The present invention is directed to elevator guides used for guiding the movement of a component (e.g., an elevator car and/or counter weight) along elevator guide rails installed in a shaft or hoist way of a building structure.
Elevator guides typically guide movement of a component (e.g., an elevator car or a counterweight) along a pair of opposing elevator guide rails located in a shaft or hoist way of a building structure. It is customary to employ a plurality of elevator guides to guide movement of the component along the elevator guide rails as the component moves in a shaft or hoist way of a building structure. Typically, two of the elevator guides are secured to the upper portion of the component in such a manner as to engage the corresponding elevator guide rails and two elevator guides are secured to the lower portion of the component to engage the corresponding guide rails. Typically, elevator guides have a plurality of rollers/wheels or other guide components that engage and travel along the corresponding elevator guide rail.
Springs are typically used to control movement of a roller or other guide member. Known systems/methods used to alter the spring rate of an elevator guide require replacement of the spring or require an additional component or components connected to the spring to vary the spring rate of the spring. This is undesirable as the spring must be changed or additional components are required.
Existing elevator guides having two stops that control movement of a roller or other guide away from an elevator guide rail are extremely limited as neither of the two stops can be independently adjustable. Rather, adjustment of one stop causes or results in adjustment of the other stop. This design is undesirable and unnecessarily limited.
Elevator guides having rollers/wheels typically include a roller/wheel having a metallic rim for receiving a tread of the roller/wheel. This design precludes the roller/wheel from being manufactured in a cost-effective manner. Further, this design complicates the manufacturing process considerably. Moreover, this design increases the weight of the elevator guide and can adversely impact ride quality.
Known elevator guides that include a member to vary the spacing between a notch or opening in the front face of the base of the elevator guide and a corresponding portion of an elevator guide rail require a member which is inserted into and covers the faces of the notch or opening in the front face of the base. These known designs are inferior as the connection to the base is inadequate/inferior. Further, as in the present invention, if alignment scores/notches/slots/recesses/indicia or other alignment members are provided or formed in one or more of the vertical faces of the notch or opening of the base to properly align the elevator guide to a corresponding elevator rail, the insert will obstruct the alignment members.
Typically, each elevator guide includes three or six rollers/wheels or other guide members. The present invention is not limited to elevator guides having a particular number of rollers/wheels or other guide members. Rather, the present invention can be used in elevator guides having differing numbers of rollers/wheels or other guide components.
An object of the present invention is to provide a novel and unobvious elevator guide that guides movement of a component (e.g., an elevator car or a counterweight) along a pair of opposing elevator guide rails located in a shaft or hoist way of a building structure.
Another object of a preferred embodiment of the present invention is to provide an elevator guide that can readily vary the effective system spring rate of a system having one or more springs/resilient members without changing the springs/resilient members of a given system and without providing one or more additional components to the given system that act on the springs/resilient members to vary the effective system spring rate.
A further object of a preferred embodiment of the present invention is to provide an elevator guide that can readily vary the effective system spring rate of a system having one or more springs/resilient members merely by altering the position of the springs/resilient members.
Yet another object of a preferred embodiment of the present invention is to provide an elevator guide with two independently adjustable stops for each guide support arm to control movement of each guide support arm away from a corresponding portion of a corresponding elevator guide rail.
Still another object of a preferred embodiment of the present invention is to provide an elevator roller guide with one or more rollers/wheels having a non-metallic wheel/roller rim for receiving a tread of the roller/wheel.
Yet still another object of a preferred embodiment of the present invention is to provide a roller guide with one or more rollers/wheels wherein a wheel/roller rim for the one or more rollers/wheel is formed from molding and during the molding process the wheel/roller rim is fixed to a bearing of the roller/wheel.
A further object of a preferred embodiment of the present invention is to provide a roller guide with one or more rollers/wheels wherein a non-metallic wheel/roller rim for the one or more rollers/wheels.
