A variety of elevator systems are known. Some elevator systems use a hydraulic arrangement for moving the elevator car. Others are traction-based and include roping that suspends the elevator car and a counterweight. A machine causes movement of a traction sheave that, in turn, causes movement of the roping for moving the elevator car as desired.
For many years, roping in elevator systems included round steel ropes. More recently, flat belt technologies were developed that provided advantages over traditional, round steel rope arrangements. Even with the advancement, those skilled in the art have been striving to improve elevator load bearing member technology.
An illustrative example assembly for making an elevator load bearing member includes a fabric having a plurality of fibers arranged with some of the fibers transverse to others of the fibers. A plurality of cords are configured to support a load associated with an elevator car. The cords are included in the fabric and have respective coatings. The coatings include a first coating material and a second coating material, or include different coating thicknesses such that some of the coatings have a different coating thickness than others of the coatings, or the coatings include the first coating material and the second coating material and some of the coatings have a different coating thickness than others of the coatings.
In an example embodiment having one or more features of the assembly of the previous paragraph, the coatings comprise the first coating material and the second coating material, the first coating material has a first melting temperature, the second coating material has a second melting temperature, and the first melting temperature is higher than the second melting temperature.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the first coating material is received against the cords and the second coating material is received against the first coating material.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the fibers of the fabric comprise a material that has a third melting temperature that is higher than the second melting temperature.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the third melting temperature is higher than the first melting temperature.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the coatings comprise the first coating material and the second coating material, the first coating material comprises a first thermoplastic material, the second coating material comprises a second thermoplastic material, and the first thermoplastic material is different than the second thermoplastic material.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the first coating material comprises at least one of nylon, polyurethane, polyethylene, polypropylene, polyester, thermoplastic polyolefin (TPO), thermoplastic elastomer (TPE), or polyvinylchloride (PVC); and the second coating material comprises at least one other of nylon, polyurethane, polyethylene, polypropylene, polyester, thermoplastic polyolefin (TPO), thermoplastic elastomer (TPE), or polyvinylchloride (PVC).
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the fibers are interlaced together, the cords are interlaced into the fabric, the fabric has a length, a thickness and a width, the length of the fabric is longer than the thickness and the width, the cords are generally parallel to each other along the length, and the cords are in selected locations along the width of the fabric.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the coating thickness is less than the thickness of the fabric.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, some of the coatings have a different coating thickness than others of the coatings, some of the coatings are closer to edges of the width of the fabric than the others of the coatings, and the coating thickness of some of the coatings is larger than the coating thickness of the others of the coatings.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, some of the coatings have a different coating thickness than others of the coatings, the coating thickness of some of the coatings is a first coating thickness, the coating thickness of the others of the coatings is a second coating thickness, and the cords are arranged with at least one of the coatings having the second coating thickness between at least two of the coatings having the first coating thickness.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the fabric has a length and a width, the length is greater than the width, the cords are generally parallel to the length, the cords are spaced apart along the width, and the coatings having the first coating thickness are closer to outside edges of the fabric than the coatings having the second coating thickness.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, a plurality of the coatings having the second coating thickness are adjacent to each other and situated between the coatings having the first coating thickness.
In an example embodiment having one or more features of the assembly of any of the previous paragraphs, the cords comprise at least one of a metal or a polymer.
An illustrative example method of making a load bearing member for an elevator system includes assembling a fabric including a plurality of fibers and a plurality of cords. Some of the fibers are transverse to others of the fibers, the cords are generally parallel to each other, the cords are transverse to the others of the fibers, and the cords have respective coatings. The coatings comprise a first coating material and a second coating material, some of the coatings have a different coating thickness than others of the coatings, or the coatings comprise the first coating material and the second coating material and some of the coatings have a different coating thickness than others of the coatings. The method includes at least partially melting the coatings to thereby impregnate the fibers with coating material.
In an example embodiment having one or more features of the method of the previous paragraph, the cords have respective coatings that comprise the first coating material and the second coating material, the first coating material has a first melting temperature, the second coating material has a second melting temperature, the first melting temperature is higher than the second melting temperature, and at least partially melting the coatings comprises at least partially melting only the second coating material.
In an example embodiment having one or more features of the method of any of the previous paragraphs, the first coating material is received against the cords and the second coating material is received against the first coating material.
In an example embodiment having one or more features of the method of any of the previous paragraphs, assembling the fabric comprises interlacing the fibers and the cords.
In an example embodiment having one or more features of the method of any of the previous paragraphs, some of the coatings have a different coating thickness than others of the coatings, the coating thickness of the some of the coatings is a first coating thickness, the coating thickness of the others of the coatings is a second coating thickness, and assembling the fabric comprises arranging the cords with at least one of the coatings having the second coating thickness between at least two of the coatings having the first coating thickness.
In an example embodiment having one or more features of the method of any of the previous paragraphs, assembling the fabric comprises arranging a plurality of the coatings having the second coating thickness adjacent to each other and situating the plurality of the coatings having the second coating thickness between the coatings having the first coating thickness.
The various features and advantages of at least one disclosed example embodiment will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
A plurality of cords 34 are included in the fabric 32. The cords 34 are interlaced with the fibers of the fabric 32. The cords 34 are configured to support the loads associated with the elevator car 22. In some examples, the cords 34 comprise a plurality of metal wires or strands. In some embodiments the cords comprise a polymer, such as carbon fibers or poly-para-phenylene terephthalamide.
