The present invention concerns an elevator, a procedure for the maintenance of the elevator, a procedure for the modernization of an elevator and a clamping device for an elevator.
A driving disk is often used with an elevator in order to move an elevator car. The driving disk and the car are joined together for example via a rope, with such a friction driven hoist. A drive puts the driving disk in a rotation movement. The rotation movement of the driving disk is converted into a motion of the car by a frictional engagement between the driving disk and the rope. The rope serves thereby as combined suspension means or respectively hoisting means, while the driving disk serves as power transmission means:
U.S. Pat. No. 4,620,615 reveals a friction driven hoist and in the case of this friction driven hoist, for the increase of the friction value between driving disk and rope, the rope is pressed against the driving disk over a special clamping device. The clamping device exhibits a multiplicity of pulleys, which are held in a frame and such pulleys are made of polyurethane and press the rope with a high coefficient of friction and in an angle or arc of contact against the driving disk.
A task of the present invention is of making available an elevator, which is simple and economical in the installation and maintenance. Also, an already existing elevator with components of this elevator should be able to be modernized simply and rapidly.
The invention resolves these tasks by a complete departure from the principle of the driving disk for moving the car of an elevator. Instead of using components such as a driving disk and a rope, the invention provides a separation in functions such as power transmission means, supporting body, suspension means or respectively hoisting means and clamping means. For this, several abstraction steps are carried out:
The Following Advantages are Realized by the Invention:
In the following, the advantages of the invention as well as exemplary embodiment forms of the invention are described in detail based on the drawings.
a and 2b are schematic representations of a first embodiment form of an elevator with belt-shaped power transmission means and belt-shaped suspension means or hoisting means, which are stretched against the supporting body,
a and 3b are schematic representations of a second embodiment form of an elevator with belt-shaped power transmission means and rope-shaped suspension means or hoisting means, which are stretched against the supporting body,
a and 4b are schematic representations of a third embodiment form of an elevator with belt-shaped power transmission means and rope-shaped suspension means or hoisting means, which are stretched against the supporting body, and
a and 5b are schematic representations of a fourth embodiment form of an elevator with belt-shaped power transmission means and belt-shaped suspension means or hoisting means, which are stretched against the supporting body.
In accordance with
As shown in the detail in the
The embodiment forms in accordance with
By the aforementioned abstraction steps, one obtains a strict function separation into power transmission means, suspension means or hoisting means, clamping means and supporting body. These components of the elevator can be optimized separately in accordance with various criteria and with parameters. This function-separated elevator exhibits the following advantages.
Suspension means or hoisting means: For the purposes of the present invention, each well-known and proved suspension means or hoisting means for elevators can be set in. Preferably, a combined suspension means or hoisting means for carrying the operating weight as well as for moving the car and an optional counterweight is provided. In principle, the functions of the suspension means and the hoisting means can also be separated from each other. Thus, it is possible, with knowledge of the invention, to provide a suspension means for carrying the operating weight and independently from it to provide a hoisting means for moving the car whereby only the hoisting means is moved by the power transmission means. For example, the car and the counterweight hang on a rope as suspension means and are moved from a balance rope as hoisting means. Preferably, the suspension means and the hoisting means is a rope, a main and tail rope and/or a belt like a flat belt, toothed belt, V-belt, etc. The toothed belt can exhibit teeth on one or both of its sides. Multiple materials such as metal and/or natural substance and/or synthetic material can be used. As metal is designated steel, steel alloys, etc., as natural substance is designated leather, impregnated leather, rubber, etc., as synthetic material is designated aramide, nylon, polyurethane, carbon fibre, zylon, etc. The suspension means or respectively hoisting means can have a casing made of the most rubbing resistant material such as polyurethane, nylon, etc. Finally, the suspension means or respectively hoisting means can exhibit layers for the take up of traction forces and such layers are made of steel, steel alloys, aramide, carbon fibre, zylon, etc. Preferably, the suspension means or respectively hoisting means exhibits closed ends, which form a loop. Preferably, the suspension means or respectively hoisting means exhibits open ends and is connected with the car and the counterweight.
Coefficient of friction: Preferably, the components power transmission means, suspension means or hoisting means, clamping means and supporting body, being in direct contact with one another, exhibit optimized coefficients of friction. By a suitable choice of the materials used are realized, preferably, between these components coefficients of friction>=0.2, preferably>=0.3, preferably>=0.4, preferably>=0.6, preferably>=0.9. For example, the areas of contact of these components are composed of metal such as steel, steel alloys, aluminium, aluminium alloys, etc. and/or of natural substance such as leathers, leather impregnations, rubber, etc. and/or of synthetic material such as polyurethane, nylon, carbon fiber, etc.