Another object of a preferred embodiment of the present invention is to provide an elevator guide having a base and a recess formed in a lower surface of the base to receive a notch adjustment member to vary the spacing between the base and an elevator guide rail.
A further object of a preferred embodiment of the present invention is to provide an elevator guide having a base with a notch for receiving a portion of an elevator guide rail wherein one or more alignment members are formed in the notch and a notch adjustment member is connected to the base to vary the spacing between the base and the portion of an elevator guide rail without obstructing the one or more alignment members.
It must be understood that no one embodiment of the present invention need include all of the aforementioned objects of the present invention. Rather, a given embodiment may include one or none of the aforementioned objects. Accordingly, these objects are not to be used to limit the scope of the claims of the present invention.
In summary, a preferred embodiment of the present invention is directed to an elevator guide configured to ride along an elevator rail having a base member and a rail member. The rail member of the elevator rail includes a front face, a first side and a second side. The rail member of the elevator rail further extends substantially perpendicular to the base member of the elevator rail. The elevator guide includes a base configured to be attached to a component that rides on one or more elevator rails. A first guide is configured to ride along one of a front face, a first side and a second side of a rail member of an elevator rail. A first spring biases the first guide in contact with the at least one of the front face, the first side and the second side of the rail member of the elevator rail. A first guide support member has a connection portion rotatably connected to the base so that the first guide support member can rotate about an axis relative to the base. The first guide support member further includes a guide connection portion for connecting the first guide support member to the first guide for movably supporting the first guide on the base so that the first guide can move toward and away from a corresponding surface of the rail member of the elevator rail. The first guide support member is configured to allow a position of the first spring relative to the axis to be varied to vary an effective system spring rate.
Another preferred embodiment of the present invention is directed to an elevator guide configured to ride along an elevator rail having a base member and a rail member. The rail member of the elevator rail having a front face, a first side and a second side. The rail member of the elevator rail extends substantially perpendicular to the base member of the elevator rail. The elevator guide includes a base configured to be attached to a component that rides on one or more elevator rails. A first guide is configured to ride along one of a front face, a first side and a second side of a rail member of an elevator rail. A first biasing member biases the first guide in contact with the at least one of the front face, the first side and the second side of the rail member of the elevator rail and a first guide support member has a connection portion rotatably connected to the base so that the first guide support member can rotate about an axis relative to the base. The first guide support member further includes a guide connection portion for connecting the first guide support member to the first guide for movably supporting the first guide on the base so that the first guide can move toward and away from a corresponding surface of the rail member of the elevator rail. The elevator guide further includes a first stop and a second stop. The first stop and the second stop each provide a limit that the first guide support member can rotate away from a corresponding portion of the rail member of the elevator rail. The first stop and the second stop are independently adjustable and the first stop differs in at least one respect from the second stop.
A further preferred embodiment of the present invention is directed to an elevator guide configured to ride along an elevator rail having a base member and a rail member. The rail member of the elevator rail has a front face, a first side and a second side. The rail member of the elevator rail extends substantially perpendicular to the base member of the elevator rail. The elevator guide includes a base configured to be attached to a component that rides on one or more elevator rails. The base has a notch extending through a front face of the base to receive a portion of the rail member of the elevator rail. The notch has a rear face, a first side face and a second side face. The bottom of the base includes an adjustment recess extending along the rear face, the first side face and the second side face of the notch. A first guide is configured to ride along one of a front face, a first side and a second side of a rail member of an elevator rail. A first biasing member biases the first guide in contact with the at least one of the front face, the first side and the second side of the rail member of the elevator rail. A first guide support member has a connection portion connected to the base so that the first guide support member can move relative to the base. The first guide support member further includes a guide connection portion for connecting the first guide support member to the first guide for movably supporting the first guide on the base so that the first guide can move toward and away from a corresponding surface of the rail member of the elevator rail. A notch adjustment member operably associated with the adjustment recess of the base for adjusting at least one dimension of the base relative to the rail member of the elevator rail.
