The present invention relates to elevator rope braking systems.
Elevator rope braking systems are an important safety feature in elevator operation. These systems are configured to brake elevator hoist ropes when unintended movement in the elevator car is sensed (e.g., movement of the car when the doors are open). These systems reduce the risk of unintended entry (e.g., falling into an open elevator shaft), as well as reduce the risk of personal injury from forces generated by the elevator car moving within the shaft. Elevator rope braking systems are additionally configured to stop overspeeding cars. This may occur, for example, when a substantially empty elevator car moves too quickly in the upward direction due to the great force of the counterweight.
Present systems operate to automatically arrest the elevator rope in the event that power to the rope braking system is lost. However, such systems often comprise complex arrangements with numerous moving parts that create only a limited amount of braking force. Minimizing moving parts can reduce the risk of mechanical failure as well as the cost of construction and maintenance. Alternative systems and methods are desired.
In one exemplary embodiment, an elevator rope braking system includes a base portion and a top portion attached by at least one mounting structure. An electromagnetic coil and magnetic core are positioned on the base portion. An armature is disposed between the base portion and the top portion and configured to move between a first braking position and a second non-braking position when the electromagnetic coil is powered.
In another exemplary embodiment, an elevator rope braking system includes an enclosure having top and bottom fixed plates and containing a housing positioned on the bottom plate and containing an electromagnetic coil. The top and bottom plates are preferably arranged in parallel. An armature plate is in parallel with the top plate and has an armature on a first surface thereof proximal to the housing and in operative relation with the electromagnetic coil. A spring is disposed on the top surface of the housing between the armature plate for urging the armature plate in a direction toward the top plate to close a gap between the armature plate and the top plate thereby defining a braking position that restricts motion of one or more ropes disposed there through. The system further includes a circuit for powering the electromagnetic coil to generate a force sufficient to overcome the spring force and cause movement of the armature plate toward the housing, thereby increasing the gap between the armature plate and the top plate sufficient to permit one or more ropes disposed there through to pass freely, defining a non-braking position. The armature plate may include a brake pad on a second surface opposite the first surface and in alignment with a brake pad mounted on an interior surface of the top plate for engaging the ropes to restrict movement when power is not applied to the circuit.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for the purpose of clarity, many other elements found in elevator rope braking systems. Those of ordinary skill in the art may recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein.
Referring generally to
An outer housing 125 is positioned between the base plate 105 and the top plate 110 and is mounted to a top surface of base plate 105. Outer housing 125 may be mounted to base plate 105 by conventional means, such as bolts. In a preferred embodiment, outer housing 125 comprises an annular ring having a central cavity of diameter sufficient to house electromagnetic coil 170 (
An armature plate 120 is disposed between the top surface 160 of outer housing 125 and the top plate 110. Armature plate 120 is configured so that the guide pins 135 extend from a bottom surface thereof (as seen in
Brake pad 150 is disposed on the major surface of armature plate 120 that faces top plate 110 and brake pad 155 is disposed on the major surface of top plate 110 that faces armature plate 120 such that the brake pads 150,155 face one another. Brake pads 150,155 are configured so that as springs 130 urge armature plate 120 toward top plate 110, brake pads 150,155 clamp down on hoist ropes 400, thereby arresting their movement (See
In a preferred embodiment, brake pad 150 is disposed on a first brake shoe 140 that may be attached to armature plate 120. Similarly, brake pad 155 is disposed on a second brake shoe 145 which is attached to top plate 110. Brake pads 150,155 may be made of a material such as Scan-Pac lining material RF38, by way of example only and may be attached to brake shoes 140,145 by conventional means such as adhesives, more particularly an epoxy adhesive manufactured under the trade name Loctite 608. Brake shoes 140,145 may be attached to armature plate 120 and top plate 110 respectively by conventional means such as one or more bolts. In this way, brake pads can be easily replaced if necessarily. Brake shoes 140,145 may be made of a rigid material, such as steel.