Drive: These high coefficients of friction have a high traction as an effect, whereby only a relatively small-dimensioned drive is needed. Preferably, the drive is a gearless linear drive. Preferably, the drive is of oblong cylindrical form or a flat external rotor. With knowledge of the present invention, various possibilities of the variation of drives present themselves to the man skilled in the art. Preferably, the cylindrical drive exhibits volume mass (length×width×depth) of>=100×20×20 cm3, preferably>=85×18×18 cm3, preferably>=70×15×15 cm3. Preferably, the flat external rotor drive exhibits volume mass (length×width×depth) of>=100×100×20 cm3, preferably>=85×85×18 cm3, preferably>=70×70×15 cm3.
Angle or arc of contact: These high coefficients of friction have a high traction as an effect, whereby only a relatively small angle or arc of contact is needed. Preferably, the angle or arc of contact from the power transmission means and/or the suspension means or respectively hoisting means and/or clamping means with the supporting body is<=180°, preferably<=150°, preferably<=120°, preferably<=90°.
Gear or speed ratio: Preferably, the drive and the suspension means or hoisting means are geared to each other, i.e. a motor shaft turns itself faster around its axis of rotation as the suspension means or hoisting means moves with the supporting body. This gear or speed ratio follows from the proportion in size of the diameter of the supporting body to the diameter of the motor shaft. Preferably, this proportion in size is>1, preferably>=5, preferably>=10, preferably>=15, preferably>=20.
Clamping means: The clamping means is, preferably, rope-shaped and/or belt-shaped and/or of a rotational body type. Preferably, the rope-shaped and/or belt-shaped clamping means corresponds in the kind and structure to the rope-shaped and/or belt-shaped power transmission means, or respectively suspension means, or respectively hoisting means, so that the previous discussion thereof is referred to. Preferably, the rope-shaped and/or belt-shaped clamping means exhibits closed ends, which form a loop. Preferably, the rotational body type of clamping means is a disk or a pulley or a cylinder or a wheel, etc. and rotates around an axis of rotation. The power transmission means via the rope-shaped and/or belt-shaped clamping means rests on a surface of this rotational body. With knowledge of the present invention, the man skilled in the art can use, of course, also different well-known clamping means. Thus, other clamping means can be used, i.e. stationary wall, a plate, etc., by which the power transmission means via the rope-shaped and/or belt-shaped clamping means slides over a surface.
Clamping device: A clamping device serves for stretching/releasing the power transmission means and the suspension means or respectively hoisting means and/or the rope-shaped and/or a belt-shaped clamping means against the supporting body. Preferably, the clamping device comprises at least two components of the elevator, which through relative motion to each other stretch or respectively release the power transmission means and/or the suspension means or respectively the hoisting means and/or the rope-shaped and/or belt-shaped clamping means against the supporting body. Preferably, via the clamping device, a first rotational body type of clamping means is moved relatively to another rotational body type of clamping means and/or a rotational body type of clamping device is moved relatively to the drive and/or a rotational body type of clamping means is moved relatively to the auxiliary pulley and/or the drive is moved relatively to the supporting body. With knowledge of the present invention, the man skilled in the art can, of course, also employ clamping devices with other well-known clamping mechanisms. Thus, for the aforementioned stretching/releasing, also the diameter of the rotational body type of clamping means lets itself be increased/reduced, without that thus a relative motion of the same is necessary. For example, such a diameter variation of the rotational body type of clamping means takes place via the scattering/folding of an upper surface of the rotational body type of clamping means. The man skilled in the art has in this connection numerous possibilities available. The considerations for rotational body type of clamping means apply of course also to clamping means like a fixed, i.e. stationary wall, plate, etc.
Supporting body: The supporting body can have any form. Preferably, the supporting body is part of a circumference of a rotational body like a disk or a pulley or a cylinder or a wheel or part of a circumference of a wall or a plate. Preferably, this rotational body is placed freely swivelling around an axis of rotation. Preferably, the diameter of this rotational body is of circular symmetry. Preferably, the wall or the plate is fixed, i.e. stationary. The primary function of the supporting body consists, in this respect, of supplying a stable support for an optimal transmission of the traction force to the power transmission means and the suspension means or respectively hoisting means. The supporting body is thus stably enough realized in order to develop a counterforce to these traction forces.
Procedure for the operation of the elevator: Preferably, components of the elevator such as the drive and the car are system integrated with functions such as brakes. With the notion of system integration is understood an optimization, undertaken out from a system view, of individual components, i.e. this optimization of the components is seen in the whole system of the elevator, co-ordinated one with the other. Preferably, an allocation of brake functions such as regulating brake, retaining brake, decelerating brake and safety gear brake takes place on individual but optimized components of the elevator.