Still another embodiment of the present invention is directed to an elevator guide configured to ride along an elevator rail having a base member and a rail member, the rail member of the elevator rail having a front face, a first side and a second side. The rail member of the elevator rail extends substantially perpendicular to the base member of the elevator rail. The elevator guide includes a base configured to be attached to a component that rides on one or more elevator rails. A first roller is configured to ride along one of a front face, a first side and a second side of a rail member of an elevator rail. A first biasing member biases the first roller in contact with the at least one of the front face, the first side and the second side of the rail member of the elevator rail and a first guide support member has a connection portion rotatably connected to the base so that the first guide support member can rotate about an axis relative to the base. The first guide support member further includes a roller connection portion for connecting the first guide support member to the first roller for movably supporting the first roller on the base so that the first roller can move toward and away from a corresponding surface of the rail member of the elevator rail. The first roller includes a roller tread that rides along a corresponding surface of the rail member of the elevator rail. The first roller includes a non-metallic roller rim having a recess for receiving the roller tread and a bearing. The non-metallic roller rim is connected to the bearing.
Yet still another embodiment of the present invention is directed to an elevator roller guide configured to ride along an elevator rail having a base member and a rail member. The rail member of the elevator rail having a front face, a first side and a second side. The rail member of the elevator rail extends substantially perpendicular to the base member of the elevator rail. The elevator roller guide includes a base configured to be attached to a component that rides on one or more elevator rails. A roller configured to ride along one of a front face, a first side and a second side of a rail member of an elevator rail. At least one biasing member biasing the roller in contact with the at least one of the front face, the first side and the second side of the rail member of the elevator rail. The elevator roller guide further includes at least one of the following: (i) a roller support member operably associated with the roller for movably supporting the roller so that the roller can move toward and away from a corresponding surface of the rail member wherein the roller support member has a plurality of biasing member engagement sections configured to allow a position that the at least one biasing member contacts the roller support member to be varied to vary an effective system spring rate; (ii) a roller including a non-metallic rim molded about a roller bearing and configured to receive a roller tread; (iii) a first stop and a second stop that are independently adjustable and operably associated with a roller support supporting the roller to control movement of the roller; and, (iv) an opening adjustment member detachably connected to a base of the roller guide about a notch formed in the base of the roller guide to receive a portion of the rail member of the elevator rail to vary the distance between the base of the roller guide and a portion of the rail member of the elevator rail, the opening adjustment member has a width greater than a width of said notch or a depth greater than said notch.
The preferred forms of the invention will now be described with reference to
The preferred embodiments illustrate elevator guides that utilize three rollers/wheels as the guide members that guide a component (e.g., an elevator car or counterweight) along opposing elevator rails. However, guide members other than rollers/wheels can be used. Further, the number of rollers/wheels or other guide members can be altered as desired. For example, and without limitation, the elevator guide can include six rollers/wheels or guide members.
Referring to
Elevator roller guide A includes a base B, a face roller or wheel C and pair of side rollers or wheels D. Base B includes a horizontally extending member 8 having four openings 10 that receive fasteners to attach roller guide A to the component that rides along the elevator rails. Base B further includes a pair of vertically extending members or towers 12 and 14.
Base B further includes three support arm connection portions 16, 18 and 20. Referring to, for example,
As seen in
Guide A includes support arms 50, 52 and 54 pivotally mounted on connection portions 16, 18 and 20, respectively of base B. Support arms 50, 52 and 54 each pivot about an axis to allow the corresponding guide member to move towards and away from the corresponding portion of rail member RR. Support arms 50, 52 and 54 are preferably identical or similar in construction so only support arm 50 will be discussed in detail.
