The invention relates to an elevator. The elevator is particularly meant for transporting passengers and/or goods.
Elevators typically have a suspension roping between the elevator car and the counterweight which roping passes around a rope wheel mounted stationary in some suitable position above said elevator units. Additionally, the elevator may need to be provided with another roping (later referred to as a second roping) between the elevator car and the counterweight suspended to hang from the elevator car and the counterweight. This type of arrangement is normally used to provide compensation for the weight of the hoisting roping. Particularly, in this way the unbalance caused by the hoisting roping and occurring when the elevator car is run to its extreme position can be eliminated. In this case, the second roping can hang freely in the shaft and no rope wheel is necessary to guide it. The second roping may also be used to provide a tie-down-function (also known as lock-down function). This function is obtained by arranging the second roping to pass around a rope wheel mounted stationary in some suitable position below said elevator units, for instance at the lower end of the shaft. The radially directed movement this rope wheel is blocked and therefore it can produce a support force for the loop of the second roping so it restrict the elevator car from continuing its upwards directed movement (jumping) in case the counterweight suddenly stops, and vice versa. These types of incidents would be harmful and dangerous, because they might cause displacement of the suspension ropes. Sudden jerks might also be caused for the people inside the car.
Normally, the cross-sectional shape, type and number of the ropes of the hoisting roping and the second roping are similar. Also, if these ropings are guided, they are normally guided mutually in the same way by their rope wheels. The similarity provides that same ropes can be used both in the hoisting roping and the second roping. Also, in this way complete compensation is attained as the weights of the hoisting roping and second roping are automatically similar.
Normally, the elevator ropes are metallic. Metallic ropes have the drawback that they are heavy, which causes several challenges, for instance in energy consumption and dimensioning. It has been attempted to utilize a light-weighted roping in cases where the second roping need not be heavy due to purpose or compensation. In this case, each rope of the second roping may be such that its longitudinal force transmission capability is based essentially on non-metallic fibers, for instance. This kind of a rope with light-weighted force transmission part (i.e. load bearing member) is known as such for instance in WO2009090299A1. It has been found out that if the ropes of the second roping are light-weighted and belt-like they may occasionally take strong disturbance from air flows occurring in the hoistway. Especially elevators with long lifting height, and therefore with long free rope spans, are detected to be prone to this problem. The disturbance may cause unintended horizontal movement (e.g. sway) in the ropes of the second roping such that they may touch the elevator hoistway components. In case these ropes are arranged to pass around rope wheels, they may wander laterally against the surface of the rope wheel due to said sway. Due to this, a reliable tie-down mechanism has been difficult to provide. It has been found out that one reason for the disturbances is that the rope tension of the second roping is low, for example compared to that of the hoisting roping. The tension is low especially because the second roping does not suspend the elevator car or the counterweight as the hoisting roping does.
The object of the invention is to introduce an elevator where unintended lateral movement of a light-weighted roping hanging between the elevator car and the counterweight is reduced. The object of the invention is, inter alia, to solve previously described drawbacks of known solutions and problems discussed later in the description of the invention. Embodiments are presented where this object is achieved with aid of contoured shapes of the rope(s) and a rope wheel. Also, embodiments are presented, inter alia, where tension of individual ropes of the second roping is increased by one or more ways thereby ensuring adequate grip between contoured rope wheel and contoured rope.
