The subject matter disclosed herein relates to elevator systems. More specifically, the subject matter disclosed herein relates to mitigation of sway of suspension and/or driving ropes for elevator systems.
Elevator systems typically include one or more ropes or other suspension members from which an elevator car is suspended, and with which the elevator car is driven along a hoistway. Tall buildings in particular, which have elevator systems servicing them, have some sway associated with them. This sway, most often experienced during periods of high winds, can seriously impact elevator performance and, in some instances, damage elevator components. For example, building sway can result in rope sway that, especially when the rope length is shortened as the car runs into an upper or lower landing, has a significant lateral amplitude that causes excessive vertical vibration and noise at the elevator car. Further, rope sway effects experienced at the elevator car are increased at certain floors where the rope sway frequency is at or near the building sway vibratory frequency.
The typical approach to rope sway mitigation involves deploying mechanical elements such as sway arms, snubbing devices, car followers, rope guides, isolators or the like. The mechanical elements such as the above increase system cost and many times lack the reliability necessary to prevent the effects of rope sway. Another solution includes adjusting a tie down sheave in the hoistway to minimize the effect of compensation rope sway during the high wind event. The building is then monitored for sway and wind modes are implemented limiting elevator performance, for example, stopping service to floors in a predetermined “critical zone”, at which the effects of the building sway on the elevator car are greatest. This approach, however, results in having many unserviceable floors of the building during building sway events, which is unacceptable to many elevator system users.
According to one aspect of the invention, a method of operating an elevator system includes detecting a building sway which causes sway of elevator suspension or compensation members. An elevator control system is switched into a building sway mode, and operation of one or more elevator cars of the elevator system is changed via the building sway mode to mitigate vibratory effects of the building sway on one or more elevator cars.
Alternatively in this or other aspects of the invention, changing operation of one or more elevator cars includes stopping an elevator car during travel to reduce a sway amplitude of suspension or compensation members operably connected to the elevator car via the stoppage. Movement of the elevator car is then restarted.
Alternatively in this or other aspects of the invention, a false call is assigned to the elevator car to stop the elevator car.
Alternatively in this or other aspects of the invention, the elevator car is given priority for a call at an intermediate floor to stop the elevator car.
Alternatively in this or other aspects of the invention, changing operation of the one or more elevator cars includes limiting a continuous length of time an elevator car may spend at a floor or number of floors defined as a critical zone with regard to suspension or compensation member sway by configuring individual elevator cars of the elevator system with critical zones at different levels in the building. The controller is utilized to direct passengers to selected elevator cars such that a destination of each passenger is not within the critical zone for the elevator car to which they are assigned, thereby limiting continuous time of the elevator cars in their respective critical zones.
Alternatively in this or other aspects of the invention, the critical zones are configured by installing different tie down sheaves at each elevator car.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Shown in
As shown in
Referring now to
To mitigate this issue, specific logic is utilized by the controller 30 during building sway condition as detected, for example, by a building sway detector 46. The building sway detector 46 may be a pendulum switch, accelerometer, input from a building tuned mass damper, or a wind anemometer, or other such device. When a building sway is detected, and the elevator car 12 is on a long travel run such as described above, the controller 30 will assign a false call at a floor 38 prior to the elevator car's destination floor 38. For example, during travel from a high floor 38 to the lobby floor 38, the controller 30 may assign a false call to a fifth floor 38, to briefly stop the elevator car 12. If the elevator system includes multiple hoistways 14 and multiple elevator cars 12, the elevator car 12 on the long travel run is assigned priority to accept a request from an intermediate floor 38 to briefly stop the elevator car 12.
The brief stop of the elevator car 12, whether due to the actual intermediate call or the false call allows the rope sway amplitude, either of the suspension ropes 16 or compensation ropes 26, to lessen before the elevator car 12 returns to motion, thus preventing the high amplitude that results in vibration at the elevator car 12 due to the high speed shortening of the ropes. This solution is beneficial as it is only apparent to a passenger as a false call when a low volume of passengers are utilizing the elevator system 10. Further, the elevator cars 12 are not slowed for each trip during a building sway event as is the typical solution, so performance of the elevator system 10 is improved, especially during high volume usage of the elevator system 10.