Referring generally to
Magnetic core 175 may further include a central hollow portion in which a bushing 180 is disposed. Bushing 180 comprises an inner hollow portion adapted to receive armature 205 (shown in
Guide bores 165 may be disposed substantially uniformly around the top surface 160 of outer housing 125 to ensure alignment of armature plate 120 and outer housing 125. While
Top surface 160 also includes a plurality of spring mounting points 190 for mounting springs 130. Spring mounting points 190 may be embodied as pins, bores, notches or cavities adapted to receive and retain a portion of springs 130. Spring mounting points 190 and springs 130 may be substantially uniformly distributed about the top surface 160 of outer housing 125. Even distribution of spring mounting points 190 and springs 130 allows for even braking force on elevator hoist ropes 400 (shown in
Outer housing 125 may have a bore (not shown) spanning from the inner surface through the housing to the outer surface to allow coil lead 210 to pass through outer housing 125. Outer housing 125 may also include a channel 195 to assist with feeding coil lead 210 through housing 125 during installation of electromagnetic coil 170 (seen also in
In an exemplary configuration, electromagnetic coil 170 may rest on base plate 105 within outer housing 125 and attached to coil lead 210 extending through outer housing 125. Electromagnetic coil 170 may be configured as to size, wire gauge, and overall dimensions according to the application required and the required braking force for the elevator rope braking system 100. Electromagnetic coil 170 may, for example, be configured from 12 gauge copper round wire in an elevator rope braking system 100 adapted to create a braking force which may vary according to the particular application required. By way of non-limiting example only, such force may be in the range of about 1800 to about 5000 pounds per square inch (“lb/in2”) of braking force. The wire gauge may be adjusted for current flow. For example, 14 or 16 gauge wire may be used in an elevator rope braking system 100 adapted to create less braking force.
The outer diameter of electromagnetic coil 170 may be substantially similar to the inner diameter of outer housing 125 so as to fit snugly within the interior of outer housing 125. The area surrounding electromagnetic coil 170, defined by the inner edge of outer housing 125, the outer edge of magnetic core 175 and the base plate 105, may be filled with an epoxy. The epoxy would mitigate displacement of electromagnetic coil 170 during operation of the elevator rope braking system 100. The epoxy would additionally mitigate electromagnetic coil 170 “sweating” while in use.
As described in more detail with respect to
In a preferred embodiment, elevator rope braking system 100 may have feet and adjusters 215 to allow for mounting of an elevator rope braking system 100 within an elevator shaft such that hoist ropes pass between first brake pad 150 and second brake pad 155. The feet and adjusters 215 additionally allow for post-installation adjustment.
Elevator rope braking system 100 may be configured to be operable on various sized elevator hoist ropes. For example, elevator rope braking system 100 may be configured so that the same braking system may be used for hoist ropes of various diameters, such as 0.75 inch, 0.625 inch, or 0.5 inch by way of non-limiting example. This flexibility may be achieved by selecting springs that may compress and decompress to a sufficient extent as to compensate for the variations in cable diameters. Additionally, mounting plates 115 may be shimmed or re-machined to allow for larger or smaller hoist rope diameters.
Elevator rope braking system 100 may be configured to operate independent of the thickness of brake pads 150,155. Accordingly, as brake pads 150,155 wear down (i.e. become thinner in places where brake pads 150,155 contact elevator ropes 400), springs 130 compress to a greater extent when elevator rope braking system 100 is in the braking position than when brake pads 150,155 were originally installed. Likewise, electromagnetic coil 170 is adapted to provide sufficient electromagnetic force to draw armature plate 120 from the braking position to the non-braking position even as brake pads 150,155 wear.
Each of the displayed embodiments includes a first brake pad 150 that moves relative to a stationary second brake pad 155. This may provide the advantage of minimizing deflection in the hoist ropes in addition to lowering cost and complexity. However, alternative embodiments may include a coil and armature system on each side of the hoist ropes, allowing for increased braking force.
Referring generally to
In a second energized state, electromagnetic coil 170 is provided a lesser amount of power compared to that of the first energized state to create a magnetic field sufficient to hold (i.e. maintain) armature 205 within the hollow portion of magnetic core 175 against the force of springs 130. In the second energized state, armature plate 120 and top plate 110 provide gap G sufficient for hoist ropes 400 to move freely. Thus, in the second energized state, the elevator rope braking system maintains the non-braking state.
Referring to
The elevator rope braking system may transition to the non-energized state in response, for example, to a control signal, wherein the control circuitry will no longer provide (i.e. cease to provide) power to elevator rope braking system 100, or in response to a general loss of power to the system. The transition of the elevator rope braking system to the non-energized or braking state is essentially instantaneous.
Referring to
Similarly, full wave rectifier bridge 315 is configured to provide sufficient power to electromagnetic coil 170 to create magnetic force great enough to retract armature plate 120 to top surface 160 of outer housing 125 against the force of springs 130, thereby creating gap G (
One or more micro limit switches 310 may be attached to the elevator rope braking system 100 at various positions to sense when the braking system 100 is in the non-braking position. Micro limit switch 310 may be positioned such that when the elevator rope braking system 100 transitions between states, micro limit switch 310 is “switched” from one state to a another state thereby controlling which elements of the circuit of
While
Referring to
First energized state 610 represents a transient state between non-energized state 605 and second energized state 615. First energized state 610 begins in response to the control signal communicating to the control circuitry to move the brake system from the braking state to the non-braking state. Control circuitry applies 110 volts AC to the full wave rectifier bridge 315 and the DC drive 305. It is understood that when the elevator rope braking system is in the energized state, micro limit switch 310 operates to allow voltage applied across full wave rectifier bridge 315 to provide power to electromagnetic coil 170. The first energized state lasts until armature plate 120 is retracted towards base plate 105 to such an extent that the rope can again move freely within the gap G (
In second energized state 615 the elevator rope braking system 100 maintains the non-braking state. Specifically, in the second energized state 615, the DC drive 305 remains “ON”. The voltage supplied by the DC drive 305 in the second energized state is sufficient for the elevator rope braking system 100 to remain in a non-braking state against the force exerted by the springs 130.