It is brought forward a new elevator. In a preferred embodiment of the invention, the elevator comprises an elevator car and a counterweight, and a first roping between the elevator car and counterweight suspending the elevator car and the counterweight, the first roping comprising at least one rope. The elevator further comprises a second roping between the elevator car and counterweight suspended to hang from the elevator car and counterweight, the second roping comprising at least one rope, and a rope wheel arrangement, having at least one rope wheel around which said at least one rope of the second roping passes. The longitudinal force transmission capability of said at least one rope of the second roping is based essentially on non-metallic fibers, and in that said at least one rope of the second roping is a belt-like rope having at least one contoured side provided with guide rib(s) and/or guide groove(s) oriented in the longitudinal direction of the rope, said side being fitted to pass against a contoured circumference of a rope wheel of said rope wheel arrangement, said circumference being provided with guide rib(s) and/or guide groove(s) so that said contoured circumference forms a counterpart for said contoured side of the rope. The sensitivity of the rope for disturbances caused by its lightness and the belt-like form are compensated for by the lateral guidance, which guidance is achieved by the rib-groove shapes of the rope and the circumference forming counterparts for each other. This configuration brings the benefit of a light-weighted roping between the elevator car and the counterweight without disturbances causing unintended lateral movement for the roping. The rope(s) being belt-like facilitates a small bending radius without losing cross-sectional area. Thus, the longitudinal force transmission capabilities of the roping are good.
In a preferred embodiment the elevator comprises means for blocking radially directed movement of said at least one rope wheel. The blocking of the radial movement makes it possible that the rope wheel can give support for the ropes of the second roping resisting the rope loop passing around it from rising freely when a tie-down function is needed.
In a preferred embodiment said at least one rope wheel is mounted such that it can move in its radial direction at most by an amount of a certain margin of movement. The fact that radial movement is at most a certain distance provides that the rope wheel can give support for the ropes of the second roping, thus resisting the rope loop passing around it from rising freely when a tie-down function is needed.
In a preferred embodiment also the longitudinal force transmission capability of the rope(s) of the first roping is/are based essentially on non-metallic fibers. Said non-metallic fibers are preferably similar fibers, as in said fibers of the rope(s) of the first roping. For example they can both be carbon fibers. Also, it is preferable that the rope(s) of the first roping is/are belt-like. This facilitates a small bending radius without losing cross-sectional area. Thus, the longitudinal force transmission capabilities of the roping are good. When also the first roping is light-weighted, the weight distribution of the ropings is optimal, and the second roping need not provide considerable weight compensation.
In a preferred embodiment the first roping comprises rope(s) passing around a rope wheel, said rope(s) being belt-like and having a side without guide ribs or guide grooves and fitted to pass against a circumference of said rope wheel. Having a different lateral guidance (or no guidance for the first roping) for the two ropings facilitates an optimized solution for each of them. Accordingly, these very differently behaving ropings are not in this embodiment guided in the same way. Especially, the guidance of the first roping can be arranged in more simple and therefore in cheaper and more easily maintained way. Preferably, said circumference of said rope wheel is cambered. This is one simple, easy to maintain and reliable way to provide guidance for the first roping.
In a preferred embodiment the first roping comprises a higher number of ropes than the second roping, for instance such that the first roping comprises a plurality of ropes and the second roping comprises only one rope. The smaller amount of ropes in the second roping facilitates the rope tension of individual rope(s) to be adequate for the light-weighted and wide ropes of the second roping so as to ensure reliable grip between said rope wheel or the rope wheel arrangement and the rope(s) of the second roping.
In a preferred embodiment the second roping comprises only one rope. In this way, the tension of this individual rope can be maximized. In a preferred alternative for this, the first roping comprises a 5-10 ropes and the second roping comprises 2-4 ropes.
In a preferred embodiment the rope wheel arrangement is arranged to exert with said at least one rope wheel a tensioning force on the rope. Preferably, said tensioning force is from 3000 N to 30000 N, more preferably from 5000 N to 30000 N, most preferably from 10000 N to 20000 N. Preferably, said at least one rope wheel is movably mounted on the building and the rope wheel arrangement comprises a tension means, such as a tension weight, for moving said rope wheel towards rope tightening direction. Preferably, said tension weight is from 300 kg to 3000 kg, more preferably from 500 kg to 3000 kg, most preferably 1000 kg to 2000 kg and it rests on the loop formed by the second roping. When the tension is in the preferred range the lightweighted belt-like rope is most suitably tensioned so that together with the guidance with the rib-groove-structure provides most effective reduction in disturbances which tend to move the rope laterally. This is particularily the case when the number of ropes of the second roping is small.
