This disclosure generally relates to the elevator system, and more particularly, to a centrifugally actuated governor that reacts to a speed of the elevator car or counterweight.
A common challenge in elevator design is engineering safety systems to prevent or react to elevator malfunction. One such safety system is the speed governor. Elevator speed governors are designed to prevent elevator cars or counterweights from exceeding a set speed limit. The governor is a component in an automated safety system, which is actuated when the elevator car or counterweight exceeds a set speed and either signals a control system to stop the car or directly engages a safety linkage connected to the safeties to stop the car. One commonly known governor is a centrifugally actuated governor.
A common design of centrifugal governors used in elevator systems employs two masses, sometimes referred to as flyweights, connected kinematically in an opposing configuration by links and pinned to a tripping sheave rotating about a common axis. These interconnected parts create a governor mechanism, which rotates at an angular velocity common with the angular velocity of the sheave. The angular velocity of the rotating masses results in a centrifugal force acting to propel the masses away from the sheave axis of rotation. The movement of the masses is essentially a cantilevering motion radially outward about their pinned attachments to the sheave. A coupler prevents the radial outward movement of the masses up to a set elevator car speed. The coupler commonly includes a spring connected between the sheave and one of the masses, which resists the centrifugal force generated by the angular velocity of the rotating sheave up to a set speed. When the elevator car meets or exceeds a set speed limit, sometimes referred to as an overspeed condition, the governor is actuated. In the overspeed condition, the force of the governor coupler, for example the spring coupler, is overcome by the centrifugal force acting on the masses. The two masses move radially outward and commonly engage a sensor at a first speed, which in turn signals control logic in the elevator system to interrupt power to the elevator machine and release a brake to stop the elevator car. If this is ineffective, at a second higher set speed, movement of the masses enables a safety linkage to engage the safeties and stop the elevator car and/or counterweight.
Some existing elevator systems include a governor assembly having a separate swing jaw and tripping lever. However, these types of governor assemblies require that the tripping lever be manually reset by a mechanic in the field before the elevator system can be used after an overspeed condition requiring activation of the safety linkage to engage the safeties. In other existing elevator systems, the radial movement of the flyweights results in a swing jaw having an integrated tripping lever to approach and ultimately engage a tooth of an adjacent ratchet disc. However, the slow radial movement of the flyweights results in a slow rotation of the swing jaw towards the ratchet disc. As a result of this slow movement, the swing jaw may contact and deflect from an end of a tooth on the ratchet disc, thereby allowing the overspeed condition to continue until proper engagement between the swing jaw and the ratchet is achieved.
According to one embodiment of the disclosure, a governor assembly is provided including a sheave rotatably mounted on a shaft. An overspeed assembly includes a swing jaw mounted to the sheave. The swing jaw is movable between a normal position and a tripped position. The swing jaw is biased into the tripped position. When the swing jaw is in the tripped position, and therefore engaged with the ratchet disc, rotation of the sheave in a first direction is restricted by the limited allowed ratchet disc rotation. A tripping lever is pivotally mounted to the sheave and is configured to cooperate with the swing jaw. Rotation of the sheave in a second, opposite direction is configured to automatically move the swing jaw against its bias to the normal position.
In addition to one or more of the features described above, or as an alternative, in further embodiments a biasing mechanism extending between the sheave biases the swing jaw into the tripped position.
In addition to one or more of the features described above, or as an alternative, in further embodiments the swing jaw includes a shoulder and the tripping lever includes a protrusion. During normal operation, the protrusion is arranged in contact with the shoulder to oppose the bias of the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments the swing jaw includes an engagement end. When the swing jaw is in the tripped position, the engagement end contacts the ratchet disc to restrict rotation of the sheave.
In addition to one or more of the features described above, or as an alternative, in further embodiments the engagement end includes a resetting feature and movement of the sheave in the second direction causes the resetting feature to contact a portion of the ratchet disc and rotate the swing jaw opposite its bias.
In addition to one or more of the features described above, or as an alternative, in further embodiments the resetting feature is a lip.
In addition to one or more of the features described above, or as an alternative, in further embodiments the resetting feature is a tooth having an angled surface.