The elevator rope braking system 100 transitions from the second energized state 615 back to the non-energized state 605 when either: 1) a control signal operates to trigger control circuitry to discontinue providing power to the elevator rope braking system thereby causing transition to the braking state; or 2) there is a loss of power. In the event that a control signal triggers the rope braking system to transition to the braking state, control circuitry will cut power to DC drive 305 and springs 130 will bias armature plate 120 and brake pad 150 toward top plate 110 and brake pad 155, clamping the brake pads on elevator ropes 400 and arresting their movement. Similarly, if power is lost, springs 130 will bias armature plate 120 and brake pad 150 toward top plate 110 and brake pad 155, clamping the brake pads on elevator ropes 400 and arresting their movement. The elevator rope braking system may transition from the second energized state 615 to the non-energized state 605 substantially instantaneously.
While in the present embodiment the DC drive 305 provides power to the electromagnetic coil 170 in the first energized state 610, alternative embodiments may utilize only the full wave rectifier bridge 315 to provide power to the electromagnetic coil 170 in the first energized state 610. This may be accomplished, for example, by including a three-way switch adapted to activate either only full wave rectifier bridge 315 or only DC drive 305. In an alternate embodiment, both the DC drive 305 and the full wave rectifier bridge 315 provide power to the electromagnetic coil 170 in the first energized state 610 to utilize shared circuitry (as seen in
While exemplary embodiments of the elevator rope braking system 100 described herein refer to control by a control signal, it is understood that the elevator rope braking system 100 may be operable without any external control circuitry/architecture. In such an embodiment, elevator rope braking system 100 would remain in non-energized state 605 until power is provided to the system. Upon receipt of power, elevator rope braking system enters first energized state 610 and will progress to second energy state 615 upon transitioning from the braking state to the non-braking state. The system will remain in the non-braking state until there is a general loss of power, at which time it will again transfer to the braking state.
While the forgoing has discussed an elevator rope braking system in relation to general passenger and freight elevators, the same principles may be implemented on a larger or smaller scale. For example, the same principles may be implemented in a rope braking system for a crane. Alternatively, for smaller elevators an elevator rope braking system could be configured that produces about 1600 lb/in2 of braking force.
Additionally, the disclosed invention could be implemented in any number of alternative configurations without departing from the scope of the invention. For example, referring
While the foregoing invention has been described with reference to the above-described embodiments, various modifications and changes can be made without departing from the spirit of the invention. Accordingly, all such modifications and changes are considered to be within the scope of the appended claims.
This application claims priority under 35 U.S.C.§119(e) to Provisional Patent Application Ser. No. 61/178,765 entitled “Elevator Rope Braking System” filed May 15, 2009, the subject matter thereof incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1738214 | Thurston | Dec 1929 | A |
2886149 | Baermann | May 1959 | A |
4030007 | Price et al. | Jun 1977 | A |
4567419 | Watanabe | Jan 1986 | A |
5101937 | Burrell et al. | Apr 1992 | A |
5131510 | Jamrus et al. | Jul 1992 | A |
5228540 | Glaser | Jul 1993 | A |
6142266 | Appeldorn et al. | Nov 2000 | A |
6193026 | Sevilleja et al. | Feb 2001 | B1 |
6230844 | Latorre | May 2001 | B1 |
6260673 | Mustalahti | Jul 2001 | B1 |
6315080 | Doran | Nov 2001 | B1 |
6520299 | Rimann et al. | Feb 2003 | B2 |
6578674 | Doran | Jun 2003 | B2 |
6659237 | Pribonic | Dec 2003 | B1 |
6681898 | Doran | Jan 2004 | B1 |
7080717 | Ito | Jul 2006 | B2 |
7104367 | Ferrand et al. | Sep 2006 | B2 |
7243759 | Doran | Jul 2007 | B2 |
7341129 | Hsieh | Mar 2008 | B2 |
7407040 | Doran | Aug 2008 | B2 |
7500543 | Doran | Mar 2009 | B2 |
7699145 | Ericson | Apr 2010 | B2 |
7909145 | Erny et al. | Mar 2011 | B2 |
20060090969 | Eckenstein et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100288587 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61178765 | May 2009 | US |