gate switch contact arm (52) to the open position. While the present example shows fin (53) on gate switch contact arm (52), fin (53) is not required and in other versions gate contact arm (52) is biased to the open position such that without upward force of interlock roller (32) gate switch contact arm (52) will assume an open position. Thus, depending on whether elevator car door (14) is closed, partially open, or open, gate switch bottom contact arm (52) will be actuated differently.
In the illustrated version, gate switch top contact arm (50) and gate switch bottom contact arm (52) are in communication through gate switch (67), which comprises first contact unit (68) and a second contact unit (69). When gate switch top contact arm (50) and gate switch bottom contact arm (52) are both in a closed position, as shown in
By communicating with elevator controller (82), control box (20) can signal to elevator controller (82) to direct elevator car (10) as to whether it is safe to move up or down through hoistway (2) based on the status of elevator car door (14) and car door interlock (12). In addition or in the alternative, control box (20) can signal to elevator controller (82) to direct elevator car (10) to remain at its current position in hoistway (2). For instance, if both gate switch bottom contact arm (52) and gate switch top contact arm (50) are in a closed position, meaning that elevator car door (14) is closed and lock pin (48) is engaged, thus meaning that elevator car door (14) is locked, then control box (20) signals to elevator controller (82) to allow elevator car (10) to move from its current position toward the next destination floor. However, if either or both gate switch top contact arm (50) and/or gate switch bottom contact arm (52) are open, then control box (20) signals to elevator controller (82) to direct elevator car (10) to remain at its current position and prevent elevator car (10) from moving.
In some versions, control board (66) includes at least one jumper (42) for determining whether elevator car door (14) is at the front of elevator car (10) or at the back of elevator car (10). Jumper (42) may be configured at the installation of control box (20) or at any suitable time thereafter. At least one jumper (42) may have different configurations for the front door and the back door so as to distinguish between the front door and back door of elevator car (10). For example, a first position for at least one jumper (42) signifies that car door interlock (12) is associated with a front door of elevator car (10), whereas a second position for at least one jumper (42) signifies that car door interlock (12) is associated with a back door of elevator car (10). Front and back door information can be associated with information corresponding to gate switch top contact arm (50) or gate switch bottom contact arm (52). Other suitable methods of communication with elevator controller (82) will be apparent to one of ordinary skill in the art in view of the teachings herein.
The PICs (96) associated with control box (20) are used to monitor various components of car door interlock (12), including, but not limited to, each of the sensors in car door interlock (12), power levels for power supply (40A), state of solenoid (46), FETs, etc. Any suitable number of PICs (96) can be used.
In the present example, power supply (40A) of control box (20) is configured to deliver about at least 24 VDC and about 3 amps power to car door interlock (12). However, in other versions a greater or lesser amount of power or current can be used. Power supply (40A) can deliver power in a variety of ways including, but not limited to, direct delivery through electrical wire, a rechargeable battery pack, a fuel cell, one or more solar cells, inductive power, or any other suitable method.
Power supply (40A) in conjunction with battery (40) can be in communication with at least one PICs (96) and configured to provide at least 4 hours of backup power. Power supply (40A) can further be configured to be a 12V onboard charger monitored by at least one PICs (96). Each PIC (96) in communication with power supply (40A) may be configured to monitor condition, wear level, and/or power level of battery (40). In the event that an external power source fails to provide sufficient power for any portion of car door interlock (12), such condition of power failure can be detected by PICs (96), and PICs (96) can correspondingly automatically execute commands to switch to using battery (40) to supply power to car door interlock (12).
Control board (66) may further comprise two discrete fault relays (94). Fault relays (94) may be configured to trigger or drop out if supply VDC falls below about 22 VDC and are capable of switching 24 VDC or 115 VAC 250 milliamps. Fault relays (94) may be further configured to be controlled or monitored by at least one PICs (96). Alternatively, any suitable number of fault relays (94) may be used.
Diagnostic unit (92) of control box (20) is configured to diagnose potential issues regarding car door interlock (12). Diagnostic unit (92) is operable by user to initiate a particular diagnostic reading, or to initiate a diagnostic mode configured to collect and analyze various diagnostic readings. Diagnostic readings can be read from power supply (40A), PICs (96), FETs, or other portions of car door interlock (12). Diagnostic readings can be compared to a series of normal readings or otherwise established standard reading or measurement. In the event that one of the diagnostic readings is abnormal, or is not in accordance with an expected reading, control box (20) communicates the diagnostic reading to a user by way of visual indicator (44). In the present example, visual indicator (44) comprises at least one diagnostic LED and two 5″×7″ dot matrix displays. The at least one diagnostic LED and dot matrix displays are configured to display fault codes corresponding to abnormal or erroneous diagnostic readings. Visual indicator (44) need not be limited to a single LED or two dot matrix displays. Any number of LEDs or dot matrix displays can be used. Alternatively, any other suitable visual or audio indicators can be used as would be apparent to one of ordinary skill in the art in view of the teachings herein.
In operation, elevator car (10) moves from floor to floor with elevator car door (14) held closed by car door interlock (12). Elevator car door (14) is configured to open only when elevator car (10) is at a landing zone or an otherwise appropriate area within hoistway (2). Elevator car door (14) is also configured to open only when elevator car (10) is stopped. In one version, the position of elevator car (10) in front of a hoistway door is detected by unlock zone assembly (22) as described above. Thus an exemplary operating sequence for elevator car (10) comprises: elevator car (10) moving to a floor to pick up passengers and stopping within a landing zone as will be determined by unlock zone assembly (22); car door interlock (12) unlocking and door operator (16) opening elevator car door (14) allowing passengers to board; door operator (16) closing and car door interlock (12) locking elevator car door (14) after passengers board and a destination floor request is received; car door interlock (12) signaling to elevator controller (82) that elevator car door (14) is closed and locked; elevator controller (82) directing elevator car (10) to proceed to the destination floor; elevator car (10) moving to the destination floor and stopping within a landing zone as will be determined by unlock zone assembly (22); car door interlock (12) unlocking and door operator (16) opening elevator car door (14) allowing passengers to depart or board elevator car (10). In such an exemplary operation, if car door interlock (12) determines that elevator car (10) is not in an appropriate position via unlock zone assembly (22) within hoistway (2), car door interlock (12) is configured to remain locked to prevent the opening of elevator car door (14). As a result, passengers will not be able to exit elevator car (10) when it is unsafe to do so as a result of the position of elevator car (10) within hoistway (2).
Car door interlock (12) can be configured to work with a variety of elevator types such as, but not limited to, destination dispatch elevators, double-decker elevators, hospital emergency elevators, express elevators, front and rear entrance elevators, or other suitable elevator types as will be apparent to those of ordinary skill in the art in view of the teachings herein.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Application Ser. No. 61/362,441, filed Jul. 8, 2010, entitled “Elevator Car Door Interlock,” the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61362441 | Jul 2010 | US |