Referring to, for example,
Arm 50 includes a substantially U-shaped lower end 80 having spaced legs 82 and 84 each having an opening 86 that extends through the corresponding leg. Legs 82 and 84 are spaced from each other a sufficient distance to receive connection member 16 of base member 8. A bore extends through connection member 16. A pin or fastener 90 extends into openings 86 of each of legs 82 and 84 and the through bore of member 16 to rotatably connect lower end 80 of support arm 50 to base member 8. This configuration allows support arm 50 to rotate about a longitudinal axis of pin or fastener 90.
Support arm 50 further includes vertically spaced stop openings 92 and 94 each extending through support arm 50. Tower 12 includes internally threaded, vertically spaced openings 93 and 95. Openings 93 and 95 can extend partially or completely through tower 12. Openings 93 and 95 are horizontally aligned with stop openings 92 and 94, respectively. Stop opening 92 receives a shaft 100 of bolt 102. An inner end of shaft 100 is threaded to allow an inner end to be threaded through nut 103 and into opening 93 of tower 12 to adjustably fix bolt 102 to tower 12. A washer 104 is mounted on shaft 100 adjacent or in direct contact with bolt head 106. A rubber or elastomeric skin or layer can be formed on or attached to the innermost vertically extending surface of washer 104. Preferably, the rubber or elastomeric skin/layer has a thickness of approximately 1/16 of an inch. However, the thickness of the rubber or elastomeric skin/layer may be varied as desired. The rubber or elastomeric skin/layer maintains washer 104 in a desired position on shaft 100 as the rubber or elastomeric skin/layer is configured to grip the outer circumference of shaft 100 of bolt 102.
A circular recess 110 preferably surrounds opening 94 in support arm 50 to receive an inner portion of resilient member 112 which is mounted about shaft 114 of bolt 116 adjacent or in direct contact with bolt head 118. Preferably, resilient member 112 is configured to compress approximately ¼ of an inch. However, the extent to which resilient member 112 can be compressed may be varied as desired. Resilient member 112 can be formed to have two spaced conically or cylindrically shaped face members 120 and 122 and an inner cylindrical member 124 extending between face members 120 and 122. Cylindrical member 124 can have a diameter less than an outermost diameter of each of members 120 and 122. Face members 120 and 122 may be formed from metal, plastic or an elastomeric/resilient material and member 124 can be formed from rubber, an elastic material or other resilient material. Inner through bores of members 120, 122 and/or 124 when formed from a suitable material can be configured to grip shaft 114 to maintain resilient member 112 on a desired portion of shaft 114. An inner end of shaft 114 is inserted through opening 94, through nut 130 and into opening 95 formed in tower 12 to adjustably attach bolt 116 to tower 12.
Support arm 50 includes a wheel or roller mount portion 140 having an internally threaded bore. A bolt 142 and washer 144 rotatably connect roller/wheel D to portion 140 of support arm 50.
Referring to
While the above described process of molding rim 152 results in rim 152 being formed as a single piece, rim 152 can be formed in multiple pieces (i.e., two or more pieces or parts) of a composite material and then attached to rim 152 after formation of the multiple pieces making up rim 152.
The cylindrical contact surface 170 of tread 150 is preferably formed with a roundness/circular dimension within a tolerance of 3 thousandths of an inch or less. The other dimensions of tread 150 and rim 152 are preferably formed within a tolerance of 10 thousandths of an inch or less. The inclined opposing sidewalls 172 of tread 150 extending downwardly at an angle from contact surface 170 are preferably equally spaced from a vertical plane passing through a center of tread 150.