In addition to one or more of the features described above, or as an alternative, in further embodiments the ratchet disc includes a contact member extending perpendicularly from a surface thereof. The contact member is configured to contact the resetting feature of the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments the ratchet disc includes a plurality of teeth extending about a periphery of the ratchet disc.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising at least one flyweight mounted to the sheave and movable between a retracted position and an extended position.
In addition to one or more of the features described above, or as an alternative, in further embodiments the tripping lever is operably coupled to the at least one flyweight such that movement of the at least one flyweight to a deployed position causes the tripping lever to rotate out of contact with the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments a biasing mechanism biases the flyweight to the retracted position. The biasing mechanism is configured to bias the tripping lever into engagement with the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a remote tripping assembly operably coupled to the tripping lever, the remote tripping assembly being configured to rotate the tripping lever out of contact with the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments the remote tripping assembly includes an actuator and a movable member operably connected to the actuator. Operation of the actuator moves the movable member relative to the tripping assembly.
According to another embodiment, an elevator system includes an elevator hoistway and an elevator car movable along at least one car guide rail within the hoistway. A counterweight is movable along at least one counterweight guide rail within the hoistway. A governor assembly includes a sheave rotatably mounted on a shaft and operably coupled to the elevator car. A ratchet disc is mounted to the shaft such that rotation of the ratchet disc is restricted. An overspeed assembly includes a swing jaw mounted to the sheave. The swing jaw is movable between a normal position and a tripped position. The swing jaw is biased into the tripped position. When the swing jaw is in the tripped position, and therefore engaged with the ratchet disc, rotation of the sheave in a first direction is restricted by the limited allowed ratchet disc rotation. A tripping lever is pivotally mounted to the sheave and is configured to cooperate with the swing jaw. Rotation of the sheave in a second, opposite direction is configured to automatically move the swing jaw against its bias to the normal position.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising at least one flyweight mounted to the sheave and movable between a retracted position and an extended position. The tripping lever is operably coupled to the at least one flyweight such that movement of the at least one flyweight to a deployed position causes the tripping lever to rotate out of contact with the swing jaw.
In addition to one or more of the features described above, or as an alternative, in further embodiments a biasing mechanism biases the flyweight to the retracted position such that the at least one flyweight moves to the deployed position when the centrifugal force of the sheave generated by the rotation of the sheave exceeds a biasing force of the biasing mechanism.
In addition to one or more of the features described above, or as an alternative, in further embodiments the swing jaw includes a resetting feature. A portion of the ratchet disc is configured to contact the resetting feature to rotate the swing jaw against its bias from the tripped position to the normal position.
According to another embodiment, a method of tripping an overspeed assembly of a governor assembly includes detecting an overspeed condition of a rotating sheave. A tripping lever is rotated out of contact with an adjacent swing jaw. The swing jaw is biased into contact with a ratchet disc capable of limited rotation.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising resetting the overspeed assembly. Resetting the overspeed assembly includes rotating the sheave relative to the ratchet disc such that a resetting feature of the swing jaw engages a portion of the ratchet disc, rotating the swing jaw against its bias, and arranging the tripping lever in contact with a portion of the swing jaw to oppose the bias of the swing jaw.
According to another embodiment, a method of remotely tripping an overspeed assembly of a governor assembly includes generating a signal to initiate a remote trip and applying power to an actuator. A tripping lever is contacted with a movable member operably coupled to the actuator to rotate the tripping lever out of contact with an adjacent swing jaw. The swing jaw is biased into contact with a ratchet disc capable of limited rotation.
The subject matter, which is regarded as the disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the disclosure, together with advantages and features, by way of example with reference to the drawings.
Referring now to
In the elevator system 10 as shown in
Referring now to
An engagement or ratchet disc 30 which is rotatable relative to the tripping sheave 18 is mounted about the sheave shall 23. The ratchet disc 30 has a smaller diameter than the tripping sheave 18 and includes a plurality of teeth 32 disposed about the entire outer circumference thereof. During normal operating conditions, the ratchet disc 30 is decoupled from the rotation of the sheave shaft 23, such that the disc 30 remains generally stationary.
