The invention relates to testing elevator structures.
Elevators are commonly used for moving people and material. Especially in passenger elevators the responsibility of passengers causes a need for high quality testing. Testing and verification are commonly used to determine possible manufacturing and installation defects, such as loose joints, loose electric wires, incorrect spacing of components, detached connectors in electric devices, forgotten tools, and any other defects, that might be caused by improper installation, material problems, or any other human error. Extensive testing is typically done after installation or manufacturing an elevator, however, these defects may also be caused by installed spare parts, wearing, vandalism, or any other reason that has an effect to the elevator after installation. In other words, a defect is a malfunction or behavior that needs to be fixed in order to improve the quality and the quality impression of an elevator.
These defects may cause security risks and inconvenience for passengers. Furthermore, the elevator manufacturer is wishing to manufacture and install elevators at desired quality level in order to give positive image of the manufacturer and products. In addition to the above mentioned problems an elevator having defects has reduced overall reliability, breaks down easier and requires thus more maintenance. Thus, every elevator must be tested extensively before it can be used. The need for testing cannot be overcome by additional security components even if they are commonly used for increasing the overall security of an elevator and the security components do not remove inconveniences caused by defects. Proper testing is performed by a person skilled in the field of elevator installations. Typically this person test drives each installed elevator and determines possible problems by looking and listening. An experienced tester recognizes noises caused by manufacturing or installation defects and can examine possible sources of problems.
The method described above is very dependent on the skills of the person testing an elevator. Furthermore, elevators do not sound always the same so it is quite difficult to build the skill. Testing requires not only listening skill but also skills for causing the noise.
There are also special separate shaker devices that can be used instead of manual testing of an already installed elevator, however, these devices are expensive. Thus, there is a need for reliable and affordable testing method. Furthermore, shaker device has a drawback that the elevator will not be tested in the real operating environment. When a shaker device is used the device is so that the elevator car is shaken in one position and it does not travel through the elevator shaft. Furthermore, the shaking generated by a shaker device is artificial and might be different than in real operating conditions.
The invention discloses a mechanism for testing elevators by using already installed elevator hoisting equipment. Loose joints and defects, such as the defects mentioned in the background of the invention section, are hard to find. Especially in case of passenger elevator it is crucial to find these defects in order to produce safe elevators. Testing can be done using a special excitement signal, which is combined with ordinary movement control signal controlling movements of the elevator. As a result of the combination a test signal is achieved. The movement control signal is the signal that instructs the elevator to move in accordance with the selections made by passengers. The test signal causes pulsating or oscillating movement of the elevator car that deviates from the ordinary movements of the elevator. This movement causes sounds or noises from loose joints and other defects. The sources of these noises can then be located and the defects can be fixed.
In an embodiment the invention is implemented as a testing method. In the method an excitement signal is first transmitted to the controlling unit of the elevator separately or as a part of a test signal that has been created by combining an excitement signal and movement control signal. Transmitting can be done during manufacturing of the elevator or it can be loaded before testing, for example, from a computer or memory stick of the maintenance person. The excitation signal comprises causes pulsating and/or oscillating movement of the elevator car of the elevator by using the hoisting installation of the elevator. Then noises caused by defects are detected during the excitement.
In an embodiment of the invention an elevator comprises a hoisting installation and elevator car. The hoisting installation is configured control the movement of the elevator in accordance with a test signal described above and further configured to cause pulsating and/or oscillating movement of the elevator car of the elevator in accordance with said test signal. As in the embodiment described above, the movement causes noises from loose joints and other possible sources of defects as discussed above. The sources of these noises can then be located and the defects can be fixed.
In a further embodiment of the invention a computer program comprising code adapted to cause receiving a test signal as described above, wherein said test signal comprises instructions for causing pulsating and/or oscillating movement of the elevator car of an elevator by using and instructing the hoisting installation of said elevator to cause said pulsating and/or oscillating movement, is disclosed.
A benefit of the present invention is that it provides reliable and repeatable testing procedure. The movement in accordance with the excitation signal causes noises deriving from defects. When the maintenance person uses always the same excitation signal he or she can learn to distinguish ordinary noises from unwanted noises caused by defects.
A benefit of the invention is that it can be implemented by using conventional elevator components that are already in place. Every elevator comprises a hoisting installation for moving the elevator and the hoisting installations are able to receive instructions from external devices.
A further benefit of the invention is that the elevator can be tested under real operating conditions. The elevator is first installed into the shaft and then the elevator can be tested in different locations of the shaft. This facilitates, for example, testing of guide rails that is complicated to be tested with a shaker device.
A further benefit of the invention is that the person testing the elevator can do observations in real operating conditions inside the elevator car. Thus, in addition to measured noises the person is able to observe/feel/sense sources of possible problems. Furthermore, the person travelling in the elevator car observes the same in conveniences as an ordinary passenger. Based on this information these inconveniences can be removed.