Elevator guide A includes three independently adjustable systems that utilize a spring 68 to control movement of a corresponding wheel/roller away from a corresponding portion of an elevator rail. Support arm 50, roller D held by support arm 50 and spring 68 acting on support arm 50 form one independently adjustable system, support arm 52, roller C held by support arm 52 and spring 68 acting on support arm 52 form another independently adjustable system and support arm 54, roller D held by support arm 54 and spring 68 acting on support arm 54 form another independently adjustable system. Each of support arms 50, 52 and 54 is configured in the manner described above in connection with support arm 50 to vary the effective system spring rate of a given system merely by altering the vertical distance between spring 68 and the pivot point of the corresponding support arm which in turn alters the vertical distance of spring 68 from a center of a corresponding roller/wheel. Specifically, if spring 68 and bolt 64 are connected to tower 12 and support arm 50 using opening 60 in support arm 50 and opening 74 in tower 12, the system including support arm 50 will have an effective system spring rate X. If spring 68 and bolt 64 are connected to tower 12 and support arm 50 using opening 58 in support arm 50 and opening 72 in tower 12, the system including support arm 50 will have an effective system spring rate Y. If spring 68 and bolt 64 are connected to tower 12 and support arm 50 using opening 56 in support arm 50 and opening 70 in tower 12, the system including support arm 50 will have an effective system spring rate Z. Effective system spring rate X is less than effective system spring rate Y and effective system spring rate Y is less than effective system spring rate Z, i.e., the closer spring 68 is to the pivot point of support arm 50 the less the effective system spring rate will be due to the resultant increase in the vertical distance/spacing of spring 68 from a center of wheel or roller D.
The preferred design of support arms 50, 52 and 54 also allows an individual to readily vary the effective system spring rate of each of the three above described systems merely by selecting different openings of the openings 56, 58 and 60 to connect spring 68 to support arm 52 and spring 68 to either of support arms 50 and 54. This is readily seen in
Bolt 116, resilient member 120 and nut 130 form an adjustable soft stop that limits the distance support arm 50 can move away from face 4 of rail member RR. By threading bolt 116 further into opening 95 of tower 12, one can readily lessen the distance between bolt head 118 and tower 12 which in turn lessens the distance support arm 50 can move away from support arm 50 when resilient member 120 is fully compressed. Further, by rotating the bolt in the opposite direction, one can readily increase the distance between bolt head 118 and tower 12 which in turn increases the distance support arm 50 can move away from support arm 50 when resilient member 120 is fully compressed. Resilient member 120 acts to cushion the impact of the stop as the resilient member preferably compresses approximately a quarter of an inch. However, the distance resilient member 120 can be compressed may be varied as desired. Accordingly, once support arm initially engages resilient member 120, support arm 50 can still move outwardly the distance or extent the resilient member 120 can fully compressed (e.g. a quarter of an inch).
Bolt 102, washer 104 and nut 103 form another adjustable hard stop that limits the distance support arm 50 can move away from face 4 of rail member RR. The stop formed by bolt 102, washer 104 and nut 103 is adjustable independent of the stop formed by bolt 116, resilient member 120 and nut 130.
The above two independently adjustable stops have differing stop action ranges (i.e., the stop action range is the range from initial contact of guide support arm with a stop portion of a corresponding adjustable stop to a final contact point at which movement of the guide support arm away from the corresponding face of the elevator rail is prevented by the corresponding adjustable stop). More specifically, the stop action range of the adjustable stop formed by bolt 102, washer 104 and nut 103 is less than the stop action range of the adjustable stop formed by bolt 116, resilient member 120 and nut 130. The stop action range of the adjustable stop formed by bolt 102, washer 104 and nut 103 will be very minimal as the only resilient or compressible element of this adjustable stop is a thin elastomeric layer/skin (e.g., 1/16 of an inch) applied or adhered to an inner face of washer 104. The stop action range of the adjustable stop formed by bolt 102, washer 104 and nut 103 could be less than a 1/16 of an inch or could be zero. The stop action range of the adjustable stop formed by bolt 116, resilient member 120 and nut 130, will be equal to or approximately equal to the distance resilient member 120 can be compressed.