In a preferred embodiment each of said rope(s) of the second roping comprise(s) a force transmission part or a plurality of force transmission parts for transmitting force in the longitudinal direction of the rope, which force transmission part is made of composite material, said composite material comprising non-metallic reinforcing fibers in a polymer matrix. In this way the force transmission part (and therefore also the whole rope) can be made light, yet rigid and having a high tensile strength. High tensile strength provides for that a high number of ropes is not necessary to be used in the second roping. The composite force transmitting part(s) resist bending. Therefore, the tension needs to be high makes it possible that a rope with composite force transmitting part(s) can be forced to bend against the circumference of said at least one rope wheel. In this way, adequate rope contact can be ensured. The preferable tension ranges are as described elsewhere, the most preferably range being 10000-20000 N as described.
In a preferred embodiment each of said rope(s) of the first roping comprise(s) a force transmission part or a plurality of force transmission parts for transmitting force in the longitudinal direction of the rope, which force transmission part is made of composite material, said composite material comprising non-metallic reinforcing fibers in a polymer matrix. In this way the force transmission part (and therefore also the whole rope) can be made light, yet rigid and having a high tensile strength.
In a preferred embodiment density of the aforementioned non-metallic fibers is less than 4000 kg/m3, and the tensile strength is over 1500 N/mm2, more preferably so that the density of the aforementioned fibers (f) is less than 4000 kg/m3, and the tensile strength is over 2500 N/mm2, most preferably so that the density of the aforementioned fibers is less than 3000 kg/m3, and the tensile strength is over 3000 N/mm2. Choosing the fibers to have high tensile strength and low weight enables that the ropes are light and have a good tensile strength.
In a preferred embodiment the rope(s) of the first and/or second roping do not comprise metallic fibers or wires. Preferably, the force transmission part(s) of each rope is/are essentially fully of non-metallic material.
In a preferred embodiment the rope(s) of the second roping comprise a polymer layer forming said ribs and/or grooves. Thus, the surface properties may be chosen optimally. Preferably, the rope(s) has its force transmission part(s) surrounded with said polymer layer forming said ribs and/or grooves.
In a preferred embodiment said polymer layer covers majority of the of the cross-section area of the rope.
In a preferred embodiment the aforementioned non-metallic fibers (f) comprise carbon fibers or glass fibers or polymer fibers, such as Aramid fibers or polybenzoxazole fibers or UHMWPE fibers or corresponding.
In a preferred embodiment module of elasticity (E) of the polymer matrix (M) is over 2 GPa, most preferably over 2.5 GPa, yet more preferably in the range 2.5-10 GPa, most preferably of all in the range 2.5-3.5 GPa. In this way a structure is achieved wherein the matrix essentially supports the reinforcing fibers, in particular from buckling. One advantage, among others, is a longer service life and the enablement of smaller bending radiuses.
In a preferred embodiment the lifting height of the elevator is at least 100 meters. In this context the rope systems are increasingly sensitive to disturbances. Especially in this case, the earlier mentioned preferred tension range is most effective, because in this way the resonance frequency of the light-weighted roping is set to be beneficially far away from normal building sway frequency (e.g. 0.07-0.12 Hz).
In a preferred embodiment said at least one rope wheel(s) is/are freely rotating wheel(s). Accordingly, said at least one rope wheel(s) is/are not motor-driven.
In a preferred embodiment the aforementioned non-metallic fibers of the rope(s) of second roping, and preferably also those of the ropes of the first roping, are carbon fibers. In this way the rope has high tensile strength, low weight and good resistance for heat. Especially, the high tensile strength of the rope provides for that a high number of ropes is not necessary to be used in the second roping.