In another embodiment, as illustrated in
Further, the controller 30 may utilize static critical zone 48 determinations input into the controller 30, or may make dynamic adjustment to the critical zone 48 based on information provided to the controller 30. For example, weight of the elevator car 12 has an effect on the suspension ropes 16, so the controller 30 may utilize a dynamic calculation of the critical zone 48 based on a number of passengers in the elevator car 12 and/or a load weight from a load weight cell. In some elevator systems 10, a weight of an empty elevator car 12 may also be used as part of the calculation of the critical zone 48.
In a destination dispatch elevator system 10, the controller 30 monitors the number of stops assigned to a particular elevator car 12 and then limits the number of stops to a number appropriate to an amount of time that can be spent in the critical zone 48. For example, if the critical zone 48 of a particular building 39 is defined by floors 10 through 15 in a building 39 of fifteen floors, then the controller 30 can assign any number of passengers to stop at floors 2 through 9, while only allowing one or two stops in the critical zone 48, floors 10 through 15, in any given run of the elevator car 12. The controller may do this by, for example, allowing only passengers traveling to floor 12, or one of the other floors in critical zone 48, into a particular elevator car 12, while not allowing passengers whose destination is any of the other floors in the critical zone 48 into the same elevator car 12. Alternatively, the controller 30 may allow passengers bound for any of the floors in the critical zone 48 to enter the same elevator car 12, but to direct the elevator car 12 to travel out of the critical zone 48 between stops in the critical zone 48 thereby limiting contiguous time spent in the critical zone 48.
In a traditional hall call elevator system 10, the building sway mode may be implemented by limiting the number of elevator car 12 calls accepted by the car panel 36 in the critical zone 48. For example, in the building 39 with the floor 10 through 15 critical zone 48 above, the controller can effectively lock out the critical zone floor call buttons of the car panel 36 after one or two calls to the critical zone 48 have been registered by the car panel 36. Suppose a number of passengers enter an elevator car 12 at the first floor of building 39, the elevator system 10 having building sway mode engaged so that only one stop is permitted in the critical zone 48. A first passenger depresses the button for floor 12 on the car panel 36. Any attempts to depress buttons for floors 10-11 or 13-15 by the other passengers will not be registered by the car panel 36. The car panel 36 may display a message informing the passengers that it will be necessary to leave the elevator car 12 and board another elevator car 12 to travel to floors 10-11 or 13-15 due to conditions. The displayed message may be augmented by, or replaced by an audible message. Utilizing this building sway mode operation, the elevator system 10 will still be able to service all floors of the building 39, while minimizing time elevator cars 12 spend in the critical zone 48 to reduce the effects of rope sway on elevator car 12 performance.
Referring now to
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/040688 | 6/4/2012 | WO | 00 | 1/12/2015 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/184085 | 12/12/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4643276 | Philobos | Feb 1987 | A |
7681696 | Yamagishi | Mar 2010 | B2 |
7784590 | Watanabe | Aug 2010 | B2 |
7905329 | Urata | Mar 2011 | B2 |
7909144 | Fukui | Mar 2011 | B2 |
7926620 | Amano | Apr 2011 | B2 |
8123002 | Smith | Feb 2012 | B2 |
8297412 | Roberts | Oct 2012 | B2 |
8579089 | Hakala | Nov 2013 | B2 |
8800722 | Kodera | Aug 2014 | B2 |
9415972 | Tanaka | Aug 2016 | B2 |
9475674 | Benosman | Oct 2016 | B2 |
9546073 | Roberts | Jan 2017 | B2 |
20100140023 | Fukui et al. | Jun 2010 | A1 |
20100314202 | Roberts et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
101146731 | Mar 2008 | CN |
101213139 | Jul 2008 | CN |
101287669 | Oct 2008 | CN |
101663220 | Mar 2010 | CN |
101977835 | Feb 2011 | CN |
5319720 | Dec 1993 | JP |
2003104656 | Apr 2003 | JP |
2006232447 | Sep 2006 | JP |
2012101899 | May 2012 | JP |
2007013434 | Feb 2007 | WO |
Entry |
---|
State Intellectual Property Office of People's Republic China Search Report; Application No. 201280073726.7; dated Nov. 19, 2015; 3 pages. |
International Preliminary Report on Patentability; PCT/US2012/040688; dated Dec. 9, 2014; 5 pages. |
International Search Report of the International Searching Authority; PCT/US2012/040688; dated Jan. 21, 2013; 5 pages. |
Written Opinion of the International Searching Authority; PCT/US2012/040688; dated Jan. 21, 2013; 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150166304 A1 | Jun 2015 | US |