The fact that the two stops described above can be independently adjusted is a significant advantage over previously known dual stops that cannot be independently adjusted, i.e., adjustment of one stop causes or results in adjustment of the other stop. Specifically, an elevator car has a range of motion which varies based on the design of an elevator. The range of motion of the elevator car must be controlled to prevent the car from impacting an object in the elevator car which could damage the elevator car and greatly reduce ride quality. Hard stops, i.e., stops having zero or very minimal stop action ranges can be used to restrict movement of the elevator car to prevent the elevator car from striking an object in an elevator shaft that could damage the elevator car. However, a hard stop will exert a significant and abrupt force on the elevator car adversely impacting ride quality of the elevator car. A soft stop, i.e., a stop having a sufficient action range (e.g., a quarter of an inch) will control movement of the elevator car by exerting a gradual force on the elevator car. However, due to the numerous different designs of elevators, the range of motion of a given elevator car varies. Hard and soft stops that have been previously used are not independently adjustable and, therefore, do not allow the necessary flexibility to set or orient the hard stop relative to the soft stop to achieve a superior ride quality while preventing damage to an elevator car to accommodate the varying conditions of elevators.
The independently adjustable soft and hard stops of the present invention provide a great deal of flexibility in setting and/or orienting the hard stop relative to the soft stop to ensure superior ride quality while preventing damage to an elevator car. For example, the soft stop of the subject invention (i.e., the stop formed by bolt 116, resilient member 120 and nut 130) can be set to be very close to or in contact with support arm 50 to accommodate those instances where greater control on the support arm 50 is desired. In prior art devices, inward movement of the soft stop to be close to or in contact with the support arm would move the hard stop unnecessarily close to support arm 50 so that the frequency support arm 50 impacts the hard stop would increase considerably significantly reducing ride quality as the hard stop exerts a significant and abrupt force on the elevator car. Because the hard stop of the preferred embodiment (i.e., the stop formed by bolt 102, washer 104 and nut 103) can be adjusted independent of the soft stop, the hard stop can be positioned a sufficient distance from support arm 50 that will prevent the elevator car from being damaged while significantly reducing the frequency that support arm 50 impacts the hard stop. This is just one of many instances where the independently adjustable stops of the preferred embodiment can be used to significantly improve ride quality.
The independently adjustable stops of the preferred embodiment also allow the soft stop to be positioned relative to the hard stop so that the only time arm 50 would impact the hard stop is if the soft stop became damaged where the soft stop could function as a stop to prevent damage to the elevator car.
The independently adjustable stops of the preferred embodiment further allow the hard stop to be positioned relative to soft stop to vary the extent to which the resilient member 120 of the soft stop can compress. For example, where resilient member 120 can be compressed by W, but in a particular application or environment in which roller guide A is used, resilient member 120 should only be compressed a fraction of W, the hard stop can be set to prevent any further outward movement of arm 50 once resilient member 120 has been compressed the desired fraction of W.
The independently adjustable stops of the preferred embodiment further allow adjustment of the stops so that the stops can act in parallel or series and/or a combination of series and parallel.
While this invention has been described as having a preferred design, it is understood that the preferred design can be further modified or adapted following in general the principles of the invention and including but not limited to such departures from the present invention as come within the known or customary practice in the art to which the invention pertains. The claims are not limited to the preferred embodiment and have been written to preclude such a narrow construction using the principles of claim differentiation.
Number | Name | Date | Kind |
---|---|---|---|
1854976 | Brady | Apr 1932 | A |
5289902 | Fujita | Mar 1994 | A |
5632358 | Maeda | May 1997 | A |
5984053 | Lee | Nov 1999 | A |
6050370 | Jung | Apr 2000 | A |
6062347 | Traktovenko | May 2000 | A |
8251186 | Webster | Aug 2012 | B2 |
8950041 | Palsson | Feb 2015 | B2 |
9163445 | Andren | Oct 2015 | B2 |
20050279585 | Race | Dec 2005 | A1 |
20150198871 | Piraino | Jul 2015 | A1 |
20150321885 | Laughton | Nov 2015 | A1 |
20170057785 | Geroso | Mar 2017 | A1 |
20200317472 | Laughton | Oct 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200317472 A1 | Oct 2020 | US |