In a preferred embodiment said reinforcing fibers are oriented in the lengthwise direction of the rope. Accordingly, they are non-twisted. Preferably, individual reinforcing fibers are homogeneously distributed in said polymer matrix. Preferably, said reinforcing fibers are continuous fibers extending throughout the entire length of the rope. Preferably, said reinforcing fibers are bound together as an integral force transmission part by said polymer matrix. Preferably, said reinforcing fibers are bound together as an integral force transmission part by said polymer matrix, at a manufacturing stage by immersing the reinforcing fibers in polymer matrix material. Preferably, the polymer matrix comprises epoxy, polyester, phenolic plastic or vinyl ester. Preferably, over 50% of the cross-sectional square area of the force transmission part consists of said reinforcing fiber. Preferably, the width of each said force transmission part is larger than a thickness thereof in a transverse direction of the rope. Preferably, the rope comprises a number of said force transmission parts placed adjacently in width direction of the rope.
In a preferred embodiment said load-bearing part(s) cover minority of the of the cross-section area of the rope. Thus, the ribs and/or grooves of the rope are easy to form.
In a preferred embodiment both the first and second roping are connected from one end to the elevator car and from the other end to the counterweight.
The elevator as describe anywhere above is preferably, but not necessarily, installed inside a building. The car is preferably traveling vertically. The car is preferably arranged to serve two or more landings. The car preferably responds to calls from landing and/or destination commands from inside the car so as to serve persons on the landing(s) and/or inside the elevator car. Preferably, the car has an interior space suitable for receiving a passenger or passengers, and the car can be provided with a door for forming a closed interior space.
In the following, the present invention will be described in more detail by way of example and with reference to the attached drawings, in which
Said at least one rope wheel 6, around which said at least one rope 7-7″″ of the second roping 4 passes is preferably mounted to be movable in its radial direction. The rope wheel arrangement 5 is arranged to exert a tensioning force on the rope 7 with the rope wheel. Said movability can be arranged e.g. by mounting said at least one rope wheel 6 on the rope wheel arrangement 5 movably or mounting the rope wheel arrangement 5 movably on its mounting position. The latter option is illustrated in
As illustrated in
In
The rope 7-7″″ is arranged to transmit the longitudinal force of the rope between the elevator car 1 and the counterweight 2 with the aforementioned force transmission part(s) 15. Thus, it can be used for slowing down the upward movement of the counterweight 2 in emergency braking of the downward movement of the elevator car 1 and vice versa. In this way continuation of the said movement can be prevented e.g. in a situation in which the speed of the elevator car 1 is decelerated quickly, with an acceleration of even 1 G or faster.
As illustrated in configuration of
Said force transmission part(s) 15 is/are preferably of a material, which comprises non-metallic fibers f oriented at least essentially longitudinal to the rope. These fibers f are preferably chose such that the density of said fibers f is less than 4000 kg/m3, and the tensile strength is over 1500 N/mm2, more preferably so that the density of the aforementioned fibers (f) is less than 4000 kg/m3, and the tensile strength is over 2500 N/mm2, most preferably so that the density of the aforementioned fibers (f) is less than 3000 kg/m3, and the tensile strength is over 3000 N/mm2. In particular, said non-metallic fibers are preferably carbon fibers, glass fibers or polymer fibers, such as Aramid fibers or polybenzoxazole fibers or UHMWPE fibers or corresponding, which are all light fibers. The material of the force transmission part is in this case most preferably formed to be a composite material, which comprises the aforementioned non-metallic fibers f as reinforcing fibers in a polymer matrix m. Thus the force transmission part 15 is light, rigid in the longitudinal direction and when it is belt-shaped it can, however, be bent with a small bending radius. Especially preferably the fibers f are carbon fibers. They possess good strength properties and rigidity properties and at the same time they still tolerate very high temperatures, which is important in elevators because poor heat tolerance of the hoisting ropes might cause damage or even ignition of the hoisting ropes, which is a safety risk. Good thermal conductivity also assists the onward transfer of heat due to friction, among other things, and thus reduces the accumulation of heat in the parts of the rope. More particularly the properties of carbon fiber are advantageous in elevator use. The advantageous properties of said fibers f and this type of force transmission parts as well as manufacturing methods thereof are also described in publication WO2009090299A1.