The governor assembly 16 additionally includes an overspeed assembly 40 including a swing jaw 42 and a tripping lever 44 pivotally mounted to the side surface 26 of the tripping sheave 18. The swing jaw 42 is capable of rotating about a first pin 46 while the tripping lever 44 is rotatable about a second pin 48. The swing jaw 42 is biased by a biasing mechanism 50 (best shown in
The swing jaw 42 includes an engagement end 52 for contacting the ratchet disc 30. The engagement end 52 is arranged at a first side of the swing jaw 42 and a shoulder 54 additionally extends from a second, opposite side of the swing jaw 42. The tripping lever 44 includes a protrusion 56 configured to selectively cooperate with the shoulder 54 of the swing jaw 42.
With reference again to
Upon entering an overspeed condition, the centrifugal force acting on the flyweights 28 will overcome the biasing force of the biasing mechanism 29, such that the flyweights 28 pivot radially outward about their respective axes. This movement of the flyweights 28 causes the tripping lever 44 to pivot in a direction opposite a biasing force about pin 48, out of contact with the swing jaw 42. When the protrusion 56 is removed from the swing jaw 42, the biasing force of the biasing mechanism 50 causes the swing jaw 42 to pivot about pin 46 to a tripped position. In the tripped position, the engagement end 52 is arranged in contact with the most recessed surface 31 proximate adjacent teeth 32 of the ratchet disc 30 (
An example of the overspeed assembly 40 in the tripped position is illustrated in
When the swing jaw 42 is in the tripped position, opposite rotation of the sheave shaft 23 due to upward movement of the car 12, causes a similar rotation of the tripping sheave 18 and a similar, but restricted, annular rotation of the ratchet disc 30 about the axis of rotation. This rotation of the tripping sheave relative to the stationary ratchet disc 30 is configured to automatically reset the overspeed assembly 40.
As shown, as the tripping sheave 18 rotates, a resetting feature on the engagement end 52 of the swing jaw 42 contacts and engages a portion of the ratchet disc 30. In the non-limiting embodiment illustrated in
Because rotation of the tripping sheave 18 is driven by movement of the elevator car 12, the rotational force of the tripping sheave 18 is sufficient to overcome the biasing force of the biasing mechanism 50. The contact with lip 62 causes the swing jaw 42 to rotate against the biasing force of the biasing mechanism 50, back to a normal position. As the swing jaw 42 is rotated by the tooth 32, the shoulder 54 of the swing jaw 42 applies a force to the protrusion 56 of the tripping lever 44 in a direction opposite the biasing force of the flyweight biasing mechanism 29. Once the shoulder 54 rotates out of engagement with the protrusion 56, the biasing force of the flyweight biasing mechanism 29 will cause the tripping lever 44 to pivot back to its normal position where the engagement between the protrusion 56 and an upper surface 58 of the shoulder 54 restricts rotation of the swing jaw 42 in the biasing direction.
In another embodiment, illustrated in
Alternatively, or in addition, a remote tripping assembly 70 may be operably coupled to the overspeed assembly 40. With reference now to
In operation, power is applied to the actuator 72 in response to a signal, indicating that tripping of the governor is desired for any of a variety of reasons, including but not limited to demonstration of tripping operation for an inspection authority for example. The application of power causes the movable member 74 operably coupled to the actuator 72 to move, such as slide linearly for example, relative to the tripping lever 44. In the illustrated, non-limiting embodiment, a contactor 76 having a cam surface 78 is kinematically connected to the movable member 74. However, in other embodiments, the cam surface 78 may be integrally formed with a portion of the movable member 74. As the movable member 74 slides, the contactor 76 and cam surface 78 move into contact with and rotate the tripping lever 44. The remote tripping assembly 70 illustrated and described herein is intended as an example only. Any configuration of a remote tripping assembly capable of rotating the tripping lever 44 is within the scope of the disclosure.
A governor assembly 16 including the automatically resettable overspeed assembly 40 described herein provides efficient and effective engagement between the swing jaw 42 and the ratchet disc 30 upon detection of an overspeed condition. As a result, the time required to stop the elevator car during an overspeed condition may be reduced.
While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of Provisional Application No. 62/274,622, filed Jan. 4, 2016, the contents of which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62274622 | Jan 2016 | US |