Preferably, the drive is made from lightweight construction materials such as steel, steel alloys, aluminum, aluminum alloys, carbon fiber, zylon, etc. Due to such a lightweight construction, when operating the drive, only small masses are accelerated and respectively braked. Preferably, the drive therefore only has a regulating brake 5′. By braking with regulating brakes, the speed of the car is held approximately constant or respectively the speed of the car follows a target curve. In particular, when lowering moving masses, the regulating brake absorbs potential energy and prevents thereby their transformation into kinetic energy.
Preferably, the supporting body is made of lightweight construction materials such as steel, steel alloys, aluminum, aluminum alloys, carbon fibre, zylon, etc. Preferably, the supporting body is a spoked wheel with a hub, spokes and a rim. With such a lightweight construction, when moving the supporting body, only small masses are accelerated or respectively braked. Such a supporting body is energy saving to accelerate and lets itself be braked with relatively weakly dimensioned brakes. Preferably, for the supporting body no independent brake is provided.
In a favorable way, the drive and/or the supporting body and/or the power transmission means and/or the suspension means or hoisting means and/or the clamping device are from lightweight construction materials, whereby these components exhibit relatively small masses, which makes possible to employ the retaining brake 40 as the clamping device. The clamping device fulfils a stop function, if it protects stationary masses against unintentional movement due to their weight or other forces acting in the moving direction. Preferably this is reached, in the case when the tension force is variably adjusted in magnitude. Preferably, by stopping at the floors, the tension force is increased, with the power transmission means and suspension means or respectively hoisting means acting on the supporting body. Preferably, this increased tension force is again decreased at the time of leaving the floor.
Preferably, at least one brake of the car is employed as the decelerating brake 7′ and/or the safety gear brake. The decelerating brake of the car is preferably a rail or track brake, which absorbs kinetic energy and thus decelerates the rate of motion of the moving masses. With knowledge of the present invention, the man skilled in the art can, of course, employ different brakes as the decelerating brake, for example he can employ a drum brake, etc.
Procedure for the disposition of the elevator: preferably, the drive, the power transmission means, the suspension means or respectively hoisting means, the clamping means and the supporting body are arranged in a hoitsway of the elevator, preferentially in the hoistway roof of the elevator. Due to the often restrained space conditions in the hoitway and with the aim of using the space in the hoistway as optimally as possible, the disposition of the components can be freely planned within the scope of the disposition parameters.
These Disposition Parameters Dictate:
Procedure for the maintenance of the elevator: preferably, the power transmission means is an economical and easily to be replaced wear part, for example, a belt made of synthetic material, while the suspension means or respectively hoisting means and the supporting body are long-lived capital goods, which do not have to be replaced or are replaced very rarely. The power transmission means consequently lets itself be replaced in a procedure for the maintenance of the elevator both simply and rapidly. For this, a power transmission means to be replaced is released from its stretched operating position against the supporting body. The power transmission means to be replaced is removed. In lieu of the power transmission means to be replaced, a replaceable power transmission means is positioned. The replaceable power transmission means is stretched against the supporting body. As represented on embodiments in
In the case of usage of rope-shaped and/or belt-shaped clamping means, the change of the power transmission means proceeds in a similar fashion. As represented in the embodiments in accordance with
Procedure for the modernization of an elevator: Preferably, the power transmission means and the clamping device are later incorporable into the elevators, in particular in the case of modernizations. Due to the previously described high freedom with the disposition of the components in the hoistway, existing elevators let themselves be modernized rapidly and simply with power transmission means and a clamping device. For this, the driving disk of an existing elevator is separated from its drive. Preferably, the driving disk and/or the drive is removed. Preferably, a supporting body is installed instead of the driving disk or the driving disk is employed as a supporting body. Preferably, a small-dimensioned drive is installed instead of the existing drive or the existing drive is further employed. Thereupon, the power transmission means, moving the suspension means or respectively hoisting means, is installed. Preferably, the power transmission means is installed over a clamping device on the suspension means or respectively hoisting means. The power transmission means as well as the suspension means or respectively hoisting means are stretched against the supporting body.
The invention is not limited by the embodiments described above which are presented as examples only but can be modified in various ways within the scope of protection defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
02405790 | Sep 2002 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4260615 | Raether et al. | Apr 1981 | A |
5207308 | Sheffield et al. | May 1993 | A |
6364062 | Ericson et al. | Apr 2002 | B1 |
6386324 | Baranda et al. | May 2002 | B1 |
6742627 | Drabot et al. | Jun 2004 | B2 |
Number | Date | Country |
---|---|---|
0 837 025 | Apr 1998 | EP |
506 566 | Mar 1976 | SU |
02 064482 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040045772 A1 | Mar 2004 | US |