The accompanying drawings, which are included to provide a further understanding of the invention and constitute a part of this specification, illustrate embodiments of the invention and together with the description help to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
In
In
In the embodiment of the figure hoisting installation comprises variable frequency drive and an electrical motor. The elevator is then operated according to the instructions received from the controller 13 as discussed above. When the elevator is to be tested, for example after installation or after yearly maintenance, the maintenance person connects the device 15 to the controller 13 over networks switch 14. Then the maintenance person instructs the controller to use a special purpose test sequence for moving the elevator. The sequence may comprise ordinary movement between floors but it also includes a special purpose excitement signal for causing pulsating or oscillating movement created with the variable frequency drive is used. The actual excitement signal may vary between different types of elevators, however, it is beneficial that the maintenance person can use the same sequence every time. Thus, the person may be sure that different sounds are not resulting from different sequence but actually from loose joints. This excitement of pulsating or oscillating movement can be repeated as long as the drive and motor are capable of producing such excitement. Thus, the maintenance person can learn the excitement and is able to hear the differences better.
The embodiment of
In the embodiment of
In an embodiment of the invention the measurement device 24 is the microphone of a telephone of the elevator. Typically an elevator comprises a telephone for emergency use. This telephone comprises always a microphone for communication. This microphone can be used for testing purposes according to the present invention. It is acknowledged that an elevator may comprise more than one elevator phone for different uses, or there may be a special purpose microphone or a connector for a microphone in the elevator. The person testing the elevator is free to choose which microphones are used for measurements. However, it is emphasized that the test can also be made without recording the run with microphone or accelerometer using only human senses for observations or by using a portable measuring device having microphone.
A person having ordinary skill understands that the elevator causes all kinds of sounds and noises when moving. The purpose of the present invention is to cause noises and sounds that deviate from the normal sounds and noises that are caused when everything is in order. These undesired noises must be separated from normal noises. This may be done, for example, by a maintenance person who listens the produced sound or by machine. In the machine separation the undesired noise is separated from the normal noise, for example, by comparing the noise with a previously stored model or sample, by searching patterns that typically represent undesired noises, or any similar sound processing method. Furthermore, if a machine detects a possible source of problems in the noise the sample may be sent to a maintenance person for final approval.
In
Above discussed excitation signal is combined with an ordinary movement control signal controlling the movements of the elevator to be tested. It must be understood that this combination may be done in different ways. For example, the elevator may comprise a test mode, wherein the excitation signal is transferred to the controller or retrieved from the memory. Then, when a maintenance person calls a journey it is combined with the control signal so that the excitation causes abnormal movements during the journey. In another embodiment the excitation is combined with a control signal before it is transferred to the control. For example, a maintenance person may have a test signal where the control signal part comprises a journey call from first floor to fourth floor and excitation signal part comprises test specific excitation causing abnormal movements that may cause noises and vibrations when defects exist.
The above discussed excitation signal may be, for example white or pink noise, which may be filtered by using a low pass filter, high pass filter or band pass filter. Typically the frequency of wave components is more than 0.5 Hz.
In an embodiment the controller, or a controlling device, controlling at least one elevator is an apparatus comprising at least one processor and at least one memory. The memory includes computer program code for one or more programs, the at least one memory and the computer program code are working together, with the at least one processor, cause the apparatus to perform the above disclosed combination of movement control signal and excitation signal in order to cause movements deviating from the normal movement of the elevator by using the hoisting installation of the elevator.
The above mentioned method may be implemented as computer software which is executed in a controller of an elevator or a computing device able to instruct such controller. When the software is executed in a computing device it is configured to perform the above described inventive method in order to facilitate discovery resources in a mobile communication network. The software is embodied on a computer readable medium so that it can be provided to the computing device.
As stated above, the components of the exemplary embodiments can include computer readable medium or memories for holding instructions programmed according to the teachings of the present inventions and for holding data structures, tables, records, and/or other data described herein. Computer readable medium can include any suitable medium that participates in providing instructions to a processor for execution. Common forms of computer-readable media can include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other suitable magnetic medium, a CD-ROM, CD±R, CD±RW, DVD, DVD-RAM, DVD±RW, DVD±R, HD DVD, HD DVD-R, HD DVD-RW, HD DVD-RAM, Blu-ray Disc, any other suitable optical medium, a RAM, a PROM, an EPROM, a FLASH-EPROM, any other suitable memory chip or cartridge, a carrier wave or any other suitable medium from which a computer can read.
It is obvious to a person skilled in the art that with the advancement of technology, the basic idea of the invention may be implemented in various ways. The invention and its embodiments are thus not limited to the examples described above; instead they may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
13156727.3 | Feb 2013 | EP | regional |
This application is a continuation of PCT International Application No. PCT/EP2014/053131 which has an International filing date of Feb. 18, 2014, and which claims priority to European patent application number 13156727.3 filed Feb. 26, 2013, the entire contents of both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2014/053131 | Feb 2014 | US |
Child | 14826638 | US |