As presented in the figures, the rope 7-7″″ of the elevator according to the invention is most preferably belt-shaped. Its width/thickness ratio is preferably at least 2 or more, preferably at least 4, even more preferably at least 5 or more, yet even more preferably at least 6, yet even more preferably at least 7 or more, yet even more preferably at least 8 or more, most preferably of all more than 10. In this way a large cross-sectional area for the rope is achieved, the bending capacity of the thickness direction of which is good around the axis of the width direction also with rigid materials of the force transmission part. Additionally, preferably the aforementioned force transmission part 2 or a plurality of force transmission parts 2 together cover most of the width of the cross-section of the rope for essentially the whole length of the rope. Thus the supporting capacity of the rope with respect to its total lateral dimensions is good, and the rope does not need to be formed to be thick. This can be simply implemented with any of the aforementioned materials, with which the thinness of the rope is particularly advantageous from the standpoint of, among other things, service life and bending rigidity. The rope 7-7″″ can comprise one force transmission part 15 of the aforementioned type, or a plurality of them, in which case this plurality of force transmission parts 15 is formed from a plurality of parallel force transmission parts 15 placed on essentially the same plane. Thus the resistance to bending in their thickness direction is small. Preferably, the force transmission part(s) 15 have/has width greater than the thickness. In this case preferably such that the width/thickness of the force transmission part 2 is at least 2 or more, preferably at least 3 or more, even more preferably at least 4 or more, yet even more preferably at least 5, most preferably of all more than 5. In this way a large cross-sectional area for the force transmission part/parts is achieved, the bending capacity of the thickness direction of which is good around the axis of the width direction also with rigid materials of the force transmission part.
For facilitating the formation of the force transmission part 15 and for achieving constant properties in the longitudinal direction it is preferred that the structure of the force transmission part 15 continues essentially the same for the whole length of the rope. For the same reasons, the structure of the rope continues preferably essentially the same for the whole length of the rope.
The force transmission part 15 or the aforementioned plurality of force transmission parts 15 of the rope 7-7″″ is/are preferably fully of non-metallic material. Thus the rope 7-7″″ is light. The force transmission part 15 is more precisely made of non-metallic composite, which comprises non-metallic reinforcing fibers f in a polymer matrix m. The part 15 with its fibers is longitudinal to the rope, for which reason the rope retains its structure when bending. Individual fibers are thus oriented in essentially the longitudinal direction of the rope. In this case the fibers are aligned with the force when the rope is pulled. Said reinforcing fibers f are bound into a uniform force transmission part with the polymer matrix m. Thus, the force transmission part 15 is one solid elongated rodlike piece. The reinforcing fibers f are preferably long continuous fibers in the longitudinal direction of the rope 7-7″″, and the fibers f preferably continue for the distance of the whole length of the rope. Preferably as many fibers f as possible, most preferably essentially all the fibers f of the force transmission part 15 are oriented in longitudinal direction of the rope. The reinforcing fibers f are in this case essentially untwisted in relation to each other. Thus the structure of the force transmission part can be made to continue the same as far as possible in terms of its cross-section for the whole length of the rope. The reinforcing fibers f are preferably distributed in the aforementioned force transmission part 15 as evenly as possible, so that the force transmission part would be as homogeneous as possible in the transverse direction of the rope. The bending direction of the rope is preferably around an axis that is in the width direction of the rope (up or down in the figure). An advantage of the structure presented is that the matrix m surrounding the reinforcing fibers f keeps the interpositioning of the reinforcing fibers essentially unchanged. It equalizes with its slight elasticity the distribution of a force exerted on the fibers, reduces fiber-fiber contacts and internal wear of the rope, thus improving the service life of the rope. The reinforcing fibers can be glass fibers, in which case good electrical insulation and an inexpensive price, among other things, are achieved. Alternatively the reinforcing fibers can be carbon fibers, in which case good tensile rigidity and a light structure and good thermal properties, among other things, are achieved. In this case also the tensile rigidity of the rope is slightly lower, so that traction sheaves of small diameter can be used. The composite matrix, into which the individual fibers are distributed as evenly as possible, is most preferably of epoxy resin, which has good adhesiveness to the reinforcements and which is strong to behave advantageously at least with glass fiber and carbon fiber. Alternatively, e.g. polyester or vinyl ester can be used.