The assembly 30 has a width W and thickness T visible in the illustration. A length of the assembly 30 extends into the page. The cords 34 are arranged parallel to each other and extend along the length of the assembly 30. The cords 34 are spaced apart from each other along the width W. In the illustrated example, the cords have the same dimensions and are equally spaced apart across the width W of the assembly 30.
Each of the cords 34 has a respective coating 36. In this example the coatings 36 each include a first coating material 38 received against the cords 34. A second coating material 40 is received over the first coating material 38.
The coating materials 38 and 40 have different compositions. In this example, the first coating material 38 has a first melting temperature and the second coating material 40 has a second melting temperature. The first melting temperature is higher than the second melting temperature. This allows for the second coating material 40 to be at least partially melted without melting the first coating material 38. The fabric 32 has a melting temperature that is higher than the second melting temperature. In some embodiments, the fabric melting temperature is higher than the first melting temperature.
In some embodiments, the first coating material comprises a thermoplastic and the second coating material comprises a second thermoplastic. Example materials for either of the coating materials include nylon, polyurethane, polyethylene, polypropylene, polyester, thermoplastic polyolefin (TPO), thermoplastic elastomer (TPE), or polyvinylchloride (PVC).
In some example embodiments, the thickness of the coatings 36 is in a range from 0.01 to 2.0 mm. In some embodiments, the preferred range of coating thickness is between 0.1 and 0.5 mm. The coating thickness is smaller than the thickness T of the fabric 32.
One aspect of having coatings 36A on the cords 34 that are closer to the outside, lateral edges of the assembly 30 is that the distribution of coating material in the load bearing member made from the assembly 30 will have desired characteristics for maintaining desired performance during elevator system operation. For example, an adequate amount of coating material will be within the fabric 32 near all of the cords 34 to provide a protective coating throughout the service life of the load bearing member.
The arrangements shown in
As represented at 58 in
In
The left side of
Maintaining a coating material 38 on the cords 34 in this manner can improve the wear characteristics and service life of the load bearing member 26 because the first coating material 38 may be chosen to provide a desired stiffness and fiber adhesion across the width of the load bearing member 26. Such an embodiment also provides the ability to protect the cords 34 with relatively harder materials than the fabric while, at the same time, providing a belt structure having a desired flexibility to be able to wrap around sheaves in an elevator system that may be arranged in a variety of patterns or configurations. A first coating material 38 that does not melt also protects the fabric from damage that otherwise may occur because of contact with the steel cords.
The illustrated, disclosed example embodiments allow for customizing and enhancing selected features of a load bearing member 26, such as a flat belt, to achieve better performance, longer service life or both. The features of the different embodiments may be combined in other ways not specifically illustrated or mentioned above. In other words, additional embodiments may be realized by combining features of the example embodiments discussed above.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1475250 | Sundh | Nov 1923 | A |
2332393 | Neville | Oct 1943 | A |
3148710 | Rieger et al. | Sep 1964 | A |
3885603 | Slaughter | May 1975 | A |
4227041 | Den et al. | Oct 1980 | A |
4773896 | Bouteiller et al. | Sep 1988 | A |
4945952 | Vohringer | Aug 1990 | A |
5609242 | Hutchins et al. | Mar 1997 | A |
6371448 | De Angelis | Apr 2002 | B1 |
6386324 | Baranda et al. | May 2002 | B1 |
6390242 | Baranda et al. | May 2002 | B1 |
6419208 | Baranda et al. | Jul 2002 | B1 |
6672046 | Prewo et al. | Jan 2004 | B1 |
6739433 | Baranda et al. | May 2004 | B1 |
6742769 | Baranda et al. | Jun 2004 | B2 |
6983826 | Wake | Jan 2006 | B2 |
7326139 | Eichhorn et al. | Feb 2008 | B2 |
8556040 | Fargo et al. | Oct 2013 | B2 |
20020108814 | Pitts et al. | Aug 2002 | A1 |
20040206579 | Baranda et al. | Oct 2004 | A1 |
20040231312 | Honda | Nov 2004 | A1 |
20070235595 | Braekevelt et al. | Oct 2007 | A1 |
20090107776 | Baranda et al. | Apr 2009 | A1 |
20100133046 | Allwardt et al. | Jun 2010 | A1 |
20130167967 | Wesson | Jul 2013 | A1 |
20150017436 | Krishnan | Jan 2015 | A1 |
20180162695 | Eastman et al. | Jun 2018 | A1 |
20190084803 | Eastman | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
204000410 | Dec 2014 | CN |
10100484 | Jul 2002 | DE |
0228725 | Jul 1987 | EP |
1396458 | Mar 2004 | EP |
1561719 | Aug 2005 | EP |
1777189 | Apr 2007 | EP |
2048773 | Dec 1980 | GB |
2004155589 | Jun 2004 | JP |
20180121595 | Nov 2018 | KR |
0114630 | Mar 2001 | WO |
2005007988 | Jan 2005 | WO |
2009041970 | Apr 2009 | WO |
2017155943 | Sep 2017 | WO |
Entry |
---|
Extended European Search Report for Application No. EP 19 21 9667 dated Jul. 31, 2020. |
Number | Date | Country | |
---|---|---|---|
20200318286 A1 | Oct 2020 | US |