It is preferable that each of said rope(s) 8 of the first roping 3 comprise(s) a force transmission part 15 or a plurality of force transmission parts 15 for transmitting force in the longitudinal direction of the rope 8, which force transmission part 15 is made of composite material, said composite material comprising non-metallic reinforcing fibers f in a polymer matrix m. The force transmission part(s) 15 of the ropes are preferably as defined earlier for the rope 7-7″″. The ropes 8 may be also otherwise structurally as defined earlier for the rope 7-7″″. Accordingly, for instance the width/thickness ratio of the rope 8 is preferably at least 2 or more, preferably at least 4, even more preferably at least 5 or more, yet even more preferably at least 6, yet even more preferably at least 7 or more, yet even more preferably at least 8 or more, most preferably of all more than 10. However, it is not necessary that these ropes 8 are contoured as the ropes 7-7″″. The first roping 3 may comprises rope(s) 8 passing around a rope wheel 16, said rope(s) 8 being belt-like and having a a side without guide ribs or guide grooves and fitted to pass against a circumference of said rope wheel 16.
The embodiments above disclose preferred number of force transmission part(s) 15. The specific number or the force transmission part(s) in each of the ropes 7-7″″, 8 could, however, be other than what is described. For instance each rope 7-7″″, 8 could comprise only one or even 3-5 of said force transmission part(s) 15. The embodiments above disclose preferred number of ropes for the first and second roping. The specific number or the ropes in each of the ropings could, however, be other than what is described. For example one or both of the ropings could comprise more ropes than what is shown. The first roping 3 could comprise a higher number of ropes 8 than the second roping 4, for example such that the first roping 3 comprises at least five ropes 8 and the second roping 4 comprises less than five ropes 7-7″″. A suitable alternative combination would be for instance that the second roping 4 comprises 2, 3 or 4 ropes 7-7″″ and the first roping 3 comprises from five to ten ropes 8.
It is to be understood that the above description and the accompanying figures are only intended to illustrate the present invention. It will be apparent to a person skilled in the art that the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
12199385 | Dec 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2270441 | Hymans | Jan 1942 | A |
2537075 | Margles | Jan 1951 | A |
3014699 | Bentley | Dec 1961 | A |
3653467 | Showalter | Apr 1972 | A |
3882968 | Suozzo | May 1975 | A |
5788018 | Mendelsohn et al. | Aug 1998 | A |
6364061 | Baranda et al. | Apr 2002 | B2 |
6364063 | Aulanko et al. | Apr 2002 | B1 |
6386324 | Baranda et al. | May 2002 | B1 |
6508051 | De Angelis | Jan 2003 | B1 |
8602174 | Aulanko | Dec 2013 | B2 |
20010025743 | Ach | Oct 2001 | A1 |
20040079590 | Sweet | Apr 2004 | A1 |
20040206579 | Baranda et al. | Oct 2004 | A1 |
20080223664 | Johansson et al. | Sep 2008 | A1 |
20080223665 | O'Donnell | Sep 2008 | A1 |
20110000746 | Pelto-Huikko et al. | Jan 2011 | A1 |
20110088980 | Husmann | Apr 2011 | A1 |
20110266097 | Valjus et al. | Nov 2011 | A1 |
20120329591 | Goeser et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
1277281 | Dec 2000 | CN |
1331768 | Jan 2002 | CN |
1886322 | Dec 2006 | CN |
102010016872 | Nov 2011 | DE |
1396458 | Mar 2004 | EP |
WO 2009090299 | Jul 2009 | WO |
WO 2011055020 | May 2011 | WO |
WO 2011128223 | Oct 2011 | WO |
WO 2011135174 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140182976 A1 | Jul 2014 | US |